
www.allitebooks.com

www.allitebooks.com

Killer Game Programming
in Java ™

www.allitebooks.com

Other Java™ resources from O’Reilly

Related titles Head First Java™

Hardcore Java™

J2ME in a Nutshell

Java™ in a Nutshell

QuickTime for Java™:
A Developer’s Notebook

Physics for Game Developers

Gaming Hacks

AI for Game Developers

Java™ 2D Graphics

Java Books
Resource Center

java.oreilly.com is a complete catalog of O’Reilly’s books on
Java and related technologies, including sample chapters and
code examples.

OnJava.com is a one-stop resource for enterprise Java develop-
ers, featuring news, code recipes, interviews, weblogs, and
more.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-

ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free trial.

www.allitebooks.com

Killer Game Programming
in Java

™

Andrew Davison

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

www.allitebooks.com

Killer Game Programming in Java™

by Andrew Davison

Copyright © 2005 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/insti-
tutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Brett McLaughlin

Production Editor: Matt Hutchinson

Production Services: GEX, Inc.

Cover Designer: Emma Colby

Interior Designer: David Futato

Printing History:

May 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Killer Game Programming in Java, the image of a jungle cat, and related trade dress
are trademarks of O’Reilly Media, Inc.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. O’Reilly Media, Inc., is independent of Sun
Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

ISBN: 978-0-596-00730-0

[M] [4/09]

www.allitebooks.com

v

Table of Contents

Preface . xv

1. Why Java for Games Programming? . 1
Java Is Too Slow for Games Programming 2

Java Has Memory Leaks 3

Java Is Too High-level 4

Java Application Installation Is a Nightmare 5

Java Isn’t Supported on Games Consoles 5

No One Uses Java to Write Real Games 7

Sun Microsystems Isn’t Interested in Supporting Java Gaming 10

2. An Animation Framework . 13
Animation as a Threaded Canvas 14

Adding User Interaction 20

Converting to Active Rendering 21

FPS and Sleeping for Varying Times 22

Sleeping Better 31

FPS and UPS 34

Pausing and Resuming 37

Other Animation Approaches 39

3. Worms in Windows and Applets . 46
Preliminary Considerations 47

Class Diagrams for the WormChase Application 48

The Worm-Chasing Application 48

The Game Panel 50

Storing Worm Information 59

www.allitebooks.com

vi | Table of Contents

Worm Obstacles 67

Application Timing Results 68

WormChase as an Applet 70

Compilation in J2SE 5.0 73

4. Full-Screen Worms . 76
An Almost Full-Screen (AFS) Worm 77

An Undecorated Full-Screen (UFS) Worm 82

A Full-Screen Exclusive Mode (FSEM) Worm 89

Timings at 80 to 85 FPS 103

5. An Introduction to Java Imaging . 105
Image Formats 105

The AWT Imaging Model 106

An Overview of Java 2D 110

Buffering an Image 113

Managed Images 120

VolatileImage 121

Java 2D Speed 122

Portability and Java 2D 122

JAI 123

6. Image Loading, Visual Effects, and Animation . 124
Loading Images 126

Applying Image Effects 134

Displaying Image Sequences 144

Visual Effects for ‘o’ Images 147

Packaging the Application as a JAR 175

7. Introducing Java Sound . 178
Applet Playing 178

The AudioClip Class 179

The Sound Player 182

The Java Sound API 185

Sampled Audio 185

MIDI 197

Java Sound API Compared with JMF and JOAL 202

Java Sound API Resources 202

Audio Resources 204

www.allitebooks.com

Table of Contents | vii

8. Loading and Playing Sounds . 205
Loader Design and Implementation Issues 207

Testing the Loaders 209

The Sounds Panel 213

The Clips Loader 214

Storing Clip Information 216

The Midi Sequences Loader 219

Storing Midi Information 223

LoadersTests as a JAR File 225

9. Audio Effects . 226
Audio Effects on Sampled Audio 226

Audio Effects on MIDI Sequences 236

10. Audio Synthesis . 249
Sampled Audio Synthesis 249

MIDI Synthesis 255

Audio Synthesis Libraries 268

11. Sprites . 270
Bats, Balls, and Sprites 270

Class Diagrams for BugRunner 272

The Bug Starts Running 273

The Animation Framework 274

Defining a Sprite 279

Coding a Sprite 280

Specifying a Sprite with a Statechart 284

The Ball Sprite 287

Defining the Bat 293

12. A Side-Scroller . 298
JumpingJack in Layers 299

Class Diagrams for JumpingJack 300

Start Jack Jumping 303

The Animation Framework 303

Managing the Ribbons 313

Wraparound Ribbons 314

Managing the Bricks 320

Storing Brick Information 333

www.allitebooks.com

viii | Table of Contents

The Fireball 334

The Jumping Sprite 336

Other Side-Scroller Examples 343

Tiling Software 344

13. An Isometric Tile Game . 345
Isometric Tiles 346

Class Diagrams for AlienTiles 350

The Animation Framework 352

Managing the World 356

Managing WorldItems 363

The Tile Occupier 366

A Sprite on a Tile 368

The Player Sprite 370

The Alien Sprite 373

The Quadrant-Based Alien Sprite 376

The A*-Based Alien Sprite 378

Storing Tile Details 383

Further Reading 384

14. Introducing Java 3D . 387
Java 3D 387

Java 3D Strengths 392

Criticisms of Java 3D for Games Programming 394

Alternatives to Java 3D 402

15. A 3D Checkerboard: Checkers3D . 407
Class Diagrams for Checkers3D 408

Integrating Java 3D and Swing 409

Scene Graph Creation 410

Floating Spheres 413

The Floor 415

Viewer Positioning 419

Viewer Movement 420

Viewing the Scene Graph 421

16. Loading and Manipulating External Models . 424
An Overview of LoaderInfo3D 426

Loaders in Java 3D 428

www.allitebooks.com

Table of Contents | ix

Displaying a Model 430

Examining a Model’s Scene Graph 433

Adjusting a Model’s Shape Attributes 435

An Overview of Loader3D 444

Using Loader3D 446

Creating the Scene 449

Managing the Model 450

Building the Model’s Scene Graph 451

17. Using a Lathe to Make Shapes . 459
Class Diagrams for Lathe3D 461

Creating the Scene 462

The Lathe Curve 468

The Lathe Shape 474

Subclassing the Lathe Shape 482

18. 3D Sprites . 487
Class Diagrams for Tour3D 488

Creating the Scene 489

The Basic 3D Sprite 495

The User’s Touring Sprite 500

The Alien Sprite 500

Behaviors in Java 3D 502

Controlling the Touring Sprite 504

Updating the Alien Sprite 510

19. Animated 3D Sprites . 512
Class Diagrams for AnimTour3D 513

Creating the Scene 514

The Animated 3D Sprite 515

Controlling the Sprite 520

Animating the Sprite 520

Full-Screen Exclusive Mode (FSEM) 525

A Full-Screen Version of the Application 525

Pros and Cons of Keyframe Animation 530

20. An Articulated, Moveable Figure . 531
The Articulated Figure Application 531

Forward and Inverse Kinematics 535

x | Table of Contents

Class Diagrams for Mover3D 537

Creating the Scene 538

Processing User Input 539

The Commands Panel 540

Making and Moving the Figure 543

Modeling a Limb 553

Moving a Limb 557

Other Articulated Figures 561

Articulation and Mesh Deformation 562

Articulation and Skinning 562

Articulation and Morphing 563

21. Particle Systems . 565
Particle Systems in Java 3D 568

Class Diagrams for Particles3D 571

Creating the Scene 572

A Fountain of Points 574

A Fountain of Lines 578

A Fountain of Quads 580

Performance Results 587

More Particle Systems 589

Other Java 3D Approaches 589

Non-Java 3D Approaches 590

22. Flocking Boids . 592
A Flocking Application 594

Scene Creation 596

Adding Obstacles 597

Types of Boids 600

Grouping the Boids 607

Flock Behavior 608

23. Shooting a Gun . 614
Class Diagrams for Shooter3D 616

Scene Creation 617

The Sound of Shooting 617

Picking Scene Objects 619

Controlling the Gun 622

Preparing the Laser Beam 624

Table of Contents | xi

Causing an Explosion 627

Picking with a Mouse Click 631

Shooting Behavior 634

Firing the Beam 639

More on Picking 640

24. A First-Person Shooter . 642
Class Diagrams for FPShooter3D 643

Setting Up the Target 644

Positioning and Moving the User’s Viewpoint 645

Initializing the User’s Viewpoint 647

Adding an Image to the Viewpoint 648

Managing the Ammunition 650

Managing a Laser Beam 651

Moving the Viewpoint 654

25. A 3D Maze . 656
Class Diagrams for Maze3D 657

Making a Maze Plan 659

The User Interface 662

Managing the Maze 663

Scenery Creation 666

Tiling the Floor 668

Viewpoint Creation 670

The Back Facing Camera 676

Moving the Viewpoint 679

The Bird’s-Eye View 681

Related Approaches to Scene Generation 685

26. Fractal Land . 686
Class Diagrams for the Fractal Land 688

Building the Fractal Land 689

Creating the Landscape 691

Constructing the Ground 697

Generating a Fractal Landscape 701

Responding to Key Presses 705

Terrain Following and Collision Avoidance 706

Placing Objects in the Scene 707

Other Fractal Landscapes 709

xii | Table of Contents

27. Terrain Generation with Terragen . 711
Class Diagrams for Terra3D 712

Terragen 713

Scenery Creation 720

Building the Landscape 722

Making 3D Scenery 728

Adding Landscape Walls 731

Creating Ground Cover 734

Moving over the Surface 739

Finding the Surface Height 741

Accelerating Terrain Following 743

More on Terrain Generation 745

28. Trees That Grow . 749
Class Diagrams for Trees3D 751

Creating the Scene 752

Building a Tree Limb 755

Executing the Rules 761

Displaying Leaves 764

Comparison with L-Systems 766

29. Networking Basics . 769
The Elements of Network Communication 770

The Client/Server Model 776

The Peer-to-Peer Model 778

Client/Server Programming in Java 780

P2P Programming in Java 805

Firewalls 808

Other Kinds of Java Networking 816

30. Network Chat . 817
Threaded TCP Clients and Server 818

UDP Multicasting Clients and a Name Server 824

Clients Using a Servlet as a Server 831

31. A Networked Two-Person Game . 844
The Standalone Tic-Tac-Toe Game 846

The Networked Tic-Tac-Toe Game 858

Table of Contents | xiii

32. A Networked Virtual Environment . 878
Background on NVEs 879

An Overview of NetTour3D 884

Scene Creation on the Client 887

Defining Sprites 888

Local Sprites 890

Watching the Server 893

Server Activities 899

Other Java NVEs 902

A. Installation Using install4j . 905

B. Installation Using Java Web Start . 921

Index . 953

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

xv

Preface

Who Are You?
Yes, you. Sit up straight, and stop slouching. (Don’t you just love this assertive writ-
ing style?)

You’re a programmer who wants to apply your abilities to 2D, 3D, and network
games programming, for entertainment or as the first step in becoming a games
programming professional. You want to write a game that uses the latest Java tech-
nology, not an applet showing a penguin waving its flipper.

You’ve done an introductory course on Java, so you understand about classes,
objects, inheritance, exception handling, threads, and basic graphics. But you need
information about more advanced stuff like the APIs for Java 2D, Java Sound, net-
working, and Java 3D.

You’re probably most interested in multiplayer 3D games programming, because
they’re the coolest. They are hard to code, but this book will get you up to speed on
how to build one.

You don’t want to reinvent the wheel since Java is about abstraction, information hid-
ing, and reuse. That translates into building games with existing libraries/classes/tools.

What This Book Is About
This book describes modern (i.e., fast and efficient) Java programming techniques
for writing a broad range of games, including 2D arcade-style, isometric (2.5D), 3D,
and network games, with a strong emphasis on 3D programming using Java 3D.

The 3D topics include loading externally produced 3D models, 3D sprites, first per-
son shooters (FPS), terrain generation, particle systems and flocking, and different
approaches to animation.

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

xvi | Preface

Several chapters on network games build to an example where users move sprites
around a networked 3D arena.

I focus on J2SE 1.4.2, J2SE 5.0 and Java 3D 1.3.1. Under the hood, Java 3D utilizes
OpenGL or Direct3D, which means that it’ll work on all current versions of Win-
dows, various flavors of Linux and Unix, and the Mac. Java 3D requires no special
graphics hardware and is compatible with all modern graphics cards.

J2SE 5.0 (or 1.4.2) and Java 3D 1.3.1 can be downloaded from http://www.java.com:80/
en/download/manual.jsp and http://java.sun.com/products/java-media/3D/.

This Book (and More) Is Online
This book has been growing for a long time, with chapters and code appearing regu-
larly at http://fivedots.coe.psu.ac.th/~ad/jg/. I’ve found it a useful way of gaining lots of
feedback. The site is still worth visiting since a few chapters didn’t make it in here
along with the source code.

What This Book Is Not About
I’m not going to spend 200 pages explaining classes and objects, inheritance, excep-
tion handling, and threads. Many books do that already. A good Java introduction is
Thinking in Java by Bruce Eckel. It’s won awards and can be downloaded at http://
www.mindview.net/Books/TIJ/.

You won’t find any large games here, such as a complete FPS or a multiplayer fan-
tasy world. Describing one of those in detail would require hundreds of pages.
Instead, I focus on the building blocks for games (e.g., reusable elements such as

Which Software Versions?
My Java code is designed to compile and run in J2SE 5.0 and J2SE 1.4, which means
that I avoid using new language features and API introduced in J2SE 5.0. The main rea-
son is to allow my code to be backward compatible with older (and still popular) Java
versions. The main areas where I lose out are in the availability of type-safe collections
and the nanosecond time method, System.nanoTime(), introduced in J2SE 5.0.

However, my code uses the J2SE 1.4 collections in type-safe ways, and I utilize the Java
3D nanosecond timer instead of nanoTime() to achieve the same timing accuracy. In
Chapter 2, I discuss these issues in more detail.

I use Java 3D 1.3.1. although there is a bug release version, 1.3.2, which is regularly
updated. I decided to employ Version 1.3.1 since it’s stable and well-documented. In
Chapter 14, I talk about Java 3D in more detail.

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Preface | xvii

loaders, and algorithms such as A* pathfinding). Shooting in a 3D world is
described in Chapters 23 and 24, and Chapter 32 explains a simple multiuser 3D
space.

I’ve reduced the quantity of code listings; you won’t find page after page of undocu-
mented code here. The documentation uses modern visual aids, including UML class
diagrams, sequence diagrams, state charts, and 3D scene graphs.

The 3D material concentrates on Java 3D, because it’s a high-level 3D API using a
stable and well-documented scene graph. Java has alternative ways of programming
3D applications, including JOGL, LWJGL, Xith3D, jME OpenMind, and more. I’ll
discuss them in Chapter 14, at the start of the Java 3D coverage.

I won’t be talking about J2ME games programming on mobile devices. It’s an excit-
ing subject, especially now that a mobile 3D API is available (for example, in the
J2ME Wireless Toolkit v2.2, http://java.sun.com/products/j2mewtoolkit/). Unfortu-
nately, this book is groaning at the seams, and something has to be left out. For
those interested in J2ME games programming, I suggest J2ME Games with MIDP2
by Carol Hamer (but, it doesn’t cover the 3D API, which is too new). I’ve written
several chapters on the API, which can be downloaded from this book’s web site at
http://fivedots.coe.psu.ac.th/~ad/jg/.

This is not a games design text, a topic deserving its own book or two. Two I like are
Game Architecture and Design: A New Edition by Andrew Rollings and Dave Morris,
and Chris Crawford on Game Design by Chris Crawford.

If you prefer online sources, the following sites are full of gaming articles, reviews,
and opinions:

• Gamasutra (http://www.gamasutra.com/)

• GameDev.net (http://www.gamedev.net/)

• flipCode (http://www.flipcode.com/)

• IGDA, the International Game Developers forum (http://www.igda.org/Forums/)

A Graphical View of This Book
This book has four parts: 2D programming, 3D programming with Java 3D, net-
work programming, and two appendixes on installation. The following figures give
more details about each one in a visual way. Each oval is a chapter, and the arrows
show the main dependencies between the chapters. Chapters on a common theme
are grouped inside dotted, rounded gray squares.

2D Programming
Figure P-1 shows the 2D-programming chapters.

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

xviii | Preface

Chapter 1 is a defense of Java for gaming, which Java zealots can happily skip. The
animation framework used in the 2D examples is explained in Chapter 2, followed
by two chapters applying it to a simple Worms example, first as a windowed applica-
tion, then as an applet, then using full screen mode, and almost full screen mode.
Chapters 3 and 4 contain timing code for comparing the frame rate speeds of these
approaches.

Chapters 5 and 6 are about imaging, mostly concentrating on Java 2D. Chapter 6 has
three main topics: classes for loading images, visual effects, and animation.

Chapters 7 through 10 are about Java Sound: Chapter 8 develops classes for loading
and playing WAV and MIDI audio, and Chapters 9 and 10 are on sound effects and
music synthesis.

A reader who isn’t much interested in visual and audio special effects can probably
skip the latter half of Chapter 6, and all of Chapters 9 and 10. However, the classes
for loading images and audio developed in the first half of Chapter 6 and in
Chapter 8 are utilized later.

Chapter 11 develops a 2D Sprite class, and applies it in a BugRunner game.
Chapter 12 is about side scrollers (as immortalized by Super Mario Bros.), and
Chapter 13 is about isometric tile games (Civilization is an example of that genre).

3D Programming
The 3D-programming chapters are shown in Figure P-2.

Figure P-1. 2D-programming chapters

1 Why Java?

Worms Example

Animation Framework2

Worms in
Windows/Applets

3

Worms Full Screen4

Imaging

Imaging Introduction5

Image Loading, Effects,
Animation

6

Sprites (BugRunner)11

Side Scrolling12 Isometric Tiles13

Sound

Sound
Introduction

7

Sound Loading
and Playing

8

Audio
Synthesis

10

Audio
Effects

9

www.allitebooks.com

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Preface | xix

Java 3D is introduced in Chapter 14, followed by the Checkers3D example in
Chapter 15; its checkerboard floor, lighting, and background appear in several later
chapters.

There are five main subtopics covered in the 3D material: models, animation, parti-
cle systems, shooting techniques, and landscape and scenery.

Chapter 16 develops two applications, LoaderInfo3D and Loader3D, which show how
to load and manipulate externally created 3D models. The PropManager class used in
Loader3D is employed in other chapters when an external model is required as part of
the scene. Chapter 17 develops a LatheShape class, which allows complex shapes to
be generated using surface revolution.

A 3D sprite class is described in Chapter 18, leading to a Tour3D application that
allows the user to slide and rotate a robot around a scene. Chapters 19 and 20 exam-
ine two approaches for animating the parts of a figure: Chapter 19 uses keyframe
sequences, and Chapter 20 develops an articulated figure whose limbs can be moved
and rotated.

Figure P-2. 3D-programming chapters

Intro to Java 3D14

Checkers3D Example15

Models

Lathe Shapes17

Loaders
(PropManager)

16

Animation

3D Sprites
(Tour3D)

18

Animated
Sprites

19

Articulated
Moveable Figure

20

Landscape and Scenery

Trees That Grow28

A 3D Maze25

Fractal Land26

Terrain Generation27

Particles

Particle Systems21

Flocking22

Shooting

Shooting a Gun23

First Person
Shooter (FPS)

24

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

xx | Preface

Particle systems are a widely used technique in 3D games (e.g., for waterfalls, gush-
ing blood, and explosions to name a few). Chapter 21 explains three different parti-
cle systems in Java 3D. Flocking (Chapter 22) gives the individual elements (the
particles) more complex behavioral rules and is often used to animate large groups
such as crowds, soldiers, and flocks of birds.

Lots of games are about shooting things. Chapter 23 shows how to fire a laser beam
from a gun situated on a checkerboard floor. Chapter 24 places the gun in your hand
(i.e., an FPS).

The 3D chapters end with landscape and scenery creation. Chapter 25 describes how
to generate a 3D maze from a text file specification. Chapter 26 generates landscapes
using fractals, and Chapter 27 uses a popular terrain generation package, Terragen,
to create a landscape, which is then imported into the Java 3D application.
Chapter 27 discusses two techniques for filling the landscape with scenery (e.g.,
bushes, trees, and castles).

Chapter 28 concentrates on how to make trees grow realistically over a period of
time.

The dotted arrow from Chapters 24 to 28 indicates a less pronounced dependency; I
only reuse the code for moving the user’s viewpoint.

Network Programming
Figure P-3 shows the network-programming chapters.

Chapter 29 supplies information on networking fundamentals (e.g., the client/server
and peer-to-peer models), and explains basic network programming with sockets,
URLs, and servlets. Chapter 30 looks at three chat variants: one using a client/server
model, one employing multicasting, and one chatting with servlets.

Chapter 31 describes a networked version of the FourByFour application, a turn-based
game demo in the Java 3D distribution. It requires a knowledge of Java 3D. Chapter 32
revisits the Tour3D application of Chapter 18 (the robot moving about a checkerboard)
and adds networking to allow multiple users to share the world. I discuss some of the

Figure P-3. Network programming chapters

Network Basics29

Network Chat30

Networked 2-person 3D Game31 Networked Tour3D32

Checkers3D Example15 3D Sprites (Tour3D)18

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxi

advanced issues concerning networked virtual environments (NVEs), of which
NetTour3D is an example.

The Appendixes
The appendixes are shown in Figure P-4.

Appendix A describes install4j, a cross-platform tool for creating native installers
for Java applications. Appendix B is about Java Web Start (JWS), a web-enabled
installer for Java applications.

Both appendixes use the same two examples. BugRunner (from Chapter 11, which dis-
cusses 2D sprites) uses the standard parts of J2SE and the J3DTimer class from Java
3D. Checkers3D, from Chapter 15, is my first Java 3D example.

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.

Bold

Emphasizes important text.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags, macros, the contents of
files, and the output from commands.

Figure P-4. The appendixes

Installation using install4jA

Installation using JWSB

Checkers3D Example15Sprites (BugRunner)11

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

xxii | Preface

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact O’Reilly
for permission unless you’re reproducing a significant portion of the code. For exam-
ple, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quot-
ing example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Killer Game Programming with
Java by Andrew Davison. Copyright 2005 O’Reilly Media, Inc., 0-596-00730-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

All the code examples can be downloaded from the book’s web site at http://fivedots.
coe.psu.ac.th/~ad/jg.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxiii

O’Reilly maintains a web page for this book that lists errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/killergame/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

You can also contact me at:

ad@fivedots.coe.psu.ac.th

For more information about O’Reilly books, conferences, Resource Centers, and the
O’Reilly Network, see O’Reilly’s web site at:

http://www.oreilly.com

Safari Enabled
When you see a Safari® Enabled icon on the cover of your favorite tech-
nology book, it means the book is available online through the O’Reilly
Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top technology books, cut and paste code samples, down-
load chapters, and find quick answers when you need the most accurate, current
information. Try it for free at http://safari.oreilly.com.

Acknowledgments
Time to climb up on stage, grab the microphone, and tearfully thank every relative,
friend, and acquaintance I’ve ever known, while the audience gradually slips off to
the Land of Nod and viewers worldwide start channel hopping. “Oh my God, I love
you all, I really do.”

First, I should thank you for buying this book, which will mean that I can buy a
Tivoli chocolate-like bar when I go for lunch. If you haven’t bought this book, then
why are reading this bit? Are you desperate or something?

My wife, Supatra, and son, John, have been a constant support, especially when my
back is causing problems.

Thanks to my current and past department heads, Ajarns Pichaya, Sinchai, Amnuay,
and Weerapant, and many other staff and colleagues, who have let me potter about
on this mighty edifice. But why does my office have the word “Broom Cupboard”
stenciled on the door? But seriously, Prince of Songkla University is a great place to
work.

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

xxiv | Preface

Greetings to the numerous students who have suffered as guinea pigs for various
parts of this book. Your looks of incredulity and boredom were a wondrous spur:
“Goodbye Mr. Chips” should be banned.

Special thanks to the hundreds of people who have sent me emails saying how use-
ful the online book has been; their kind words have been a great source of encour-
agement. I’ve also received suggestions about how to improve the book and a few
bug reports. I credit those people at the relevant places in the text.

Finally, my best regards to O’Reilly and my editor Brett McLaughlin and figures
illustrator Chris Reilly, who have knocked this book into better shape. Any remain-
ing rough edges are due to me.

This is the Title of the Book, eMatter Edition

1

Chapter 1 CHAPTER 1

Why Java for Games Programming?

One of my assumptions is that the reader (that’s you) has had an introductory
knowledge of Java, the sort of stuff gleaned from a semester’s course at college. Near
the start of that course, you were probably regaled with Java’s many advantages: an
object-oriented paradigm, cross-platform support, code reuse, ease of development,
tool availability, reliability and stability, good documentation, support from Sun
Microsystems, low development costs, the ability to use legacy code (e.g., C, C++),
and increased programmer productivity.

Rather than explain each of these again, I will take a different approach and discuss
Java’s suitability for games programming in terms of the typical misconceptions and
complaints wheeled out by people who think that games must be implemented in C,
C++, assembler, or whatever (just so long as it’s not Java).

Here’s the list of objections to Java:

• Java is too slow for games programming.

• Java has memory leaks.

• Java is too high-level.

• Java application installation is a nightmare.

• Java isn’t supported on games consoles.

• No one uses Java to write real games.

• Sun Microsystems isn’t interested in supporting Java gaming.

It’s worth saying that I think almost all of these objections are substantially wrong.
Java is roughly the same speed as C++. Memory leaks can be avoided with good pro-
gramming and techniques like profiling. Yes, Java is high-level, but it offers more
direct access to graphics hardware and external devices. Installation isn’t a night-
mare if you use decent installation software. There’s a growing number of excellent,
fun Java games, and an enormous amount of support available from Sun and Sun-
sponsored sites.

This is the Title of the Book, eMatter Edition

2 | Chapter 1: Why Java for Games Programming?

If you’re keeping count, I haven’t disagreed with the lack of a games
consoles port, which is a tad embarrassing for a “write once, run any-
where” language. Things may be changing in this category, as I’ll
explain later.

A general point about these objections is that they had more validity in the late 1990s
when the language and its libraries were less sophisticated and slower. Java’s user
and developer communities are burgeoning and have produced a plethora of useful
tools, online help, and code examples. The games forums dedicated to Java barely
existed 2 to 3 years ago. Java is a great language for games programming, as I hope
this book demonstrates. Now, back to the criticisms.

Java Is Too Slow for Games Programming
This is better rephrased as “Java is slow compared to C and C++, the dominant lan-
guages for games programming.” This argument was valid when Java first appeared
(around 1996) but has become increasingly ridiculous with each new release. Some
figures put JDK 1.0, that first version of the language, at 20 to 40 times slower than
C++. However, J2SE 5.0, the current release, is typically only 1.1 times slower.

These numbers depend greatly on the coding style used. Java programmers must be
good programmers to utilize Java efficiently, but that’s true of any language. Jack
Shirazi’s Java Performance Tuning site (http://www.javaperformancetuning.com/) is a
good source for performance tips, with links to tools and other resources. A recent
benchmarking of Java vs. C++ by Keith Lea caused quite a stir (http://www.
theserverside.com/news/thread.tss?thread_id=26634). He found that Java may some-
times be faster than C++. The response from the C++ crowd was typically vitriolic.

The speed-up in Java is mostly due to improvements in compiler design. The
Hotspot technology introduced in J2SE 1.3 enables the runtime system to identify
crucial areas of code that are utilized many times, and these are aggressively com-
piled. Hotspot technology is relatively new, and it’s quite likely that future versions
of Java will yield further speed-ups. For example, J2SE 5.0 is reportedly 1.2 to 1.5
times faster than its predecessor (Version 1.4).

Hotspot technology has the unfortunate side effect that program exe-
cution is often slow at the beginning until the code has been analyzed
and compiled.

Swing Is Slow
Swing often comes under attack for being slow. Swing GUI components are created
and controlled from Java, with little OS support; this increases their portability and
makes them more controllable from within a Java program. Speed is supposedly

This is the Title of the Book, eMatter Edition

Java Has Memory Leaks | 3

compromised because Java imposes an extra layer of processing above the OS. This
is one reason why some games applications still utilize the original Abstract Win-
dowing Toolkit (AWT) since it’s mostly simple wrapper methods around OS calls.

Even if Swing is slow (and I’m not convinced of that), most games don’t require
complex GUIs; full-screen game play with mouse and keyboard controls is the norm.
GUI elements maintained by Swing, such as menu bars, button, and text fields aren’t
needed, and mouse and keyboard processing is dealt with by the AWT. The latest
versions of Java offer an efficient full-screen mode by suspending the normal win-
dowing environment.

My Program Is Slow Because of Java
A crucial point about speed is knowing what to blame when a program runs slowly.
Typically, a large part of the graphics rendering of a game is handled by hardware or
software outside of Java. For example, Java 3D passes its rendering tasks down to
OpenGL or DirectX, which may emulate hardware capabilities such as bump map-
ping. Often the performance bottleneck in network games is the network and not the
Java language.

Java Has Memory Leaks
When C/C++ programmers refer to memory leaks in Java, they probably don’t
understand how Java works. Java doesn’t offer pointer arithmetic; typical C-style
memory leaks, such as out-of-bounds array accesses, are caught by the Java compiler.

However, these programmers may mean that objects that are no longer needed by
the program are not being garbage collected. This becomes an issue if the program
keeps creating new objects and requiring more memory, and eventually crashes
when the maximum memory allocation is exceeded.

This kind of problem is a consequence of bad programming style, since the garbage
collector can only do its job when an object is completely dereferenced, meaning the
program no longer refers to the object. A good profiling tool, such as JProfiler (http://
www.ej-technologies.com/products/jprofiler/overview.html), can help identify code
using excessive amounts of memory.

JProfiler is a commercial product; many open source profilers are
listed at http://java-source.net/.

Another memory-related complaint is that the Java garbage collector is executing at
poorly timed intervals, causing the application to halt for seconds as the collector
sweeps and cleans. The Java Virtual Machine (JVM) comes with several different gar-
bage collectors, which collect in various ways and can be selected and fine-tuned

This is the Title of the Book, eMatter Edition

4 | Chapter 1: Why Java for Games Programming?

from the command line. Information on the performance of the chosen collector can
be gathered and analyzed. A good hands-on explanation of this topic, centered
around the JTune visualization tool, can be found at http://www-106.ibm.com/
developerworks/java/library/j-perf06304/. Another possibility is GC Portal (http://
java.sun.com/developer/technicalArticles/Programming/GCPortal/).

Java Is Too High-level
This complaint is the age-old one of abstraction versus speed and control. The
details of the argument often include the following statements:

1. Java’s use of classes, objects, and inheritance add too much overhead without
enough coding benefit.

2. Java’s machine independence means that low-level, fast operations, e.g., direct
Video RAM I/O are impossible.

Statement 1 ignores the obvious benefits of reusing and extending Java’s large class
library, which includes high-speed I/O, advanced 2D and 3D graphics, and many
networking techniques, from lowly sockets to distributed agents. Also forgotten are
the advantages of object-oriented design, typified by UML, which makes complex,
large, real-world systems more manageable during development, implementation,
and maintenance.

Statement 2 impacts gaming when we consider high-speed graphics, but it’s been
addressed in recent versions of Java. J2SE 1.4 introduced a full-screen exclusive mode
(FSEM), which suspends the normal windowing environment and allows an applica-
tion to access the underlying graphics hardware more directly. It permits techniques,
e.g., page flipping, and provides control over the screen’s resolution and image
depth. The principal aim of FSEM is to speed up graphics-intensive applications,
such as games.

Statement 2 comes into play for game peripherals, e.g., joysticks and game pads;
machine independence seems to suggest that nonstandard I/O devices won’t be use-
able. Java games requiring these types of devices can utilize the Java Native Interface
(JNI) to link to C or C++ and, therefore, to the hardware. There’s also JInput, a new
game controller API.

An interesting historical observation is that the gaming community used to think
that C and C++ were too high-level for fast, efficient games programming when
compared to assembly language. Opinions started to change only after the obvious
success of games written in C, such as Doom and Dungeon Master, in the mid-1980s.
Also important was the appearance of cross-platform development tools that sup-
ported C, such as RenderWare.

www.allitebooks.com

This is the Title of the Book, eMatter Edition

Java Isn’t Supported on Games Consoles | 5

Java Application Installation Is a Nightmare
The naysayers claim that the user needs to be a Java expert to install and execute a
Java application, whereas most game players want to point and click on a few dialog
boxes to get a game up and running. More specific comments include the following:

1. Java (specifically, the JRE) has to be on the machine before the application will
run.

2. Code bloat since even small programs require a 15 MB JRE. Downloading this
can be slow.

3. Frequently changing JVMs make it hard to write code that will work for every
possible version of Java.

4. Nonstandard components are often required—e.g., Java 3D, causing even more
installation problems.

5. It’s impossible to compile the application for a specific platform.

6. The .jar extension is commonly hijacked by other software (e.g., by compres-
sion programs) at execution time, meaning that the user can’t double-click on a
JAR to get it to start.

7. The JRE is slower to start up compared to a native compiled application.

All these problems, aside from perhaps 2 and 7, can be solved by using good installa-
tion software. I have two appendixes dedicated to installation: Appendix A is about
install4j, a cross-platform tool for creating native installers for Java applications, and
Appendix B is about Java Web Start (JWS), a web-enabled installer.

The code bloat comment is increasingly irrelevant, with many games weighing in at
over 100 MB and many graphics and sound card drivers being made larger than 15
MB. Network speeds are a problem, especially overseas, but broadband usage is
growing rapidly.

Sun Microsystems estimates that more than 50 percent of all new PCs come with a
pre-installed JRE, though a game installer must still cater to the other 50 percent.

There’s some truth to point 7, but the slow startup time is fairly negligible compared
to the total running time of an average game.

I was interested in what other Java games programmers had to say about this criti-
cism, so posted it to the Java Games Forum as thread http://www.javagaming.org/cgi-
bin/JGNetForums/YaBB.cgi?board=announcements;action=display;num=1092970902.
The responses are similar to mine, though often phrased somewhat more stridently.

Java Isn’t Supported on Games Consoles
Unfortunately, this criticism has some justification. Video gaming is a multi-billion-
dollar industry, with estimates placing revenues at $29 billion by 2007 with the market

This is the Title of the Book, eMatter Edition

6 | Chapter 1: Why Java for Games Programming?

catering to over 235 million gamers. PCs and game consoles account for almost all the
income, but only about 10–20 percent of it is from PCs, the majority coming from
three consoles: Sony’s PlayStation 2 (PS2), Microsoft’s Xbox, and Nintendo’s
GameCube. Sony is the dominant console maker, having nearly twice as many units in
homes compared to Microsoft and Nintendo combined. Microsoft accounts for about
95 percent of the desktop PC market. Arguably, two important games platforms exist,
the PS2 and Windows, and Java isn’t available on the PlayStation.

This problem has long been recognized by Sun. Back at the JavaOne conference in
2001, Sony and Sun announced their intention to port the JVM to the PS2. Nothing
has been released, but there are persistent rumors about a JVM on the PlayStation 3,
earmarked to appear in 2006.

In the future, Java may have a better chance of acceptance into the closed world of
console makers because of two trends: consoles mutating into home media devices
and the meteoric rise of online gaming. Both trends require consoles to offer com-
plex networking and server support, strong areas for Java and Sun.

The Phantom console from Infinium Labs was announced at JavaOne in 2004 (http://
www.phantom.net/index.php). It’s essentially a PC running an embedded Windows
XP installation, with an nVidia graphics card, a hard drive, and a broadband connec-
tion. Most importantly for Java gaming, the Phantom will come with a complete
JRE. It was demoed during Electronic Entertainment Exposition (E3) in 2004, where
it was shown running Law and Order: Dead on the Money (which uses Java 3D).

Die-hard programmers may point out that it’s possible to get Java running on a PS2.
One approach is to install Kaffe, an open source, non-Sun JVM, on top of PlaySta-
tion Linux. Kaffe can be obtained from http://www.kaffe.org/; details on Linux for the
PlayStation are at http://playstation2-linux.com/. The gallant programmer will need a
Java-to-bytecode translator, such as Jikes (http://www-124.ibm.com/developerworks/
oss/jikes/).

The Linux kit adds a hard disk to the PS2, so this development strategy won’t work
for ordinary PlayStations. Configuring the software looks to be far beyond the capa-
bilities (or desires) of ordinary console owners, and I couldn’t find any documenta-
tion about using Jikes or Kaffe on a PS2. The PlayStation only comes with 32 MB of
RAM, while a typical JVM and its libraries requires 5 to 10 MB, so how much would
be left for a game once Linux was up and running?

The difficulties of this approach should be contrasted to the availability of feature-
rich C/C++ tools and engines for consoles, such as RenderWare (http://www.
renderware.com/) and Gamebryo (http://www.ndl.com/). They have a track record of
best-selling games and can port games across the PS2, Xbox, GameCube, and PCs.

The lack of Java on consoles is a serious issue, but the remaining PC market is large.
Microsoft estimates that there are 600 million Windows PCs, growing to more than
1 billion by 2010. Games on PCs benefit from superior hardware—such as video

This is the Title of the Book, eMatter Edition

No One Uses Java to Write Real Games | 7

cards, RAM, and Internet connections—and can offer more exciting game play.
There are many more PC games, particularly in the area of multiplayer online games.
It’s estimated that 40 percent of all gamers will start playing online in 2005. Reve-
nues may reach $1.1 billion by 2008.

Another rapidly expanding market is the one for mobile games, with sales of $530
million in 2003, potentially rising to $1.93 billion in 2006. There are perhaps 200
million Java-enabled phones at the moment.

No One Uses Java to Write Real Games
The word “real” here probably means commercial games. The number of commer-
cial Java games is small compared to ones coded in C or C++, but the number is
growing and many have garnered awards and become bestsellers:

Puzzle Pirates by Three Rings (http://www.puzzlepirates.com/)
This is a multiplayer pirate game that includes Tetris-like or Columns-like puz-
zles at various points. The client and server are written in Java. It won several
awards during 2004, including the Technical Excellence and Audience Choice
prizes at the Game Developers Conference.

Chrome by Techland (http://www.chromethegame.com/en/show.php)
Chrome is a futuristic multiplayer FPS (first person shooter) made up of 14 dif-
ferent missions, in an amazing variety of landscapes. It received a Duke’s Choice
Award from Sun Microsystems in 2004 for the most innovative product using
Java technology.

Law and Order II by Legacy Interactive. (http://www.lawandordergame.com/index2.htm)
This is a detective game written in Java, Java 3D, and QuickTime for Java. The
first Law and Order sold over 100,000 units.

Kingdom of Wars by Abandoned Castle Studios (http://www.abandonedcastle.com/)
This is a fantasy game set in the world of Jairon.

Alien Flux by Puppy Games (http://www.puppygames.net/info.php?game=Alien_Flux)
Alien Flux is an exciting arcade shoot-em-up.

War! Age of Imperialism by Eagle Games (http://www.eaglegames.net/products/
WAR_AOI/wai.shtml)

War! is a computer version of the award-winning board game from Eagle
Games.

Runescape by Jagex (http://www.runescape.com)
Runescape is a massive 3D multiplayer fantasy adventure game. Clients can use a
Java applet to play or download a Windows-based client application.

Star Wars Galaxies by LucasArts (http://www.lucasarts.com/products/galaxies/)
This one has its game logic coded in Java.

This is the Title of the Book, eMatter Edition

8 | Chapter 1: Why Java for Games Programming?

IL-2 Sturmovik by Ubi-Soft (http://www.il2sturmovik.com/)
Award winning WW II aerial combat using Java and C++, this and the new ver-
sion (IL2-Forgotten Battles) are great examples of Java in games.

Pernica by Starfire Research (http://www.starfireresearch.com/pernica/pernica.html)
Pernica is an online fantasy role-playing game first implemented in Java 3D.

Cosm by Navtools, Inc. (http://www.cosm-game.com/)
Cosm is another fun online fantasy-based role-playing game.

C&C Attack Copter by Electronic Arts (http://www.eagames.com/free/home.jsp)
This is a free online action game based on the Command & Conquer series.

Roboforge by Liquid Edge Games (http://www.roboforge.com)
Train a 3D robot to fight in online tournaments. It was given an “Excellent
87%” by PC Gamer Magazine.

Galactic Village by Galactic Village Games (http://www.galactic-village.com)
Galactic Village is a massively multiplayer strategy game, written entirely in Java.
Not yet finished though alpha versions have been appearing.

Wurm Online by Mojang Specifications (http://www.wurmonline.com/)
This is another massively multiplayer fantasy game, written in Java. It’s still in
the alpha stages of development, but the screenshots look great.

Jellyvision (http://www.jellyvision.com/)
Jellyvision used a mix of Java and C++ in their popular Who Wants to Be a Mil-
lionaire (2000) and You Don’t Know Jack (1995) games. They employed Java for
the game logic, an approach used in Majestic (2001) by Electronic Arts.

Vampire the Masquerade: Redemption (2000) by Nihilistic software (http://www.nihil-
istic.com/).

Java was utilized as a scripting language in this highly acclaimed game.

Tom Clancy’s Politika (1997) by Red Storm Entertainment (http://www.redstorm.com/)
This game was written in almost pure Java. Shadow Watch (2000) and Tom
Clancy’s ruthless.com (1998) mixed Java and C/C++.

A good source for nontechnical lists of Java games, both commercial and free-
ware/shareware, can be found on the Java games pages at java.com (http://www.
java.com/en/games/). The pages divide games into several categories: action,
adventure, strategy, puzzle, cards, sports, and so on.

Freeware/Shareware Games
Many Java games are out on the Web, but finding a game that’s written well requires
a careful search. Many applets date from the late 1990s and were designed using the
outdated JDK 1.0 and 1.1 with their feeble media APIs (e.g., graphics, sounds). The
initial Java euphoria produced some less than exciting games, more concerned with

This is the Title of the Book, eMatter Edition

No One Uses Java to Write Real Games | 9

technical trickery than quality. This large pool of useless applets got Java labeled as a
toy language.

Recent versions of Java are different. The speed has improved and APIs crucial to
gaming—such as graphics and audio—are of a high quality. There’s been a move
away from applets towards the downloading of client-side applications using JWS.

Java’s backward compatibility allows the applets from 1996 to 1998 to be executed,
and they’ll often run quicker than the original applets. However, it’s probably best to
steer clear of these Java dinosaurs and look for more modern code.

Numerous web sites use Java games. The emphasis of the following list is on applica-
tions/applets for playing:

Java Games Factory (JGF) (http://grexengine.com/sections/externalgames/)
There aren’t many games at this site (about 50), but they’re all high quality. The
aim is to show off various modern Java game technologies.

ArcadePod.com (http://www.arcadepod.com/java/)
Over 750 Java games, nicely categorized.

Java 4 Fun (http://www.java4fun.com/java.html)
Similar in style to ArcadePod, with a good set of links to other sites.

jars.com (http://www.jars.com)
A general Java site with a ratings scheme. There are many games, but a lot of
them are old applets.

Java Shareware (http://www.javashareware.com/)
Another general site: look under the categories applications/games and
applets/games.

Java Games Central (http://www.mnsi.net/~rkerr/)
A personal web site that lists games with ratings and links. It was last updated in
2001.

Some of my favorite freeware/shareware games are:

Super Elvis; also known as Hallucinogenesis (http://www.puppygames.net/downloads/
hallucinogenesis/hallucinogenesis.jnlp)

This game won the Sun Microsystems 2004 Technology Game Development
Contest. Super Elvis can be downloaded from the puppygames web site using
JWS.

FlyingGuns (http://www.flyingguns.com/)
A 3D multiplayer WWI fighter plane game/simulator. This came second in the
contest but is my favorite.

Cosmic Trip (http://www.mycgiserver.com/~movegaga/cosmictrip.html)
An arcade-style 3D game with striking graphics.

Squareheads (http://home.halden.net/tombr/squareheads/squareheads.html)
A multiplayer FPS (it came third in the developer contest).

This is the Title of the Book, eMatter Edition

10 | Chapter 1: Why Java for Games Programming?

Escape (http://javaisdoomed.sourceforge.net/)
A Doom-like FPS.

CazaPool3D (http://membres.lycos.fr/franckcalzada/Billard3D/Pool.html)
A pool game that allows online (single/multiplayer) play in an applet or as a
standalone application.

Programmers looking for source code should start at one of the following sites:

SourceForge (http://sourceforge.net/search/)
SourceForge acts as a repository and management tool for software projects,
many with source code. A recent search for (java + game) returned over 70 projects
that had 40 percent or greater activity. One of the drawbacks of SourceForge is
that deciding if a project is vaporware is difficult. Good projects that have been
completed will show low activity after a time, dropping down the list of search
results.

FreshMeat.com (http://freshmeat.net/)
FreshMeat maintains thousands of applications, most released under open
source licenses. The search facilities are excellent and can be guided by game cat-
egory terms. The results include rating, vitality, and popularity figures for each
piece of software. A recent search for Java in the Games/Entertainment category
returned nearly 70 hits. Many applications turn up at SourceForge and FreshMeat.

The “Your Games Here” Java Games Forum (http://www.javagaming.org/cgi-bin/
JGNetForums/YaBB.cgi?board=Announcements)

Implementers can post links to their games, and (perhaps more importantly)
users can post their opinions as follow-ups.

Code Beach (http://www.codebeach.com)
CodeBeach has a searchable subsection for Java games that contains nearly 90
examples.

Programmers Heaven (http://www.programmersheaven.com/zone13/)
It has a “Java zone” containing some games.

Sun Microsystems Isn’t Interested
in Supporting Java Gaming
The games market isn’t a traditional one for Sun, and it’ll probably never have the
depth of knowledge of a Sony or Nintendo. However, the last few years have demon-
strated Sun’s increasing commitment to gaming.

J2SE has strengthened its games support through successive versions: Version 1.3
improved its graphics and audio capabilities, and Version 1.4 introduced full-screen
mode and page flipping in hardware. Faster I/O, memory mapping, and support for
nonblock sockets, which is especially useful in client/server multiplayer games, also
appeared first in 1.4. Version 5.0 has a decent nanosecond timer at last. Java extension

This is the Title of the Book, eMatter Edition

Sun Microsystems Isn’t Interested in Supporting Java Gaming | 11

libraries, such as Java 3D, the Java Media Framework (JMF), the Java Communications
API, Jini, and JAXP (Java’s peer-to-peer API) offer something to games programmers.

Sun started showing an interest in gaming back in 2001, with its announcement of
the Java Game Profile, a collaboration with several other companies, including Sega
and Sony, to develop a Java gaming API. The profile was perhaps too ambitious, and
was abandoned at the end of 2003. However, it did produce three game-focused
technologies: a Java binding for OpenGL called JOGL, a binding for OpenAL (a 3D
audio library) called JOAL, and JInput.

Part of the 2001 initiative was the creation of the JavaGaming.org web site (http://
www.javagaming.org), initially manned by volunteers. In 2003, the Game Technol-
ogy Group was formed, and JavaGaming.org received a substantial makeover as part
of the creation of the new java.net portal (http://www.java.net) aimed at the techni-
cal promotion of Java. Java.net hosts many discussion forums, user groups, projects,
communities, and news. The communities include: Java Desktop, Java Education
and Learning, Java Enterprise, and Java Games.

The Java Games community pages can be accessed through http://www.javagaming.org
or http://community.java.net/games/. The site includes Java games forums, projects,
news, weblogs, a wiki (http://wiki.java.net/bin/view/Games/WebHome), and links to
games affiliates.

Numerous Java game forums can be accessed from http://www.javagaming.org/cgi-bin/
JGNetForums/YaBB.cgi. These are probably the best sources of technical advice on
Java gaming on the Web, with over 4,500 opinionated registered users. Discussion
topics include Java 3D, Java 2D, Java Sound, J2ME, networking, online games devel-
opment, performance tuning, JOGL, JOAL, and JInput. There are also sections on
projects and code examples.

The project sections (https://games.dev.java.net/) mostly concentrate on JOGL,
JOAL, and JInput, but the games middleware and games forge sections are wider
ranging. The games forge projects include Chinese chess, jbantumi (a strategic game
from Africa), and an online fantasy football management system.

The most relevant Java user group for gaming is GameJUG (https://gamejug.dev.java.net/
). Its sections include online and downloadable Java games, presentations and articles,
lists of Java game programming web sites, and a collaborative web page and mailing list
for teachers of Java game programming.

I’m a former GameJUG president, a role that sounds grander than it
really was. The real work was done by David Wallace Croft and James
Richards.

Sun’s substantial presence at http://community.java.net/games/ is mostly as a host for
community forums and open source projects (or projects with licenses very close to

This is the Title of the Book, eMatter Edition

12 | Chapter 1: Why Java for Games Programming?

open source). The projects include JOGL, JOAL, JInput, and Java 3D. Sun is relying
on community involvement to move these projects forward, since the Game Tech-
nology Group is quite small.

One in-house product is a server architecture for massively multiplayer online games,
the Sun Game Server, first demoed at the Game Developers Conference in 2004. This
focus isn’t surprising since Sun makes its money from selling server hardware.
Online multiplayer gaming is a potential growth area for its servers.

This is the Title of the Book, eMatter Edition

13

Chapter 2 CHAPTER 2

An Animation Framework

A core technology for a good game is an animation algorithm that produces reliably
fast game play across various operating systems (e.g., flavors of Windows, Linux,
and Macintosh), and in different kinds of Java programs (e.g., applets, windowed,
and full-screen applications).

I distinguish between windowed and full-screen applications because
J2SE 1.4 introduced full-screen exclusive mode (FSEM). It suspends the
normal windowing environment and allows an application to access
the underlying graphics hardware more directly. FSEM permits tech-
niques such as page flipping and provides control over the screen’s res-
olution and image depth. The principal aim of FSEM is to accelerate
graphics-intensive applications, such as games.

The common ground between windowed and full-screen application is the game’s
animation algorithm, which is the subject of this chapter.

The algorithm is embedded in a JPanel subclass (called GamePanel), which acts as a
canvas for drawing 2D graphics (e.g., lines, circles, text, images). The animation is
managed by a thread, which ensures that it progresses at a consistent rate, as inde-
pendent of the vagaries of the hardware and OS as possible. The rate is measured in
terms of frames per second (FPS), where a frame corresponds to a single rendering of
the application to the canvas.

GamePanel is gradually refined and expanded through the chapter, introducing the
following notions:

• The {update, render, sleep} animation loop

• Starting and terminating an animation

• Double buffering

• User interaction

• Active rendering

This is the Title of the Book, eMatter Edition

14 | Chapter 2: An Animation Framework

• Animation control based on a user’s requested FPS

• The management of inaccuracies in the timer and sleep operations

• Combining FPS and game state updates per second (UPS)

• Game pausing and resumption

Though most of this chapter is about the GamePanel animation loop, I will consider
two other popular approaches to implementing animation: using the Swing timer
and the utility timer in java.util.timer.

The example programs used in this chapter can be found in the Tim-
ings/ directory. All the code directories mentioned in the chapters can
be downloaded from the book’s web site at http://fivedots.coe.psu.ac.th/
~ad/jg.

In Chapters 3 and 4, I develop applet, windowed, and full-screen applications for a
WormChase game using the final version of GamePanel (with minor variations). As a side
effect of the game play, statistics are gathered, including the average FPS and UPS, to
show that GamePanel supports consistently high-speed animation.

Animation as a Threaded Canvas
A JPanel is employed as a drawing surface, and an animation loop is embedded
inside a thread local to the panel. The loop consists of three stages: game update,
rendering, and a short sleep.

The code in Example 2-1 shows the main elements of GamePanel, including the run()

method containing the animation loop. As the chapter progresses, additional meth-
ods and global variables will be added to GamePanel, and some of the existing meth-
ods (especially run()) will be changed and extended.

Example 2-1. The GamePanel class (initial version)

public class GamePanel extends JPanel implements Runnable
{
 private static final int PWIDTH = 500; // size of panel
 private static final int PHEIGHT = 400;

 private Thread animator; // for the animation
 private volatile boolean running = false; // stops the animation

 private volatile boolean gameOver = false; // for game termination

 // more variables, explained later
 // :

 public GamePanel()
 {

www.allitebooks.com

This is the Title of the Book, eMatter Edition

Animation as a Threaded Canvas | 15

 setBackground(Color.white); // white background
 setPreferredSize(new Dimension(PWIDTH, PHEIGHT));

 // create game components
 // ...
 } // end of GamePanel()

 public void addNotify()
 /* Wait for the JPanel to be added to the
 JFrame/JApplet before starting. */
 {
 super.addNotify(); // creates the peer
 startGame(); // start the thread
 }

 private void startGame()
 // initialise and start the thread
 {
 if (animator == null || !running) {
 animator = new Thread(this);
 animator.start();
 }
 } // end of startGame()

 public void stopGame()
 // called by the user to stop execution
 { running = false; }

 public void run()
 /* Repeatedly update, render, sleep */
 {
 running = true;
 while(running) {
 gameUpdate(); // game state is updated
 gameRender(); // render to a buffer
 repaint(); // paint with the buffer

 try {
 Thread.sleep(20); // sleep a bit
 }
 catch(InterruptedException ex){}
 }
 System.exit(0); // so enclosing JFrame/JApplet exits
 } // end of run()

 private void gameUpdate()
 { if (!gameOver)

Example 2-1. The GamePanel class (initial version) (continued)

This is the Title of the Book, eMatter Edition

16 | Chapter 2: An Animation Framework

GamePanel acts as a fixed size white canvas, which will be embedded inside a JFrame

in applications and inside JApplet in applets. The embedding will only require minor
changes, except when GamePanel is used in applications using full-screen exclusive
mode (FSEM). Even in that case, the animation loop will stay essentially the same.

addNotify() is called automatically as GamePanel is being added to its enclosing GUI
component (e.g., a JFrame or JApplet), so it is a good place to initiate the animation
thread (animator). stopGame() will be called from the enclosing JFrame/JApplet when
the user wants the program to terminate; it sets a global Boolean, running, to false.

Synchronization Concerns
The executing GamePanel object has two main threads: the animator thread for game
updates and rendering, and a GUI event processing thread, which responds to such
things as key presses and mouse movements. When the user presses a key to stop the
game, this event dispatch thread will execute stopGame(). It will set running to false

at the same time the animation thread is executing.

Once a program contains two or more threads utilizing a shared variable, data struc-
ture, or resource, then thorny synchronization problems may appear. For example,
what will happen if a shared item is changed by one thread at the same moment that
the other one reads it? The Java Memory Model (JMM) states that accesses and
updates to all variables, other than longs or doubles, are atomic, i.e., the JMM supports
32-bit atomicity. For example, an assignment to a Boolean cannot be interleaved
with a read. This means that the changing of the running flag by stopGame() cannot
occur at the same moment that the animation thread is reading it.

 // update game state ...
 }

 // more methods, explained later...

} // end of GamePanel class

Just Stop It
Some authors suggest using Thread’s stop() method, a technique deprecated by Sun.
stop() causes a thread to terminate immediately, perhaps while it is changing data
structures or manipulating external resources, leaving them in an inconsistent state.
The running Boolean is a better solution because it allows the programmer to decide
how the animation loop should finish. The drawback is that the code must include
tests to detect the termination flag.

Example 2-1. The GamePanel class (initial version) (continued)

This is the Title of the Book, eMatter Edition

Animation as a Threaded Canvas | 17

The atomicity of read and writes to Booleans is a useful property. However, the pos-
sibility of synchronization problems for more complex data structures cannot be
ignored, as you’ll see in Chapter 3.

Application and Game Termination
A common pitfall is to use a Boolean, such as running, to denote application termina-
tion and game termination. The end of a game occurs when the player wins (or
loses), but this is typically not the same as stopping the application. For instance, the
end of the game may be followed by the user entering details into a high scores table
or by the user being given the option to play again. Consequently, I represent game
ending by a separate Boolean, gameOver. It can be seen in gameUpdate(), controlling
the game state change.

Why Use Volatile?
The JMM lets each thread have its own local memory (e.g., registers) where it can
store copies of variables, thereby improving performance since the variables can be
manipulated more quickly. The drawback is that accesses to these variables by other
threads see the original versions in main memory and not the local copies.

The running and gameOver variables are candidates for copying to local memory in
the GamePanel thread. This will cause problems since other threads use these vari-
ables. running is set to false by stopGame() called from the GUI thread (gameOver is
set to true by the GUI thread as well, as I’ll explain later). Since running and gameOver

are manipulated by the GUI thread and not the animation thread, the original ver-
sions in main memory are altered and the local copies used by the animation thread
are unaffected. One consequence is that the animation thread will never stop since
its local version of running will never become false!

This problem is avoided by affixing the volatile keyword to running and gameOver.
volatile prohibits a variable from being copied to local memory; the variable stays in
main memory. Thus, changes to that variable by other threads will be seen by the
animation thread.

Why Sleep?
The animation loop includes an arbitrary 20 ms of sleep time:

while(running) {
 gameUpdate(); // game state is updated
 gameRender(); // render to a buffer
 repaint(); // paint with the buffer

 try {
 Thread.sleep(20); // sleep a bit

This is the Title of the Book, eMatter Edition

18 | Chapter 2: An Animation Framework

 }
 catch(InterruptedException ex){}
}

Why is this necessary? There are three main reasons.

The first is that sleep() causes the animation thread to stop executing, which frees
up the CPU for other tasks, such as garbage collection by the JVM. Without a period
of sleep, the GamePanel thread could hog all the CPU time. However, the 20-ms sleep
time is somewhat excessive, especially when the loop is executing 50 or 100 times
per second.

The second reason for the sleep() call is to give the preceding repaint() time to be
processed. The call to repaint() places a repaint request in the JVM’s event queue
and then returns. Exactly how long the request will be held in the queue before trig-
gering a repaint is beyond my control; the sleep() call makes the thread wait before
starting the next update/rendering cycle, to give the JVM time to act. The repaint
request will be processed, percolating down through the components of the applica-
tion until GamePanel’s paintComponent() is called. An obvious question is whether 20
ms is sufficient time for the request to be carried out. Perhaps it’s overly generous?

It may seem that I should choose a smaller sleep time, 5 ms perhaps. However, any
fixed sleep time may be too long or too short, depending on the current game activ-
ity and the speed of the particular machine.

Finally, the sleep() call reduces the chance of event coalescence: If the JVM is over-
loaded by repaint requests, it may choose to combine requests. This means that
some of the rendering request will be skipped, causing the animation to “jump” as
frames are lost.

Double Buffering Drawing
gameRender() draws into its own Graphics object (dbg), which represents an image
the same size as the screen (dbImage).

// global variables for off-screen rendering
private Graphics dbg;
private Image dbImage = null;

private void gameRender()
// draw the current frame to an image buffer
{
 if (dbImage == null){ // create the buffer
 dbImage = createImage(PWIDTH, PHEIGHT);
 if (dbImage == null) {
 System.out.println("dbImage is null");
 return;
 }
 else

This is the Title of the Book, eMatter Edition

Animation as a Threaded Canvas | 19

 dbg = dbImage.getGraphics();
 }

 // clear the background
 dbg.setColor(Color.white);
 dbg.fillRect (0, 0, PWIDTH, PHEIGHT);

 // draw game elements
 // ...

 if (gameOver)
 gameOverMessage(dbg);
} // end of gameRender()

private void gameOverMessage(Graphics g)
// center the game-over message
{ // code to calculate x and y...
 g.drawString(msg, x, y);
} // end of gameOverMessage()

This technique is known as double buffering since the (usually complex) drawing
operations required for rendering are not applied directly to the screen but to a sec-
ondary image.

The dbImage image is placed on screen by paintComponent() as a result of the repaint
request in the run() loop. This call is only made after the rendering step has been
completed:

public void paintComponent(Graphics g)
{
 super.paintComponent(g);
 if (dbImage != null)
 g.drawImage(dbImage, 0, 0, null);
}

The principal advantage of double buffering is to reduce on-screen flicker. If exten-
sive drawing is done directly to the screen, the process may take long enough to
become noticeable by the user. The call to drawImage() in paintComponent() is fast
enough that the change from one frame to the next is perceived as instantaneous.

Another reason for keeping paintComponent() simple is that it may be called by the
JVM independently of the animation thread. For example, this will occur when the
application (or applet) window has been obscured by another window and then
brought back to the front.

The placing of game behavior inside paintComponent() is a common
mistake. This results in the animation being driven forward by its ani-
mation loop and by the JVM repainting the window.

This is the Title of the Book, eMatter Edition

20 | Chapter 2: An Animation Framework

Adding User Interaction
In full-screen applications, there will be no additional GUI elements, such as text
fields or Swing buttons. Even in applets or windowed applications, the user will
probably want to interact directly with the game canvas as much as is possible. This
means that GamePanel must monitor key presses and mouse activity.

GamePanel utilizes key presses to set the running Boolean to false, which terminates
the animation loop and application. Mouse presses are processed by testPress(),
using the cursor’s (x, y) location in various ways (details are given in later chapters).

The GamePanel() constructor is modified to set up the key and mouse listeners:

public GamePanel()
{
 setBackground(Color.white);
 setPreferredSize(new Dimension(PWIDTH, PHEIGHT));

 setFocusable(true);
 requestFocus(); // JPanel now receives key events
 readyForTermination();

 // create game components
 // ...

 // listen for mouse presses
 addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e)
 { testPress(e.getX(), e.getY()); }
 });
} // end of GamePanel()

readyForTermination() watches for key presses that signal termination and sets
running to false. testPress() does something with the cursor’s (x, y) coordinate
but only if the game hasn’t finished yet:

private void readyForTermination()
{
 addKeyListener(new KeyAdapter() {
 // listen for esc, q, end, ctrl-c
 public void keyPressed(KeyEvent e)
 { int keyCode = e.getKeyCode();
 if ((keyCode == KeyEvent.VK_ESCAPE) ||
 (keyCode == KeyEvent.VK_Q) ||
 (keyCode == KeyEvent.VK_END) ||
 ((keyCode == KeyEvent.VK_C) && e.isControlDown())) {
 running = false;
 }
 }
 });
} // end of readyForTermination()

This is the Title of the Book, eMatter Edition

Converting to Active Rendering | 21

private void testPress(int x, int y)
// is (x,y) important to the game?
{
 if (!gameOver) {
 // do something
 }
}

Converting to Active Rendering
The current painting strategy is to call repaint() in run()’s animation loop:

while(running) {
 gameUpdate(); // game state is updated
 gameRender(); // render to a buffer
 repaint(); // paint with the buffer

 try {
 Thread.sleep(20); // sleep a bit
 }
 catch(InterruptedException ex){}
}

Since a call to repaint() is only a request, it’s difficult to know when the repaint has
been completed. This means that the sleep time in the animation loop is little more
than a guess; if the specified delay is too long, then the animation speed is impaired
for no reason. If the delay is too short, then repaint requests may be queued by the
JVM and skipped if the load becomes too large.

In fact, no single sleep time is satisfactory since the time taken to update and render
a frame will vary depending on the activity taking place in the game. The sleep time
must be calculated afresh each time round the loop after measuring the iteration’s
update and rendering periods. Unfortunately, the repaint() part of the rendering is
done by the JVM and cannot be easily measured.

As a first step to dealing with these issues, I switch to active rendering, shown below
as modifications to run():

public void run()
/* Repeatedly update, render, sleep */
{
 running = true;
 while(running) {
 gameUpdate(); // game state is updated
 gameRender(); // render to a buffer
 paintScreen(); // draw buffer to screen

 try {
 Thread.sleep(20); // sleep a bit
 }
 catch(InterruptedException ex){}
 }

This is the Title of the Book, eMatter Edition

22 | Chapter 2: An Animation Framework

 System.exit(0);
} // end of run()

private void paintScreen()
// actively render the buffer image to the screen
{
 Graphics g;
 try {
 g = this.getGraphics(); // get the panel's graphic context
 if ((g != null) && (dbImage != null))
 g.drawImage(dbImage, 0, 0, null);
 Toolkit.getDefaultToolkit().sync(); // sync the display on some systems
 g.dispose();
 }
 catch (Exception e)
 { System.out.println("Graphics context error: " + e); }
} // end of paintScreen()

The call to repaint() is gone, as is the overriding of paintComponent(); its functional-
ity has been incorporated into paintScreen().

Active rendering puts the task of rendering the buffer image to the screen into my
hands. This means that the rendering time can be accurately measured, and con-
cerns about repaint requests being delayed or skipped by the JVM disappear.

However, the panel’s graphics context may be changed by the JVM, typically when
the canvas is resized or when it becomes the front window after being behind others.
The context may disappear if the application or applet exits while the animation
thread is running. For these reasons, the graphics context must be freshly obtained
each time it is needed (by calling getGraphics()), and its use must be surrounded by
a try-catch block to capture any failure due to its disappearance.

In practice, if the program has a fixed window size, then the most likely time for an
exception is when a game applet is terminated by the user closing its surrounding
web page.

The call to Toolkit.sync() after drawImage() ensures that the display is promptly
updated. This is required for Linux, which doesn’t automatically flush its display
buffer. Without the sync() call, the animation may be only partially updated, creating
a “tearing” effect. My thanks to Kyle Husmann for pointing this out.

FPS and Sleeping for Varying Times
A weakness of the animation loop is that its execution speed is unconstrained. On a
slow machine, it may loop 20 times per second; the same code on a fast machine
may loop 80 times, making the game progress four times faster and perhaps making
it unplayable. The loop’s execution speed should be about the same on all platforms.

This is the Title of the Book, eMatter Edition

FPS and Sleeping for Varying Times | 23

A popular measure of how fast an animation progresses is frames per second (FPS).
For GamePanel, a frame corresponds to a single pass through the update-render-sleep
loop inside run(). Therefore, the desired 100 FPS imply that each iteration of the
loop should take 1000/100 == 10 ms. This iteration time is stored in the period vari-
able in GamePanel.

The use of active rendering makes it possible to time the update and render stages of
each iteration. Subtracting this value from period gives the sleep time required to
maintain the desired FPS. For instance, 100 FPS mean a period of 10 ms, and if the
update/render steps take 6 ms, then sleep() should be called for 4 ms. Of course,
this is different on each platform, so must be calculated at runtime.

The following modified run() method includes timing code and the sleep time
calculation:

public void run()
/* Repeatedly: update, render, sleep so loop takes close
 to period ms */
{
 long beforeTime, timeDiff, sleepTime;

 beforeTime = System.currentTimeMillis();

 running = true;
 while(running) {
 gameUpdate();
 gameRender();
 paintScreen();

 timeDiff = System.currentTimeMillis() - beforeTime;
 sleepTime = period - timeDiff; // time left in this loop

 if (sleepTime <= 0) // update/render took longer than period
 sleepTime = 5; // sleep a bit anyway

 try {
 Thread.sleep(sleepTime); // in ms
 }
 catch(InterruptedException ex){}

 beforeTime = System.currentTimeMillis();
 }

 System.exit(0);
} // end of run()

timeDiff holds the execution time for the update and render steps, which becomes
part of the sleep time calculation.

One problem with this approach is if the update and drawing take longer than the
specified period, then the sleep time becomes negative. The solution to this problem
is to set the time to some small value to make the thread sleep a bit. This permits

This is the Title of the Book, eMatter Edition

24 | Chapter 2: An Animation Framework

other threads and the JVM to execute if they wish. Obviously, this solution is still
problematic: Why use 5 ms and not 2 or 20?

A more subtle issue is the resolution and accuracy of the timer and sleep operations
(currentTimeMillis() and sleep()). If they return inaccurate values, then the result-
ing FPS will be affected. These are such important problems that I’m going to spend
the rest of this section looking at ways to ensure the timer has good resolution and
the next major section considering sleep accuracy.

Timer Resolution
Timer resolution, or granularity, is the amount of time that must separate two timer
calls so that different values are returned. For instance, what is the value of diff in
the code fragment below?

long t1 = System.currentTimeMillis();
long t2 = System.currentTimeMillis();
long diff = t2 – t1; // in ms

The value depends on the resolution of currentTimeMillis(), which unfortunately
depends on the OS.

To be more precise, this depends on the resolution of the standard
clock interrupt.

In Windows 95 and 98, the resolution is 55 ms, which means that repeated calls to
currentTimeMillis() will only return different values roughly every 55 ms.

In the animation loop, the overall effect of poor resolution causes the animation to
run slower than intended and reduces the FPS. This is due to the timeDiff value,
which will be set to 0 if the game update and rendering time is less than 55 ms. This
causes the sleep time to be assigned the iteration period value, rather than a smaller
amount, causing each iteration to sleep longer than necessary.

To combat this, the minimum iteration period in GamePanel should be greater than
55 ms, indicating an upper limit of about 18 FPS. This frame rate is widely consid-
ered inadequate for games since the slow screen refresh appears as excessive flicker.

On Windows 2000, NT, and XP, currentTimeMillis() has a resolution of 10 to 15
ms, making it possible to obtain 67 to 100 FPS. This is considered acceptable to
good for games. The Mac OS X and Linux have timer resolutions of 1 ms, which is
excellent.

www.allitebooks.com

This is the Title of the Book, eMatter Edition

FPS and Sleeping for Varying Times | 25

Am I Done Yet? (Nope)
Since the aim is about 85 FPS, then is the current animation loop sufficient for the
job? Do I have to complicate it any further? For modern versions of Windows (e.g.,
NT, 2000, XP), the Mac, and Linux, their average/good timer resolutions mean that
the current code is probably adequate.

The main problem is the resolution of the Windows 98 timer (55 ms; 18.2 FPS).
Google Zeitgeist, a web site that reports interesting search patterns and trends taken
from the Google search engine (http://www.google.com/press/zeitgeist.html), lists
operating systems used to access Google. Windows 98 usage stood at about 16 per-
cent in June 2004, having dropped from 29 percent the previous September. The
winner was XP, gaining ground from 38 percent to 51 percent in the same interval.

If I’m prepared to extrapolate OS popularity from these search engine figures, then
Windows 98 is rapidly on its way out. By the time you read this, sometime in 2005,
Windows 98’s share of the OS market will probably be below 10 percent—it may be
acceptable to ignore the slowness of its timer since few people will be using it.

What’s a Good FPS?
It’s worth taking a brief diversion to consider what FPS values make for a good game.

A lower bound is dictated by the human eye and the critical flicker frequency (CFF),
which is the rate at which a flickering light appears to be continuous. This occurs
somewhere between 10 and 50 Hz, depending on the intensity of the light (translating
into 10 to 50 FPS). For larger images, the position of the user relative to the image
affects the perceived flicker, as well as the color contrasts and amount of detail in the
picture.

Movies are shown at 24 FPS, but this number is somewhat misleading since each frame
is projected onto the screen twice (or perhaps three times) by the rapid opening and
closing of the projector’s shutter. Thus, the viewer is actually receiving 48 (or 72) image
flashes per second.

An upper bound for a good FPS values are the monitor refresh rate. This is typically 70
to 90 Hz, i.e., 70 to 90 FPS. A program doesn’t need to send more frames per second
than the refresh rate to the graphics card as the extra frames will not be displayed. In
fact, an excessive FPS rate consumes needless CPU time and stretches the display card.

My monitor refreshes at 85 Hz, making 80 to 85 FPS the goal of the code here. This is
the best FPS values since they match the monitor’s refresh rate. Games often report
higher values of 100 or more, but they’re probably really talking about game UPS,
which I’ll consider a bit later on.

This is the Title of the Book, eMatter Edition

26 | Chapter 2: An Animation Framework

Well, I’m not going to give up on Windows 98 since I’m still using it at home. Also,
it’s well worth investigating other approaches to see if they can give better timer reso-
lution. This will allow us to improve the frame rate and to correct for errors in the
sleep time and updates per second, both discussed in later sections.

Improved J2SE Timers
J2SE 1.4.2 has a microsecond accurate timer hidden in the undocumented class
sun.misc.Perf. The diff calculation can be expressed as follows:

Perf perf = Perf.getPerf();
long countFreq = perf.highResFrequency();

long count1 = perf.highResCounter();
long count2 = perf.highResCounter();
long diff = (count2 – count1) * 1000000000L / countFreq ;
 // in nanoseconds

Perf is not a timer but a high-resolution counter, so it is suitable for measuring time
intervals. highResCounter() returns the current counter value, and highResFrequency(),
the number of counts made per second. Perf’s typical resolution is a few microsec-
onds (2 to 6 microseconds on different versions of Windows).

My timer problems are solved in J2SE 5.0, with its System.nanoTime() method,
which can be used to calculate time intervals in a similar way to the Perf timer. As
the name suggests, nanoTime() returns an elapsed time in nanoseconds:

long count1 = System.nanoTime();
long count2 = System.nanoTime();
long diff = (count2 – count1); // in nanoseconds

The resolution of nanoTime() on Windows is similar to the Perf timer (1 to 6
microseconds).

Also, J2SE 5.0’s new java.util.concurrent package for concurrent programming
includes a TimeUnit class that can measure down to the nanosecond level.

Using Non-J2SE Timers
It’s possible to employ a high resolution timer from one of Java’s extensions. The
Java Media Framework (JMF) timer is an option but, since the majority of this book
is about Java 3D, I’ll use the J3DTimer class.

The diff calculation recoded using the Java 3D timer becomes:

long t1 = J3DTimer.getValue();
long t2 = J3DTimer.getValue();
long diff = t2 – t1 ; // in nanoseconds

getValue() returns a time in nanoseconds (ns). On Windows 98, the Java 3D timer
has a resolution of about 900 ns, which improves to under 300 ns on my test XP box.

This is the Title of the Book, eMatter Edition

FPS and Sleeping for Varying Times | 27

A drawback of using Java 3D is the need to install it in addition to J2SE,
but it’s quite straightforward. Sun’s top-level web page for Java 3D is at
http://java.sun.com/products/java-media/3D/. With a little work, the timer
can be extracted from the rest of Java 3D, reducing the amount of soft-
ware that needs to be installed. (See Appendix A for details.)

Another approach is to use a timer from a game engine. My favourite is Meat Fighter
by Michael Birken (http://www.meatfighter.com). The StopWatchSource class provides
a static method, getStopWatch(), which uses the best resolution timer available in
your system; it considers currentTimeMillis() and the JMF and Java 3D timers, if
present. On Windows, Meat Fighter includes a 40-KB DLL containing a high-resolution
timer. The GAGE timer is a popular choice (http://java.dnsalias.com/) and can
employ J2SE 5.0’s nanoTime() if it’s available.

The main issue with using a timer that isn’t part of Java’s standard libraries is how to
package it up with a game and ensure it can be easily installed on someone else’s
machine. The appendixes explain how to write installation routines for games that
use the Java 3D timer.

Choosing to use a non-J2SE timer is a good choice for portability rea-
sons. Code using nanoTime() is not backward-compatible with earlier
versions of J2SE, which means you have to ensure the gamer has J2SE
5.0 installed to play your game.

Measuring Timer Resolution
The TimerRes class in Example 2-2 offers a simple way to discover the resolution of
the System, Perf, and Java 3D timers on your machine. Perf is only available in J2SE
1.4.2, and Java 3D must be installed for J3DTimer.getResolution() to work.

Example 2-2. Testing timer resolution

import com.sun.j3d.utils.timer.J3DTimer;

public class TimerRes
{
 public static void main(String args[])
 { j3dTimeResolution();
 sysTimeResolution();
 perfTimeResolution();
 }

 private static void j3dTimeResolution()
 { System.out.println("Java 3D Timer Resolution: " +
 J3DTimer.getResolution() + " nsecs");
 }

This is the Title of the Book, eMatter Edition

28 | Chapter 2: An Animation Framework

The output for TimerRes running on a Windows 98 machine is shown below. The
drawback of using currentTimeMillis() is quite apparent.

> java TimerRes
Java 3D Timer Resolution: 838 nsecs
System Time resolution: 55000 microsecs

 private static void sysTimeResolution()
 {
 long total, count1, count2;

 count1 = System.currentTimeMillis();
 count2 = System.currentTimeMillis();
 while(count1 == count2)
 count2 = System.currentTimeMillis();
 total = 1000L * (count2 - count1);

 count1 = System.currentTimeMillis();
 count2 = System.currentTimeMillis();
 while(count1 == count2)
 count2 = System.currentTimeMillis();
 total += 1000L * (count2 - count1);

 count1 = System.currentTimeMillis();
 count2 = System.currentTimeMillis();
 while(count1 == count2)
 count2 = System.currentTimeMillis();
 total += 1000L * (count2 - count1);

 count1 = System.currentTimeMillis();
 count2 = System.currentTimeMillis();
 while(count1 == count2)
 count2 = System.currentTimeMillis();
 total += 1000L * (count2 - count1);

 System.out.println("System Time resolution: " +
 total/4 + " microsecs");
 } // end of sysTimeResolution()

 private static void perfTimeResolution()
 {
 StopWatch sw = new StopWatch();
 System.out.println("Perf Resolution: " +
 sw.getResolution() + " nsecs");

 sw.start();
 long time = sw.stop();
 System.out.println("Perf Time " + time + " nsecs");
 }

} // end of TimerRes class

Example 2-2. Testing timer resolution (continued)

This is the Title of the Book, eMatter Edition

FPS and Sleeping for Varying Times | 29

Perf Resolution: 5866 nsecs
Perf Time 19276 nsecs

StopWatch is my own class (shown in Example 2-3) and wraps up the Perf counter to
make it easier to use as a kind of stopwatch. A getResolution() method makes get-
ting results easier.

Example 2-3. A wrapper utility for Perf

import sun.misc.Perf; // only in J2SE 1.4.2

public class StopWatch
{
 private Perf hiResTimer;
 private long freq;
 private long startTime;

 public StopWatch()
 { hiResTimer = Perf.getPerf();
 freq = hiResTimer.highResFrequency();
 }

 public void start()
 { startTime = hiResTimer.highResCounter(); }

 public long stop()
 // return the elapsed time in nanoseconds
 { return (hiResTimer.highResCounter() -
 startTime)*1000000000L/freq; }

 public long getResolution()
 // return counter resolution in nanoseconds
 {
 long diff, count1, count2;

 count1 = hiResTimer.highResCounter();
 count2 = hiResTimer.highResCounter();
 while(count1 == count2)
 count2 = hiResTimer.highResCounter();
 diff = (count2 - count1);

 count1 = hiResTimer.highResCounter();
 count2 = hiResTimer.highResCounter();
 while(count1 == count2)
 count2 = hiResTimer.highResCounter();
 diff += (count2 - count1);

 count1 = hiResTimer.highResCounter();
 count2 = hiResTimer.highResCounter();
 while(count1 == count2)
 count2 = hiResTimer.highResCounter();
 diff += (count2 - count1);

This is the Title of the Book, eMatter Edition

30 | Chapter 2: An Animation Framework

The start() and stop() methods add a small overhead to the counter, as illustrated
in the perfTimeResolution() method in TimerRes. The smallest time that can be
obtained is around 10 to 40 ms, compared to the resolution of around 2 to 6 ms.

The resolution of System.nanoTime() can be measured using a variant of
sysTimeResolution().

private static void nanoTimeResolution()
{
 long total, count1, count2;

 count1 = System.nanoTime();
 count2 = System.nanoTime();
 while(count1 == count2)
 count2 = System.nanoTime();
 total = (count2 - count1);

 count1 = System.nanoTime();
 count2 = System.nanoTime();
 while(count1 == count2)
 count2 = System.nanoTime();
 total += (count2 - count1);

 count1 = System.nanoTime();
 count2 = System.nanoTime();
 while(count1 == count2)
 count2 = System.nanoTime();
 total += (count2 - count1);

 count1 = System.nanoTime();
 count2 = System.nanoTime();
 while(count1 == count2)
 count2 = System.nanoTime();
 total += (count2 - count1);

 System.out.println("Nano Time resolution: " + total/4 + " ns");
} // end of nanoTimeResolution()

The output of the method is in nanoseconds, e.g., 5866 ns for Windows 98 (about 6
ms). Here are values for other operating systems: 440 ns on Mac OS X, 1,000 ns on
Linux, and 1,116 ns on Windows 2000 Pro.

 count1 = hiResTimer.highResCounter();
 count2 = hiResTimer.highResCounter();
 while(count1 == count2)
 count2 = hiResTimer.highResCounter();
 diff += (count2 - count1);

 return (diff*1000000000L)/(4*freq);
 } // end of getResolution()

} // end of StopWatch class

Example 2-3. A wrapper utility for Perf (continued)

This is the Title of the Book, eMatter Edition

Sleeping Better | 31

Java 3D Timer Bug Alert
There’s a rarely occurring bug in the J3DTimer class: J3DTimer.getResolution() and
J3DTimer.getValue() return 0 on some versions of Windows XP and Linux. This can
be checked by running the TimerRes application from the last section, or by execut-
ing this snippet of code:

System.out.println("J3DTimer resolution (ns): " + J3DTimer.getResolution());
System.out.println("Current time (ns): " + J3DTimer.getValue());

If there’s a problem, both numbers will be 0.

This bug’s history can be found at https://java3d.dev.java.net/issues/show_bug.cgi?id=13
and has been fixed in the bug release version of Java 3D 1.3.2, which is “experimental”
at the moment (December 2004), but will have been finished by the time you read this.
It can be downloaded from https://java3d.dev.java.net/.

Here are two other solutions:

• Switch back to System.currentTimeMillis(), which is fast enough on Windows XP.

• If you’re using J2SE 5.0, then replace all the calls to J3DTimer.getValue() with
System.nanoTime().

Sleeping Better
The animation loop in run() depends on a good timer and the accuracy of the sleep()

call. The previous major section dealt with alternatives to currentTimeMillis(). In
this section, I consider ways of improving the sleep() code in run(), so the required
frame rate is consistently achieved.

The SleepAcc class measures sleep accuracy. Example 2-4 calls sleep() with increas-
ingly small values and measures the actual sleep time using the Java 3D timer.

Example 2-4. Measuring sleep() accuracy

import java.text.DecimalFormat;
import com.sun.j3d.utils.timer.J3DTimer;

public class SleepAcc
{
 private static DecimalFormat df;

 public static void main(String args[])
 {
 df = new DecimalFormat("0.##"); // 2 dp

 // test various sleep values
 sleepTest(1000);
 sleepTest(500);
 sleepTest(200);
 sleepTest(100);

This is the Title of the Book, eMatter Edition

32 | Chapter 2: An Animation Framework

The difference between the requested and actual sleep delay is negligible for times of
50 ms or more and gradually increases to a +/–10 to 20 percent error at 1 ms. A typi-
cal run is:

D>java SleepAcc
Slept: 1000 ms J3D: 999.81 ms err: 0.02 %
Slept: 500 ms J3D: 499.54 ms err: 0.09 %
Slept: 200 ms J3D: 199.5 ms err: 0.25 %
Slept: 100 ms J3D: 99.56 ms err: 0.44 %
Slept: 50 ms J3D: 49.59 ms err: 0.82 %
Slept: 20 ms J3D: 20.53 ms err: -2.59 %
Slept: 10 ms J3D: 10.52 ms err: -4.91 %
Slept: 5 ms J3D: 5.42 ms err: -7.78 %
Slept: 1 ms J3D: 1.15 ms err: -13.34 %
 : // more lines until ctrl-C is typed

The reason for this inaccuracy is probably due to the complexity of the operation,
involving the suspension of a thread and context switching with other activities.
Even after the sleep time has finished, a thread has to wait to be selected for execu-
tion by the thread scheduler. How long it has to wait depends on the overall load of
the JVM (and OS) at that moment.

 sleepTest(50);
 sleepTest(20);
 sleepTest(10);
 sleepTest(5);
 sleepTest(1);
 } // end of main()

 private static void sleepTest(int delay)
 {
 long timeStart = J3DTimer.getValue();

 try {
 Thread.sleep(delay);
 }
 catch(InterruptedException e) {}

 double timeDiff =
 ((double)(J3DTimer.getValue() - timeStart))/(1000000L);
 double err = ((delay - timeDiff)/timeDiff) * 100;

 System.out.println("Slept: " + delay + " ms J3D: " +
 df.format(timeDiff) + " ms err: " +
 df.format(err) + " %");
 } // end of sleepTest()

} // end of SleepAcc class

Example 2-4. Measuring sleep() accuracy (continued)

This is the Title of the Book, eMatter Edition

Sleeping Better | 33

sleep()’s implementation varies between operating systems and different versions of
Java, making analysis difficult. Under Windows 98 and J2SE 1.4.2, sleep() utilizes a
large native function (located in jvm.dll), which employs the Windows kernel sleep()
function with a reported accuracy of 1 ms.

The conclusion is that I should extend the animation loop to combat sleep()’s
inaccuracies.

Handling Sleep Inaccuracies
This version of run() in this section revises the previous one in three main ways:

• It uses the Java 3D timer.

• sleep()’s execution time is measured, and the error (stored in overSleepTime)
adjusts the sleeping period in the next iteration.

• Thread.yield() is utilized to give other threads a chance to execute if the anima-
tion loop has not slept for a while.

Here’s the updated method:

private static final int NO_DELAYS_PER_YIELD = 16;
/* Number of frames with a delay of 0 ms before the
 animation thread yields to other running threads. */

public void run()
/* Repeatedly update, render, sleep so loop takes close
 to period nsecs. Sleep inaccuracies are handled.
 The timing calculation use the Java 3D timer.
*/
{
 long beforeTime, afterTime, timeDiff, sleepTime;
 long overSleepTime = 0L;
 int noDelays = 0;

 beforeTime = J3DTimer.getValue();

 running = true;
 while(running) {
 gameUpdate();
 gameRender();
 paintScreen();

 afterTime = J3DTimer.getValue();
 timeDiff = afterTime - beforeTime;
 sleepTime = (period - timeDiff) - overSleepTime;

 if (sleepTime > 0) { // some time left in this cycle
 try {
 Thread.sleep(sleepTime/1000000L); // nano -> ms
 }

This is the Title of the Book, eMatter Edition

34 | Chapter 2: An Animation Framework

 catch(InterruptedException ex){}
 overSleepTime =
 (J3DTimer.getValue() - afterTime) - sleepTime;
 }
 else { // sleepTime <= 0; frame took longer than the period
 overSleepTime = 0L;

 if (++noDelays >= NO_DELAYS_PER_YIELD) {
 Thread.yield(); // give another thread a chance to run
 noDelays = 0;
 }
 }
 beforeTime = J3DTimer.getValue();
 }

 System.exit(0);
} // end of run()

If the sleep() call sleeps for 12 ms instead of the desired 10 ms, then overSleepTime

will be assigned 2 ms. On the next iteration of the loop, this value will be deducted
from the sleep time, reducing it by 2 ms. In this way, sleep inaccuracies are corrected.

If the game update and rendering steps take longer than the iteration period, then
sleepTime will have a negative value and this iteration will not include a sleep
stage. This causes the noDelays counter to be incremented, and when it reaches
NO_DELAYS_PER_YIELD, yield() will be called. This allows other threads to execute
if they need to and avoids the use of an arbitrary sleep period in run().

The switch to the Java 3D timer is mostly a matter of changing the calls to System.

currentTimeMillis() to J3DTimer.getValue(). Time values change from millisec-
onds to nanoseconds, which motivates the change to long variables. Also, the sleep
time must be converted from nanoseconds to milliseconds before calling sleep(), or
I’ll be waiting a long time for the game to wake up.

If you prefer to use System.nanoTime() from J2SE 5.0, you can globally search and
replace, changing every J3DTimer.getValue() call to System.nanoTime(). You don’t
have to import the Java 3D packages if you choose this approach.

FPS and UPS
Apart from FPS, there is another useful measure of animation speed: UPS. The cur-
rent animation loop carries out one update and one render in each iteration, but this
correspondence isn’t necessary. The loop could carry out two updates per each ren-
dering, as illustrated by the following code fragment:

public void run()
// Repeatedly update, render, sleep
{ ...
 running = true;
 while(running) {

www.allitebooks.com

This is the Title of the Book, eMatter Edition

FPS and UPS | 35

 gameUpdate(); // game state is updated
 gameUpdate(); // game state is updated again

 gameRender(); // render to a buffer
 paintScreen(); // paint with the buffer

 // sleep a bit
 }
 System.exit(0);
} // end of run()

If the game offers 50 FPS (i.e., 50 iterations of the animation loop per second), then it
is doing 100 updates per second.

This coding style causes the game to advance more quickly since the game state is
changing twice as fast but at the cost of skipping the rendering of those extra states.
However, this may not be noticeable, especially if the FPS value is 20 or higher.

Separating Updates from Rendering
One limitation on high FPS rates is the amount of time that the update and render
steps require. Satisfying a period of 5 ms (1000/5 == 200 FPS) is impossible if these
steps take more than 5 ms to accomplish. Most of this execution time is usually con-
sumed by the rendering stage.

In this situation, the way to increase game speed is to increase the number of UPS. In
programming terms, this translates into calling gameUpdate() more than once during
each iteration. However, too many additional calls will cause the game to flicker, as
too many successive states are not rendered. Each update adds to the execution time,
which will further reduce the maximum achievable FPS value.

The new run() is:

private static int MAX_FRAME_SKIPS = 5;
 // no. of frames that can be skipped in any one animation loop
 // i.e the games state is updated but not rendered

public void run()
/* Repeatedly update, render, sleep so loop takes close
 to period nsecs. Sleep inaccuracies are handled.
 The timing calculation use the Java 3D timer.

 Overruns in update/renders will cause extra updates
 to be carried out so UPS ~== requested FPS
*/
{
 long beforeTime, afterTime, timeDiff, sleepTime;
 long overSleepTime = 0L;
 int noDelays = 0;
 long excess = 0L;

 beforeTime = J3DTimer.getValue();

This is the Title of the Book, eMatter Edition

36 | Chapter 2: An Animation Framework

 running = true;
 while(running) {
 gameUpdate();
 gameRender();
 paintScreen();

 afterTime = J3DTimer.getValue();
 timeDiff = afterTime - beforeTime;
 sleepTime = (period - timeDiff) - overSleepTime;

 if (sleepTime > 0) { // some time left in this cycle
 try {
 Thread.sleep(sleepTime/1000000L); // nano -> ms
 }
 catch(InterruptedException ex){}
 overSleepTime =
 (J3DTimer.getValue() - afterTime) - sleepTime;
 }
 else { // sleepTime <= 0; frame took longer than the period
 excess -= sleepTime; // store excess time value
 overSleepTime = 0L;

 if (++noDelays >= NO_DELAYS_PER_YIELD) {
 Thread.yield(); // give another thread a chance to run
 noDelays = 0;
 }
 }

 beforeTime = J3DTimer.getValue();

 /* If frame animation is taking too long, update the game state
 without rendering it, to get the updates/sec nearer to
 the required FPS. */
 int skips = 0;
 while((excess > period) && (skips < MAX_FRAME_SKIPS)) {
 excess -= period;
 gameUpdate(); // update state but don't render
 skips++;
 }
 }

 System.exit(0);
} // end of run()

If the update/render step takes 12 ms and the required period is 10 ms, then
sleepTime will be –2 ms (perhaps even smaller after overSleepTime has been
deducted). This excessive execution time is added to the excess variable, which acts
as a total of all the overruns by the update-render calls.

When excess exceeds the iteration period, the equivalent of one frame has been lost.
A while loop is entered, which updates the game for each period amount lost, up to a
maximum of MAX_FRAME_SKIPS (five updates). The remaining time overrun is stored
for use in a later iteration. The MAX_FRAME_SKIPS value is arbitrary, but the larger it is,

This is the Title of the Book, eMatter Edition

Pausing and Resuming | 37

the more sudden the jump forward in the game may be if the maximum number of
frames are skipped.

The outcome is that when a game can’t update and render fast enough to match the
desired FPS, then additional calls will be made to gameUpdate(). This changes the
state without rendering it, which the user sees as the game moving “faster,” even
though the number of rendered frames remains the same.

Pausing and Resuming
Even with the most exciting game, there comes a time when the user wants to pause
it (and resume later).

One largely discredited coding approach is to use Thread.suspend() and resume().
These methods are deprecated for a similar reason to Thread.stop();suspend() can
cause an applet/application to suspend at any point in its execution. This can easily
lead to deadlock if the thread is holding a resource since it will not be released until
the thread resumes.

Instead, the Java documentation for the Thread class recommends using wait() and
notify() to implement pause and resume functionality. The idea is to suspend the
animation thread, but the event dispatcher thread will still respond to GUI activity.
To implement this approach, I introduce an isPaused Boolean, which is set to true

via pauseGame():

// global variable
private volatile boolean isPaused = false;

public void pauseGame()
{ isPaused = true; }

public void run()
// Repeatedly (possibly pause) update, render, sleep
// This is not a good approach, and is shown for illustration only.
{ ...
 running = true;
 while(running) {
 try {
 if (isPaused) {
 synchronized(this) {
 while (isPaused && running)
 wait();
 }
 }
 } // of try block
 catch (InterruptedException e){}

 gameUpdate(); // game state is updated
 gameRender(); // render to a buffer
 paintScreen(); // paint with the buffer

This is the Title of the Book, eMatter Edition

38 | Chapter 2: An Animation Framework

 // sleep a bit
 }
 System.exit(0);
} // end of run()

The isPaused flag is detected in run() and triggers a wait() call to suspend the ani-
mation thread. The flag must be volatile so run() is sure to see the change made by
pauseGame() (otherwise the variable may be cached locally).

The thread is resumed by resumeGame() or stopGame(), both of which call notify().
These methods must be synchronized so the animation thread doesn’t miss the noti-
fication and remain suspended indefinitely:

public synchronized void resumeGame()
{ isPaused = false; // I do not do this
 notify();
}

public synchronized void stopGame()
{ running = false; // I do not do this
 notify();
}

This coding style can be criticized for combining two notions: game pausing/resum-
ing and program pausing/resuming. This is the main reason why I do not use it.

Though the elements of the game seen by the user can pause, it is often useful for the
other parts to continue executing. For example, in a network game, it may be neces-
sary to monitor sockets for messages coming from other players.

The drawback of keeping the application running is the cost of execut-
ing the animation thread when the user is not playing.

My approach uses an isPaused Boolean, which is set with pauseGame():

// this is my approach
private volatile boolean isPaused = false;

public void pauseGame()
{ isPaused = true; }

However, isPaused is not monitored in run() since the animation thread doesn’t sus-
pend. isPaused is used to switch off testPress() and gameUpdate():

private void testPress(int x, int y)
// is (x,y) important to the game?
{
 if (!isPaused && !gameOver) {
 // do something
 }
}

This is the Title of the Book, eMatter Edition

Other Animation Approaches | 39

private void gameUpdate()
{ if (!isPaused && !gameOver)
 // update game state ...
}

Key presses are still handled by the KeyListener method since it must be possible to
quit even in the paused state.

isPaused is set to false with resumeGame():

public void resumeGame()
{ isPaused = false; }

The animation loop isn’t suspended when isPaused is set true, so rendering will con-
tinue. This is important if the game screen is iconified and expanded or is momen-
tarily obscured by another window. The game will only be redrawn if the animation
loop is still operating. By contrast, a game loop using paint() or paintComponent()

can be suspended since the JVM will automatically call these methods when the
game window is redisplayed.

Other Animation Approaches
This chapter has been concerned with developing a threaded animation loop inside a
JPanel. But other ways of implementing animation in Java exist, and I’ll briefly con-
sider two of them:

• Using the Swing timer

• Using the utility timer from java.util.timer

When to Pause
The situations that trigger pausing and resuming vary between the different types of
Java programs.

In an applet, the animation should pause when the applet is stopped and should
resume when the applet is restarted by the browser. A stop occurs when the user leaves
the page, for example, to go to another page. When the user returns to the page, the
applet starts again. The same sequence should be triggered when the user minimizes
the applet’s page and reopens it later.

In an application, pausing should be initiated when the window is minimized or deac-
tivated, and execution should resume when the window is enlarged or activated. A
window is deactivated when it is obscured and activated when brought back to
the front.

In a full-screen application, pausing and resumption will be controlled by buttons on
the canvas since the user interface lacks a title bar and the OS taskbar is hidden.

Examples of these approaches can be found in Chapters 3 and 4.

This is the Title of the Book, eMatter Edition

40 | Chapter 2: An Animation Framework

Both of them use a timer to trigger method calls at regular intervals. However, I’ll
present timing figures that show that the Swing timer doesn’t have the necessary
accuracy for my needs, while the utility timer is a possible alternative.

Swing Timer Animation
The Swing timer (in javax.swing.Timer) is used as the basis of animation examples in
many Java textbooks.

The essential coding technique is to set a Timer object to “tick” every few millisec-
onds. Each tick sends an event to a specified ActionEvent listener, triggering a call to
actionPerformed(). actionPerformed() calls repaint() to send a repaint request to
the JVM. Eventually, repainting reaches the paintComponent() method for the JPanel,
which redraws the animation canvas. These stages are shown in Figure 2-1, which
represents the test code in SwingTimerTest.java.

The SwingTimerTest class uses the Swing timer to draw the current average FPS val-
ues repeatedly into a JPanel. The period for the timer is obtained from the requested
FPS given on the command line. The average FPS are calculated every second, based
on FPS values collected over the previous 10 seconds.

main() reads in the user’s required FPS and converts them to a period. It creates a
JFrame and puts the SwingTimerPanel inside it.

The SwingTimerTest() constructor creates the timer and sends its “ticks” to itself:

new Timer(period, this).start();

Figure 2-1. Swing timer animation

JFrame

paintComponent()
// redraw panel

actionPerformed()
{ sillyTask(); repaint(); }

JVM repaint request

Swing Timer

tick every period ms

SwingTimerTest
JPanel

This is the Title of the Book, eMatter Edition

Other Animation Approaches | 41

actionPerformed() wastes some time by calling a sillyTask() method that does a lot
of looping and then requests a repaint:

public void actionPerformed(ActionEvent e)
{ sillyTask();
 repaint();
}

paintComponent() updates the JPanel and records statistics:

public void paintComponent(Graphics g)
{
 super.paintComponent(g);

 // clear the background
 g.setColor(Color.white);
 g.fillRect (0, 0, PWIDTH, PHEIGHT);

 // report average FPS
 g.setColor(Color.black);
 g.drawString("Average FPS: " + df.format(averageFPS), 10, 25);

 reportStats(); // record/report statistics
} // end of paintComponent()

The most complicated part of this example is the statistics gathering done by
reportStats(). It’s worth looking at the code since it appears again in Chapters 3
and 4.

reportStats() prints a line of statistics every second:

D>java SwingTimerTest 50
fps: 50; period: 20 ms
1 3.0099s 200.99% 50c 16.61 16.61 afps
1 2.7573s 175.73% 100c 17.34 16.98 afps
1 2.7344s 173.44% 150c 17.64 17.2 afps
1 2.746s 174.6% 200c 17.78 17.34 afps
1 2.7545s 175.45% 250c 17.85 17.45 afps
1 2.7522s 175.22% 300c 17.91 17.52 afps
1 2.7299s 172.99% 350c 17.96 17.59 afps
1 2.7581s 175.81% 400c 17.98 17.64 afps
 : // more lines until ctrl-C is typed

The first line of the output lists the requested FPS and the corresponding period used
by the timer. It’s followed by multiple statistic lines, with a new line generated when
the accumulated timer period reaches 1 second since the last line was printed.

Each statistics line presents six numbers. The first three relate to the execution time.
The first number is the accumulated timer period since the last output, which will be
close to one second. The second number is the actual elapsed time, measured with
the Java 3D timer, and the third value is the percentage error between the two numbers.

The fourth number is the total number of calls to paintComponent() since the pro-
gram began, which should increase by the requested FPS value each second.

This is the Title of the Book, eMatter Edition

42 | Chapter 2: An Animation Framework

The fifth number is the current FPS, calculated by dividing the total number of calls
by the total elapsed time since the program began. The sixth number is an average of
the last 10 FPS numbers (or fewer, if 10 numbers haven’t been calculated yet).

The reportStats() method, and its associated global variables, are shown here:

private static long MAX_STATS_INTERVAL = 1000L;
 // record stats every 1 second (roughly)

private static int NUM_FPS = 10;
 // number of FPS values stored to get an average

// used for gathering statistics
private long statsInterval = 0L; // in ms
private long prevStatsTime;
private long totalElapsedTime = 0L;

private long frameCount = 0;
private double fpsStore[];
private long statsCount = 0;
private double averageFPS = 0.0;

private DecimalFormat df = new DecimalFormat("0.##"); // 2 dp
private DecimalFormat timedf = new DecimalFormat("0.####"); //4 dp

private int period; // period between drawing in ms

private void reportStats()
{
 frameCount++;
 statsInterval += period;

 if (statsInterval >= MAX_STATS_INTERVAL) {
 long timeNow = J3DTimer.getValue();

 long realElapsedTime = timeNow - prevStatsTime;
 // time since last stats collection
 totalElapsedTime += realElapsedTime;

 long sInterval = (long)statsInterval*1000000L; // ms --> ns
 double timingError =
 ((double)(realElapsedTime - sInterval)) / sInterval * 100.0;

 double actualFPS = 0; // calculate the latest FPS
 if (totalElapsedTime > 0)
 actualFPS = (((double)frameCount / totalElapsedTime) * 1000000000L);
 // store the latest FPS
 fpsStore[(int)statsCount%NUM_FPS] = actualFPS;
 statsCount = statsCount+1;

 double totalFPS = 0.0; // total the stored FPSs
 for (int i=0; i < NUM_FPS; i++)
 totalFPS += fpsStore[i];

This is the Title of the Book, eMatter Edition

Other Animation Approaches | 43

 if (statsCount < NUM_FPS) // obtain the average FPS
 averageFPS = totalFPS/statsCount;
 else
 averageFPS = totalFPS/NUM_FPS;

 System.out.println(
 timedf.format((double) statsInterval/1000) + " " +
 timedf.format((double) realElapsedTime/1000000000L) + "s " +
 df.format(timingError) + "% " +
 frameCount + "c " +
 df.format(actualFPS) + " " +
 df.format(averageFPS) + " afps");

 prevStatsTime = timeNow;
 statsInterval = 0L; // reset
 }
} // end of reportStats()

reportStats() is called in paintComponent() after the timer has “ticked.” This is rec-
ognized by incrementing frameCount and adding the period amount to statsInterval.

The FPS values are stored in the fpsStore[] array. When the array is full, new values
overwrite the old ones by cycling around the array. The average FPS smooth over
variations in the application’s execution time.

Table 2-1 shows the reported average FPS on different versions of Windows when
the requested FPSs were 20, 50, 80, and 100.

Each test was run three times on a lightly loaded machine, running for a few min-
utes. The results show a wide variation in the accuracy of the timer, but the results
for the 80 FPS request are poor to downright awful in all cases. The Swing timer
can’t be recommended for high frame rate games.

The timer is designed for repeatedly triggering actions after a fixed period. However,
the actual action frequency can drift because of extra delays introduced by the gar-
bage collector or long-running game updates and rendering. It may be possible to
code round this by dynamically adjusting the timer’s period using setDelay().

The timer uses currentTimeMillis() internally, with its attendant resolution problems.

The official Java tutorial contains more information about the Swing timer and ani-
mation, located in the Swing trail in “Performing Animations” (http://java.sun.com/
docs/books/tutorial/uiswing/painting/animation.html).

Table 2-1. Reported average FPS for SwingTimerTest

Requested FPS 20 50 80 100

Windows 98 18 18 18 18

Windows 2000 19 49 49 98

Windows XP 16 32 64 64

This is the Title of the Book, eMatter Edition

44 | Chapter 2: An Animation Framework

The Utility Timer
A timer is available in the java.util.Timer class. Instead of scheduling calls to
actionPerformed(), the run() method of a TimerTask object is invoked.

The utility timer provides more flexibility over scheduling than the Swing timer:
Tasks can run at a fixed rate or a fixed period after a previous task. The latter
approach is similar to the Swing timer and means that the timing of the calls can
drift. In fixed-rate scheduling, each task is scheduled relative to the scheduled execu-
tion time of the initial task. If a task is delayed for any reason (such as garbage collec-
tion), two or more tasks will occur in rapid succession to catch up.

The most important difference between javax.Swing.Timer and java.util.Timer is
that the latter does not run its tasks in the event dispatching thread. Consequently,
the test code employs three classes: one for the timer, consisting of little more than a
main() function, a subclass of TimerTask for the repeated task, and a subclass of
JPanel as a canvas.

These components are shown in Figure 2-2, which represents the test code in
UtilTimerTest.java.

The timer schedules the TimerTask at a fixed rate:

MyTimerTask task = new MyTimerTask(...);
Timer t = new Timer();
t.scheduleAtFixedRate(task, 0, period);

Figure 2-2. Utility timer animation

JFrame

paintComponent()
// redraw panel

run()
{ sillyTask(); pp.repaint(); }

JVM repaint request

Util Timer

run every period ms

PaintPanel
JPanel, pp

TimerTask

www.allitebooks.com

This is the Title of the Book, eMatter Edition

Other Animation Approaches | 45

The TimerTask run() method wastes some time looping in sillyTask() and then
repaints its JPanel:

class MyTimerTask extends TimerTask
{
 // global variables and other methods

 public void run()
 { sillyTask();
 pp.repaint();
 }

 private void sillyTask()
 {...}

} // end of MyTimerTask

The JPanel is subclassed to paint the current average FPS values onto the canvas,
and to call reportStats() to record timing information. Its paintComponent() and
reportStats() are the same as in SwingTimerTest.

Table 2-2 shows the reported average FPS on different versions of Windows, when
the requested FPSs are 20, 50, 80, and 100.

The average FPS are excellent, which is somewhat surprising since currentTimeMillis()

is employed in the timer’s scheduler. The average hides that it takes 1 to 2 minutes for
the frame rate to rise towards the average. Also, JVM garbage collection reduces the FPS
for a few seconds each time it occurs.

The average FPS for a requested 80 FPS are often near 83 due to a quirk of my cod-
ing. The frame rate is converted to an integer period using (int) 1000/80 == 12 ms.
Later, this is converted back to a frame rate of 1000/12, which is 83.333.

The drawback of the utility timer is that the details of the timer and sleeping opera-
tions are mostly out of reach of the programmer and so, are not easily modified,
unlike the threaded animation loop.

The Java tutorial contains information about the utility timer and TimerTasks in the
threads trail under the heading “Using the Timer and TimerTask Classes” (http://
java.sun.com/docs/books/tutorial/essential/threads/timer.html).

Table 2-2. Reported average FPSs for UtilTimerTest

Requested FPS 20 50 80 100

Windows 98 20 47 81 94

Windows 2000 20 50 83 99

Windows XP 20 50 83 95

This is the Title of the Book, eMatter Edition

46

Chapter 3CHAPTER 3

Worms in Windows and Applets

In this chapter, I test the threaded animation loop of Chapter 2 inside a windowed
application and an applet. To simplify comparisons between the approaches, the
programs are all variants of the same WormChase game. In Chapter 4, I will continue
the comparisons, concentrating on several kinds of full-screen applications.

Figure 3-1 shows the windowed WormChase application on the left and the applet ver-
sion on the right.

The aim of the game is to click the cursor on the red head of the rapidly moving
worm. If the player misses the worm’s head, then a blue box is added to the canvas
(unless the worm’s black body was clicked upon).

The worm must go around the boxes in its path, so the boxes may make the worm
easier to catch. When the worm moves off the top edge of the window it appears at
the bottom, and vice versa. When it travels past the left or right edge, it appears at

Figure 3-1. WormChase in a JFrame and JApplet

This is the Title of the Book, eMatter Edition

Preliminary Considerations | 47

the opposite side. The worm gradually gets longer until it reaches a maximum
length, which it maintains for the rest of the game.

When the game finishes, a score is displayed in the center of the window, calculated
from the number of boxes used and the time taken to catch the worm. Fewer boxes
and less time will produce a higher score. The current time and the number of boxes
are displayed below the game canvas in two text fields.

Preliminary Considerations
This chapter and the next are concerned with several variants of WormChase, and a few
issues apply to all the versions which need to be considered before we begin.

The Choice of Timer
The main drawback of the animation loop in Chapter 2 is the need to install Java 3D
so its timer is available. Consequently, two versions of the windowed WormChase

application are investigated here: one using the Java 3D timer and the other using the
System timer. A comparison of the two will show when the Java 3D timer is beneficial.

As mentioned in the last chapter, programmers using J2SE 5.0 may
choose to do a global search and replace on the Java 3D timer ver-
sion of WormChase, changing every J3DTimer.getValue() call to
System.nanoTime().

Class Reuse
All the WormChase versions in this chapter and the next use the same game-specific
classes (i.e., Worm and Obstacles, shown throughout this chapter). They employ a
similar WormPanel class, which corresponds to the GamePanel animation class in
Chapter 2.

The main differences between the programs lie in their top-level classes. For exam-
ple, in this chapter, the windowed application uses a subclass of JFrame while the
applet utilizes JApplet. This requires changes to how game pausing and resumption
are triggered, and the way of specifying the required FPS.

Testing for Speed
Testing is done via the gathering of statistics using a version of the reportStats()

method detailed in the section “Swing Timer Animation” in Chapter 2. The main
change to that method is that the average UPS are calculated alongside the average
FPS. The overall aim of the testing is to see if the animation loop can deliver 80 to 85
FPS. Failing this, the programs should produce 80 to 85 updates per second without
an excessive number of frames being skipped.

This is the Title of the Book, eMatter Edition

48 | Chapter 3: Worms in Windows and Applets

Class Diagrams for the WormChase
Application
Figure 3-2 shows the class diagrams for the WormChase application. The class names
and public methods are shown.

The code for this version of WormChase is in the directory Worm/
WormP/.

WormChase is the top-level JFrame, managing the GUI, and processing window events.
WormPanel is the game panel holding the threaded animation loop.

The Worm class maintains the data structures and methods for the on-screen worm. The
Obstacles class handles the blue boxes. Worm and Obstacles have their own draw()

method, which is called by WormPanel to render the worm and boxes.

The Worm-Chasing Application
Figure 3-3 shows a class diagram for WormChase, including all its variables and methods.

Figure 3-2. Class diagrams for the WormChase application

This is the Title of the Book, eMatter Edition

The Worm-Chasing Application | 49

The main() function in WormChase reads the requested FPS from the command line,
converting it to a delay in nanoseconds, which is passed to the WormChase() constructor:

public static void main(String args[])
{
 int fps = DEFAULT_FPS;
 if (args.length != 0)
 fps = Integer.parseInt(args[0]);

 long period = (long) 1000.0/fps;
 System.out.println("fps: " + fps + "; period: " +period+ " ms");

 new WormChase(period*1000000L); // ms --> nanosecs
}

The WormChase constructor creates the WormPanel canvas, as well as two text fields for
displaying the number of boxes added to the scene (jtfBox) and the current time
(jtfTime). These text fields can be updated via two public methods:

public void setBoxNumber(int no)
{ jtfBox.setText("Boxes used: " + no); }

public void setTimeSpent(long t)
{ jtfTime.setText("Time Spent: " + t + " secs"); }

setBoxNumber() is called from the Obstacles object when a new box (obstacle) is cre-
ated. setTimeSpent() is called from WormPanel.

The pausing, resumption, and termination of the game are managed through win-
dow listener methods (WormChase implements WindowListener). Pausing is triggered

Figure 3-3. WormChase in detail

This is the Title of the Book, eMatter Edition

50 | Chapter 3: Worms in Windows and Applets

by window deactivation or iconification; the application resumes when the window
is activated or de-iconified, and the clicking of the window close box causes termination:

public void windowActivated(WindowEvent e)
{ wp.resumeGame(); }

public void windowDeactivated(WindowEvent e)
{ wp.pauseGame(); }

public void windowDeiconified(WindowEvent e)
{ wp.resumeGame(); }

public void windowIconified(WindowEvent e)
{ wp.pauseGame(); }

public void windowClosing(WindowEvent e)
{ wp.stopGame(); }

wp refers to the WormPanel object.

The Game Panel
The WormPanel class is similar to the GamePanel class developed in Chapter 2, with
some additional methods for drawing the game scene. WormPanel contains an
extended version of the reportStats() method used for timing the Swing and utility
timers in Chapter 2, called printStats(). Its principal extension is to report the aver-
age UPS (updates per second) in addition to the average FPS.

A class diagram showing all the WormPanel methods is given in Figure 3-4.

The WormPanel constructor sets up the game components and initializes timing elements:

public WormPanel(WormChase wc, long period)
{
 wcTop = wc;
 this.period = period;

 setBackground(Color.white);
 setPreferredSize(new Dimension(PWIDTH, PHEIGHT));

 setFocusable(true);
 requestFocus(); // now has focus, so receives key events
 readyForTermination();

 // create game components
 obs = new Obstacles(wcTop);
 fred = new Worm(PWIDTH, PHEIGHT, obs);

 addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e)

This is the Title of the Book, eMatter Edition

The Game Panel | 51

 { testPress(e.getX(), e.getY()); }
 });

 // set up message font
 font = new Font("SansSerif", Font.BOLD, 24);
 metrics = this.getFontMetrics(font);

 // initialise timing elements
 fpsStore = new double[NUM_FPS];
 upsStore = new double[NUM_FPS];
 for (int i=0; i < NUM_FPS; i++) {
 fpsStore[i] = 0.0;
 upsStore[i] = 0.0;
 }
} // end of WormPanel()

The time period intended for each frame (in nanoseconds) is passed to WormPanel

from WormChase and stored in a global variable. readyForTermination() is the same as
in Chapter 2: a KeyListener monitors the input for termination characters (e.g., Ctrl-
C), then sets the running Boolean to false.

The message font is used to report the score when the game ends. fpsStore[] and
upsStore[] are global arrays holding the previous ten FPS and UPS values calculated
by the statistics code.

User Input
The testPress() method handles mouse presses on the canvas, which will be aimed
at the worm’s red head. If the press is sufficiently near to the head, then the game is

Figure 3-4. WormPanel methods in detail

This is the Title of the Book, eMatter Edition

52 | Chapter 3: Worms in Windows and Applets

won. If the press touches the worm’s body (the black circles), then nothing occurs;
otherwise, an obstacle is added to the scene at that (x, y) location:

private void testPress(int x, int y)
// is (x,y) near the head or should an obstacle be added?
{
 if (!isPaused && !gameOver) {
 if (fred.nearHead(x,y)) { // was mouse press near the head?
 gameOver = true;
 score = (40 - timeSpentInGame) + 40 - obs.getNumObstacles());
 // hack together a score
 }
 else { // add an obstacle if possible
 if (!fred.touchedAt(x,y)) // was worm's body not touched?
 obs.add(x,y);
 }
 }
} // end of testPress()

testPress() starts by testing isPaused and gameOver. If isPaused is true then the game
is paused, and mouse presses should be ignored. Similarly, if the game is over
(gameOver == true), then the input is disregarded.

WormChase’s WindowListener methods respond to window events by calling the follow-
ing methods in WormPanel to affect the isPaused and running flags:

public void resumeGame()
// called when the JFrame is activated / deiconified
{ isPaused = false; }

public void pauseGame()
// called when the JFrame is deactivated / iconified
{ isPaused = true; }

public void stopGame()
// called when the JFrame is closing
{ running = false; }

As discussed in Chapter 2, pausing and resumption don’t utilize the Thread wait()

and notify() methods to affect the animation thread.

The Animation Loop
For the sake of completeness, I include the run() method from WormPanel. The parts
of it which differ from the animation loop in the section “Separating Updates from
Rendering” in Chapter 2 are marked in bold:

public void run()
/* The frames of the animation are drawn inside the while loop. */
{
 long beforeTime, afterTime, timeDiff, sleepTime;
 long overSleepTime = 0L;
 int noDelays = 0;
 long excess = 0L;

This is the Title of the Book, eMatter Edition

The Game Panel | 53

 gameStartTime = J3DTimer.getValue();
 prevStatsTime = gameStartTime;
 beforeTime = gameStartTime;

 running = true;
 while(running) {
 gameUpdate();
 gameRender();
 paintScreen();

 afterTime = J3DTimer.getValue();
 timeDiff = afterTime - beforeTime;
 sleepTime = (period - timeDiff) - overSleepTime;

 if (sleepTime > 0) { // some time left in this cycle
 try {
 Thread.sleep(sleepTime/1000000L); // nano -> ms
 }
 catch(InterruptedException ex){}
 overSleepTime = (J3DTimer.getValue() - afterTime) - sleepTime;
 }
 else { // sleepTime <= 0; frame took longer than the period
 excess -= sleepTime; // store excess time value
 overSleepTime = 0L;

 if (++noDelays >= NO_DELAYS_PER_YIELD) {
 Thread.yield(); // give another thread a chance to run
 noDelays = 0;
 }
 }

 beforeTime = J3DTimer.getValue();

 /* If frame animation is taking too long, update the game state
 without rendering it, to get the updates/sec nearer to
 the required FPS. */
 int skips = 0;
 while((excess > period) && (skips < MAX_FRAME_SKIPS)) {
 excess -= period;
 gameUpdate(); // update state but don't render
 skips++;
 }
 framesSkipped += skips;

 storeStats();
 }

 printStats();
 System.exit(0); // so window disappears
} // end of run()

The global variables, gameStartTime and prevStatsTime, are utilized in the statistics
calculations, as is the frameSkipped variable. frameSkipped holds the total number of

This is the Title of the Book, eMatter Edition

54 | Chapter 3: Worms in Windows and Applets

skipped frames since the last UPS calculation in storeStats(). printStats() reports
selected numbers and statistics at program termination time.

Statistics Gathering
storeStats() is a close relative of the reportStats() method of the section “Swing
Timer Animation” in Chapter 2. Again for completeness, I list the method here, as
well as the new global variables which it manipulates in addition to the ones
described in Chapter 2. The parts of reportStats(), which are new (or changed), are
marked in bold:

// used for gathering statistics
 : // many, see "Swing Timer Animation" section, chapter 2
private long gameStartTime;
private int timeSpentInGame = 0; // in seconds

private long framesSkipped = 0L;
private long totalFramesSkipped = 0L;
private double upsStore[];
private double averageUPS = 0.0;

private void storeStats()
{
 frameCount++;
 statsInterval += period;

 if (statsInterval >= MAX_STATS_INTERVAL) {
 long timeNow = J3DTimer.getValue();
 timeSpentInGame =
 (int) ((timeNow - gameStartTime)/1000000000L); // ns-->secs
 wcTop.setTimeSpent(timeSpentInGame);

 long realElapsedTime = timeNow - prevStatsTime;
 // time since last stats collection
 totalElapsedTime += realElapsedTime;

 double timingError = (double)
 (realElapsedTime-statsInterval) / statsInterval)*100.0;

 totalFramesSkipped += framesSkipped;

 double actualFPS = 0; // calculate the latest FPS and UPS
 double actualUPS = 0;
 if (totalElapsedTime > 0) {
 actualFPS = (((double)frameCount / totalElapsedTime) *
 1000000000L);
 actualUPS = (((double)(frameCount + totalFramesSkipped) /
 totalElapsedTime) * 1000000000L);
 }

 // store the latest FPS and UPS
 fpsStore[(int)statsCount%NUM_FPS] = actualFPS;

This is the Title of the Book, eMatter Edition

The Game Panel | 55

 upsStore[(int)statsCount%NUM_FPS] = actualUPS;
 statsCount = statsCount+1;

 double totalFPS = 0.0; // total the stored FPSs and UPSs
 double totalUPS = 0.0;
 for (int i=0; i < NUM_FPS; i++) {
 totalFPS += fpsStore[i];
 totalUPS += upsStore[i];
 }

 if (statsCount < NUM_FPS) { // obtain the average FPS and UPS
 averageFPS = totalFPS/statsCount;
 averageUPS = totalUPS/statsCount;
 }
 else {
 averageFPS = totalFPS/NUM_FPS;
 averageUPS = totalUPS/NUM_FPS;
 }
/*
 System.out.println(
 timedf.format((double) statsInterval/1000000000L) + " " +
 timedf.format((double) realElapsedTime/1000000000L)+"s "+
 df.format(timingError) + "% " +
 frameCount + "c " +
 framesSkipped + "/" + totalFramesSkipped + " skip; " +
 df.format(actualFPS) + " " + df.format(averageFPS)+" afps; " +
 df.format(actualUPS) + " " + df.format(averageUPS)+" aups");
*/
 framesSkipped = 0;
 prevStatsTime = timeNow;
 statsInterval = 0L; // reset
 }
} // end of storeStats()

gameStartTime is used to calculate timeSpentInGame, which WormPanel reports to the
player by writing to the time text field in the top-level window. As in Chapter 2, the
statsInterval value is a sum of the requested periods adding up to MAX_STATS_INTERVAL.
The difference is that the period is measured in nanoseconds here (due to the use of the
Java 3D timer). This means that the timingError calculation doesn’t need to translate
the statsInterval value from milliseconds to nanoseconds before using it.

The main additions to storeStats() are the calculation of UPS values, the storage in
the upsStore[] array, and the use of that array to calculate an average UPS. The UPS
value comes from these statements:

totalFramesSkipped += framesSkipped;

actualUPS = (((double)(frameCount + totalFramesSkipped) /
 totalElapsedTime) * 1000000000L);

frameCount is the total number of rendered frames in the game so far, which is added
to the total number of skipped frames.

This is the Title of the Book, eMatter Edition

56 | Chapter 3: Worms in Windows and Applets

A skipped frame is a game state update which wasn’t rendered.

The total is equivalent to the total number of game updates. The division by the total
elapsed time and multiplication by 1,000,000,000 gives the UPS.

The large println() call in storeStats() produces a line of statistics. It is com-
mented out since it is intended for debugging purposes. Here is the typical output:

>java WormChase 80
fps: 80; period: 12 ms
1.008 1.2805s 27.03% 84c 22/22 skip; 65.6 65.6 afps; 82.78 82.78 aups
1.008 1.0247s 1.66% 168c 2/24 skip; 72.88 69.24 afps; 83.29 83.04 aups
1.008 1.0287s 2.06% 252c 1/25 skip; 75.59 71.36 afps; 83.08 83.05 aups
1.008 1.0107s 0.27% 336c 0/25 skip; 77.34 72.85 afps; 83.09 83.06 aups
1.008 1.0087s 0.07% 420c 0/25 skip; 78.46 73.97 afps; 83.13 83.07 aups
1.008 1.0087s 0.07% 504c 0/25 skip; 79.22 74.85 afps; 83.15 83.09 aups
1.008 1.0087s 0.07% 588c 0/25 skip; 79.77 75.55 afps; 83.17 83.1 aups
1.008 1.0088s 0.08% 672c 0/25 skip; 80.19 76.13 afps; 83.18 83.11 aups
Frame Count/Loss: 707 / 25
Average FPS: 76.13
Average UPS: 83.11
Time Spent: 8 secs
Boxes used: 0

Each statistics line presents ten numbers. The first three relate to the execution time.
The first number is the accumulated timer period since the last output, which will be
close to one second. The second number is the actual elapsed time, measured with the
Java 3D timer, and the third value is the percentage error between the two numbers.

The fourth number is the total number of calls to run() since the program began,
which should increase by the FPS value each second. The fifth and sixth numbers
(separated by a /) are the frames skipped in this interval and the total number of
frames skipped since the game began. A frame skip is a game update without a corre-
sponding render. The seventh and eighth numbers are the current UPS and average.
The ninth and tenth numbers are the current FPS and the average.

The output after the statistics lines comes from printStats(), which is called as run()

is finishing. It gives a briefer summary of the game characteristics:

private void printStats()
{
 System.out.println("Frame Count/Loss: " + frameCount +
 " / " + totalFramesSkipped);
 System.out.println("Average FPS: " + df.format(averageFPS));
 System.out.println("Average UPS: " + df.format(averageUPS));
 System.out.println("Time Spent: " + timeSpentInGame + " secs");
 System.out.println("Boxes used: " + obs.getNumObstacles());
} // end of printStats()

This is the Title of the Book, eMatter Edition

The Game Panel | 57

Drawing the Canvas
The behavior specific to the WormChase game originates in two method calls at the
start of the animation loop:

while(running) {
 gameUpdate(); // game state is updated
 gameRender(); // render to a buffer
 paintScreen(); // paint with the buffer

 // sleep a bit
 // perhaps call gameUpdate()
 // gather statistics
}

gameUpdate() changes the game state every frame. For WormChase, this consists of
requesting that the worm (called fred) moves:

private void gameUpdate()
{ if (!isPaused && !gameOver)
 fred.move();
}

The details of the move are left to fred in the usual object-oriented style. No move
will be requested if the game is paused or has finished.

gameRender() draws the game elements (e.g., the worm and obstacles) to an image
acting as a buffer:

private void gameRender()
{
 if (dbImage == null){
 dbImage = createImage(PWIDTH, PHEIGHT);
 if (dbImage == null) {
 System.out.println("dbImage is null");
 return;
 }
 else
 dbg = dbImage.getGraphics();
 }

 // clear the background
 dbg.setColor(Color.white);
 dbg.fillRect (0, 0, PWIDTH, PHEIGHT);

 dbg.setColor(Color.blue);
 dbg.setFont(font);

 // report average FPS and UPS at top left
 dbg.drawString("Average FPS/UPS: " + df.format(averageFPS) +
 ", " + df.format(averageUPS), 20, 25);

 dbg.setColor(Color.black);

This is the Title of the Book, eMatter Edition

58 | Chapter 3: Worms in Windows and Applets

 // draw game elements: the obstacles and the worm
 obs.draw(dbg);
 fred.draw(dbg);

 if (gameOver)
 gameOverMessage(dbg);
} // end of gameRender()

gameRender() begins in the manner described in Chapter 2: the first call to the
method causes the image and its graphics context to be created, and the following
lines draw the background, game elements, and finally the “game over” message.
The ordering is important: things further back in the game are drawn first.

A useful debugging addition to gameRender() is to draw the average
FPS and UPS values on the canvas; these operations would normally
be commented out when the coding is completed.

The actual game elements are drawn by passing draw requests onto the worm and
the obstacles objects:

obs.draw(dbg);
fred.draw(dbg);

This approach relieves the game panel of drawing work and moves the drawing
activity to the object responsible for the game component’s behavior.

The gameOverMessage() method uses font metrics and the length of the message to
place it in the center of the drawing area. Typical output is shown in Figure 3-5.

Figure 3-5. Game Over message

This is the Title of the Book, eMatter Edition

Storing Worm Information | 59

As the number of obstacles indicates, a frame rate of 80 FPS makes it very difficult
for the player to hit the worm.

paintScreen() actively renders the buffer image to the JPanel canvas and is
unchanged from the section “Converting to Active Rendering” in Chapter 2:

private void paintScreen()
// use active rendering to put the buffered image on-screen
{
 Graphics g;
 try {
 g = this.getGraphics();
 if ((g != null) && (dbImage != null))
 g.drawImage(dbImage, 0, 0, null);
 Toolkit.getDefaultToolkit().sync(); // sync the display on some systems
 g.dispose();
 }
 catch (Exception e)
 { System.out.println("Graphics context error: " + e); }
} // end of paintScreen()

Storing Worm Information
The Worm class stores coordinate information about the worm in a circular buffer. It
includes testing methods for checking if the player has clicked near the worm’s head
or body and includes methods for moving and drawing the worm.

The issues which make things more complicated include:

• Having the worm grow in length up to a maximum size

• Regulating the worm’s movements to be semi-random so that it mostly moves in
a forward direction

• Getting the worm to go around obstacles in its path

Growing a Worm
The worm is grown by storing a series of Point objects in a cells[] array. Each point
represents the location of one of the black circles of the worm’s body (and the red
circle for its head). As the worm grows, more points are added to the array until it is
full; the worm’s maximum extent is equivalent to the array’s size.

Movement of the full-size worm is achieved by creating a new head circle at its front
and removing the tail circle (if necessary). This removal frees up a space in the
cells[] array where the point for the new head can be stored.

The growing and movement phases are illustrated by Figure 3-6, which shows how
the cells[] array is gradually filled and then reused. The two indices, headPosn and
tailPosn, make it simple to modify the head and tail of the worm, and nPoints

records the length of the worm.

This is the Title of the Book, eMatter Edition

60 | Chapter 3: Worms in Windows and Applets

The numbered black dots (and red dot) represent the Point objects which store the
(x, y) coordinates of the worm’s parts. The numbers are included in the figure to
indicate the order in which the array is filled and over-written; they are not part of
the actual data structure, which is defined like so:

private static final int MAXPOINTS = 40;

private Point cells[];
private int nPoints;
private int tailPosn, headPosn; // tail and head of buffer
// additional variables already defined

cells = new Point[MAXPOINTS]; // initialise buffer
nPoints = 0;
headPosn = -1; tailPosn = -1;

Figure 3-6. Worm data structures during growth and movement

cells[]

nPoints== 0

cells[]

nPoints== 30 1 2

tailPosn headPosn

cells[]

nPoints== 400 1

tailPosn

392 3 4 5 38

headPosn

array is full

cells[]

nPoints== 401

tailPosn

392 3 4 5 38

headPosn

wraparound

40

cells[]

nPoints== 40

tailPosn

394 5 38

headPosn

wraparound

40 434241

This is the Title of the Book, eMatter Edition

Storing Worm Information | 61

The other important Worm data structure is its current bearing, which can be in one of
eight predefined compass directions: N = north, NE = northeast, and so on, around
to NW = northwest. The choices are shown in Figure 3-7.

Each compass direction is represented by an integer, which labels the bearings in
clockwise order. The relevant constants and variable are shown here:

// compass direction/bearing constants
private static final int NUM_DIRS = 8;
private static final int N = 0; // north, etc going clockwise
private static final int NE = 1;
private static final int E = 2;
private static final int SE = 3;
private static final int S = 4;
private static final int SW = 5;
private static final int W = 6;
private static final int NW = 7;

private int currCompass; // the current compass dir/bearing

Limiting the possible directions that a worm can move allows the movement steps to
be predefined. This reduces the computation at run time, speeding up the worm.

When a new head is made for the worm, it is positioned in one of the eight compass
directions, offset by one “unit” from the current head. This is illustrated in
Figure 3-8.

Figure 3-7. Compass directions and corresponding integers

Figure 3-8. Offsets from the current head position

N/O

S/4

NE/1

SE/3

E/2

NW/7

SW/5

W/6

N (0,-1)

S (0,1)

NE (0.7,-0.7)

SE (0.7,0.7)

E (1,0)

NW (-0.7,-0.7)

SW (-0.7,0.7)

W (-1,0)

head

+X

+Y

This is the Title of the Book, eMatter Edition

62 | Chapter 3: Worms in Windows and Applets

The offsets are defined as Point2D.Double objects (a kind of Point class that can hold
doubles). They are stored in an incrs[] array, created at Worm construction time:

Point2D.Double incrs[];

incrs = new Point2D.Double[NUM_DIRS];
incrs[N] = new Point2D.Double(0.0, -1.0);
incrs[NE] = new Point2D.Double(0.7, -0.7);
incrs[E] = new Point2D.Double(1.0, 0.0);
incrs[SE] = new Point2D.Double(0.7, 0.7);
incrs[S] = new Point2D.Double(0.0, 1.0);
incrs[SW] = new Point2D.Double(-0.7, 0.7);
incrs[W] = new Point2D.Double(-1.0, 0.0);
incrs[NW] = new Point2D.Double(-0.7, -0.7);

Calculating a New Head Point
nextPoint() employs the index position in cells[] of the current head (called
prevPosn) and the chosen bearing (e.g., N, SE) to calculate a Point for the new head.

The method is complicated by the need to deal with wraparound positioning top to
bottom and left to right. For example, if the new head is placed off the top of the
canvas, it should be repositioned to just above the bottom.

private Point nextPoint(int prevPosn, int bearing)
{
 // get the increment for the compass bearing
 Point2D.Double incr = incrs[bearing];

 int newX = cells[prevPosn].x + (int)(DOTSIZE * incr.x);
 int newY = cells[prevPosn].y + (int)(DOTSIZE * incr.y);

 // modify newX/newY if < 0, or > pWidth/pHeight; use wraparound
 if (newX+DOTSIZE < 0) // is circle off left edge of canvas?
 newX = newX + pWidth;
 else if (newX > pWidth) // is circle off right edge of canvas?
 newX = newX - pWidth;

 if (newY+DOTSIZE < 0) // is circle off top of canvas?
 newY = newY + pHeight;
 else if (newY > pHeight) // is circle off bottom of canvas?
 newY = newY - pHeight;
 return new Point(newX,newY);
} // end of nextPoint()

The code uses the constant DOTSIZE (12), which is the pixel length and height of the
circle representing a part of the worm. The new coordinate (newX, newY) is obtained
by looking up the offset in incr[] for the given bearing and adding it to the current
head position.

This is the Title of the Book, eMatter Edition

Storing Worm Information | 63

Each circle is defined by its (x, y) coordinate and its DOTSIZE length. The (x, y)

value is not the center of the circle but is its top-left corner, as used in drawing opera-
tions such as fillOval() (see Figure 3-9).

This explains the wraparound calculations which check if the circle is positioned off
the left, right, top or bottom edges of the canvas. The panel dimensions, pWidth and
pHeight, are passed to the Worm object by WormPanel at construction time.

Choosing a Bearing
The compass bearing used in nextPoint() comes from varyBearing():

int newBearing = varyBearing();
Point newPt = nextPoint(prevPosn, newBearing);

varyBearing() is defined as:

private int varyBearing()
// vary the compass bearing semi-randomly
{ int newOffset =
 probsForOffset[(int)(Math.random()*NUM_PROBS)];
 return calcBearing(newOffset);
}

The probsForOffset[] array is randomly accessed and returns a new offset:

int[] probsForOffset = new int[NUM_PROBS];
probsForOffset[0] = 0; probsForOffset[1] = 0;
probsForOffset[2] = 0; probsForOffset[3] = 1;
probsForOffset[4] = 1; probsForOffset[5] = 2;
probsForOffset[6] = -1; probsForOffset[7] = -1;
probsForOffset[8] = -2;

The distribution of values in the array means that the new offset is most likely to be
0, which keeps the worm moving in the same direction. Less likely is 1 or –1, which

Figure 3-9. The coordinates of a worm circle

(x,y)

DOTSIZE

This is the Title of the Book, eMatter Edition

64 | Chapter 3: Worms in Windows and Applets

causes the worm to turn slightly left or right. The least likely is 2 or –2, which trig-
gers a larger turn.

calcBearing() adds the offset to the old compass bearing (stored in currCompass),
modulo the compass setting ranges North to North West (0 to 7):

private int calcBearing(int offset)
// Use the offset to calculate a new compass bearing based
// on the current compass direction.
{
 int turn = currCompass + offset;
 // ensure that turn is between N to NW (0 to 7)
 if (turn >= NUM_DIRS)
 turn = turn - NUM_DIRS;
 else if (turn < 0)
 turn = NUM_DIRS + turn;
 return turn;
} // end of calcBearing()

Dealing with Obstacles
newHead() generates a new head using varyBearing() and nextPoint(), and it
updates the cell[] array and compass setting:

private void newHead(int prevPosn) // not finished yet
{
 int newBearing = varyBearing();
 Point newPt = nextPoint(prevPosn, newBearing);

 // what about obstacles?
 // code to deal with obstacles

 cells[headPosn] = newPt; // new head position
 currCompass = newBearing; // new compass direction
}

Unfortunately, this code is insufficient for dealing with obstacles: what will happen
when the new head is placed at the same spot as an obstacle?

The new point must be tested against the obstacles to ensure it isn’t touching any of
them. If it is touching, then a new compass bearing and point must be generated. I
try three possible moves: turn left by 90 degrees, turn right by 90 degrees and, failing
those, turn around and have the worm go back the way it came.

These moves are defined as offsets in the fixedOffs[] array in newHead():

private void newHead(int prevPosn)
{
 int fixedOffs[] = {-2, 2, -4}; // offsets to avoid an obstacle

This is the Title of the Book, eMatter Edition

Storing Worm Information | 65

 int newBearing = varyBearing();
 Point newPt = nextPoint(prevPosn, newBearing);

 if (obs.hits(newPt, DOTSIZE)) {
 for (int i=0; i < fixedOffs.length; i++) {
 newBearing = calcBearing(fixedOffs[i]);
 newPt = nextPoint(prevPosn, newBearing);
 if (!obs.hits(newPt, DOTSIZE))
 break; // one of the fixed offsets will work
 }
 }
 cells[headPosn] = newPt; // new head position
 currCompass = newBearing; // new compass direction
} // end of newHead()

Key to this strategy is the assumption that the worm can always turn around. This is
possible since the player cannot easily add obstacles behind the worm because the
worm’s body prevents the user from placing a box on the floor.

Moving the Worm
The public method move() initiates the worm’s movement, utilizing newHead() to
obtain a new head position and compass bearing.

The cells[] array, tailPosn and headPosn indices, and the number of points in
cells[] are updated in slightly different ways depending on the current stage in the
worm’s development. These are the three stages:

1. When the worm is first created

2. When the worm is growing, but the cells[] array is not full

3. When the cells[] array is full, so the addition of a new head must be balanced
by the removal of a tail circle:

public void move()
{
 int prevPosn = headPosn;
 // save old head posn while creating new one
 headPosn = (headPosn + 1) % MAXPOINTS;

 if (nPoints == 0) { // empty array at start
 tailPosn = headPosn;
 currCompass = (int)(Math.random()*NUM_DIRS); // random dir.
 cells[headPosn] = new Point(pWidth/2, pHeight/2); //center pt
 nPoints++;
 }
 else if (nPoints == MAXPOINTS) { // array is full
 tailPosn = (tailPosn + 1) % MAXPOINTS; // forget last tail

newHead(prevPosn);
 }
 else { // still room in cells[]

This is the Title of the Book, eMatter Edition

66 | Chapter 3: Worms in Windows and Applets

newHead(prevPosn);
 nPoints++;
 }
} // end of move()

Drawing the Worm
WormPanel calls Worm’s draw() method to render the worm into the graphics context g.
The rendering starts with the point in cell[tailPosn] and moves through the array
until cell[headPosn] is reached. The iteration from the tailPosn position to headPosn

may involve jumping from the end of the array back to the start:

public void draw(Graphics g)
// draw a black worm with a red head
{
 if (nPoints > 0) {
 g.setColor(Color.black);
 int i = tailPosn;
 while (i != headPosn) {
 g.fillOval(cells[i].x, cells[i].y, DOTSIZE, DOTSIZE);
 i = (i+1) % MAXPOINTS;
 }
 g.setColor(Color.red);
 g.fillOval(cells[headPosn].x, cells[headPosn].y, DOTSIZE, DOTSIZE);
 }
} // end of draw()

Testing the Worm
nearHead() and touchedAt() are Boolean methods used by WormPanel. nearHead()

decides if a given (x, y) coordinate is near the worm’s head, and touchedAt() exam-
ines its body:

public boolean nearHead(int x, int y)
// is (x,y) near the worm's head?
{ if (nPoints > 0) {
 if((Math.abs(cells[headPosn].x + RADIUS - x) <= DOTSIZE) &&
 (Math.abs(cells[headPosn].y + RADIUS - y) <= DOTSIZE))
 return true;
 }
 return false;
} // end of nearHead()

public boolean touchedAt(int x, int y)
// is (x,y) near any part of the worm's body?
{
 int i = tailPosn;
 while (i != headPosn) {
 if((Math.abs(cells[i].x + RADIUS - x) <= RADIUS) &&
 (Math.abs(cells[i].y + RADIUS - y) <= RADIUS))
 return true;

This is the Title of the Book, eMatter Edition

Worm Obstacles | 67

 i = (i+1) % MAXPOINTS;
 }
 return false;
} // end of touchedAt()

The RADIUS constant is half the DOTSIZE value. The test in nearHead() allows the (x,

y) coordinate to be within two radii of the center of the worm’s head; any less makes
hitting the head almost impossible at 80+ FPS. touchedAt() only checks for an inter-
section within a single radius of the center.

The addition of RADIUS to the (x, y) coordinate in cells[] offsets it from the top-left
corner of the circle (see Figure 3-9) to its center.

Worm Obstacles
The Obstacles object maintains an array of Rectangle objects called boxes. Each
object contains the top-left hand coordinate of a box and the length of its square
sides.

The public methods in the Obstacles class are synchronized since the event thread of
the game could add a box to the obstacles list (via a call to add()) while the anima-
tion thread is examining or drawing the list.

add() is defined as

synchronized public void add(int x, int y)
{
 boxes.add(new Rectangle(x,y, BOX_LENGTH, BOX_LENGTH));
 wcTop.setBoxNumber(boxes.size()); // report new no. of boxes
}

The method updates the boxes text field at the top-level of the game by calling
setBoxNumber().

WormPanel delegates the task of drawing the obstacles to the Obstacles object, by call-
ing draw():

synchronized public void draw(Graphics g)
// draw a series of blue boxes
{
 Rectangle box;
 g.setColor(Color.blue);
 for(int i=0; i < boxes.size(); i++) {
 box = (Rectangle) boxes.get(i);
 g.fillRect(box.x, box.y, box.width, box.height);
 }
} // end of draw()

Worm communicates with Obstacles to determine if its new head (a Point object, p)
intersects with any of the boxes:

synchronized public boolean hits(Point p, int size)
{
 Rectangle r = new Rectangle(p.x, p.y, size, size);

This is the Title of the Book, eMatter Edition

68 | Chapter 3: Worms in Windows and Applets

 Rectangle box;
 for(int i=0; i < boxes.size(); i++) {
 box = (Rectangle) boxes.get(i);
 if (box.intersects(r))
 return true;
 }
 return false;
} // end of hits()

Application Timing Results
This version of WormChase is a windowed application, with an animation loop driven
by the Java 3D timer. Can it support frame rates of 80 to 85 FPS?

I consider the average UPS, which gives an indication of the speed of the game.
Table 3-1 shows the FPS and UPS figures for different requested FPS amounts, on
different versions of Windows.

Each test was run three times on a lightly loaded machine, executing for a few minutes.

The numbers are for the machines hosting Windows 98 and XP, but the frame rates
on the Windows 2000 machine plateaus at about 60. This behavior is probably due
to the extreme age of the machine: a Pentium 2 with a paltry 64 MB of RAM. On a
more modern CPU, the frame rates are similar to the XP row of Table 3-1.

A requested frame rate of 80 is changed to 83.333 inside the program, explaining
why the 80’s column shows numbers close to 83 in most cases. The frame rate is
divided into 1,000 using integer division, so that 1000/80 becomes 12. Later, this
period value is converted back to a frame rate using doubles, so 1000.0/12 becomes
83.3333.

The Windows 2000 figures show that slow hardware is an issue. The processing
power of the machine may not deliver the requested frame rate due to excessive time
spent in modifying the game state and rendering. Fortunately, the game play on the
Windows 2000 machine does not appear to be slow, since the UPS stay near to the
request FPS.

Close to 41 percent of the frames are skipped ([83–59]/83), meaning that almost
every second game update is not rendered. Surprisingly, this is not apparent when
playing the game. This shows the great benefit of decoupling game updates from ren-
dering, so the update rate can out perform a poor frame rate.

Table 3-1. Average FPS/UPSs for the windowed WormChase using the Java 3D timer

Requested FPS 20 50 80 100

Windows 98 20/20 48/50 81/83 96/100

Windows 2000 20/20 43/50 59/83 58/100

Windows XP 20/20 50/50 83/83 100/100

This is the Title of the Book, eMatter Edition

WormChase as an Applet | 69

Timing Results Using currentTimeMillis()
It is interesting to examine the performance of a version of WormChase using
System.currentTimeMillis() rather than the Java 3D timer.

The WormChase class and its associated main() function must be modified to repre-
sent the period value in milliseconds rather than nanoseconds. In WormPanel, the
calls to J3DTimer.getValue() in run() and storeStats() must be replaced by
System.currentTimeMillis(). The sleep() call in run() no longer needs to change
sleepTime to milliseconds:

Thread.sleep(sleepTime); // already in ms

storeStats() must be edited to take account of the millisecond units.

The code for this version of WormChase is in Worm/WormPMillis/. The timing results
are given in Table 3-2.

The Windows 98 row shows the effect of the System timer’s poor resolution: it causes
the animation loop to sleep too much at the end of each update and render, leading
to a reduction in the realized frame rate. However, the UPS are unaffected, making
the game advance quickly.

The Windows 2000 row illustrates the slowness of the host machine. The figures are
comparable to the version of WormChase using the Java 3D timer. The Windows XP
row shows that the System timer’s performance is essentially equivalent to the Java
3D timer. The System timer’s resolution on Windows 2000 and XP is 10 to 15 ms (67
to 100 FPS).

WormChase as an Applet
Figure 3-1 shows the WormChase game as an applet and as an application. It has the
same GUI interface as the windowed version: a large canvas with two text fields at
the bottom used to report the number of boxes added to the scene, and the time.

Class diagrams showing the public methods are given in Figure 3-10. A comparison
with the diagrams for the windowed version in Figure 3-2 show the classes stay
mainly the same. The only substantial change is to replace JFrame by JApplet at the
top level.

Table 3-2. Average FPS/UPSs for the windowed WormChase using the System timer

Requested FPS 20 50 80 100

Windows 98 19/20 43/50 54/83 57/100

Windows 2000 20/20 50/50 57/83 58/100

Windows XP 20/20 50/50 83/83 100/100

This is the Title of the Book, eMatter Edition

70 | Chapter 3: Worms in Windows and Applets

The code for this version of WormChase is in the directory Worm/
WormApplet/.

The Worm class is unchanged from the windowed version. The Obstacles class now
calls setBoxNumber() in WormChaseApplet rather than WormChase.

WormPanel reports its termination statistics in a different way, but the animation loop
and statistics gathering are unchanged. WormChaseApplet handles pausing, resump-
tion, and termination by tying them to events in the applet life cycle. By comparison,
WormChase utilizes Window events.

The applet’s web page passes the requested frame rate to it as a parameter:

 <applet code="WormChaseApplet.class" width="500" height="415">
 <param name="fps" value="80">
 </applet>

The WormChaseApplet Class
Figure 3-11 shows the class diagram for WormChaseApplet with all its variables and
methods.

Figure 3-10. Class diagrams for the WormChase applet

This is the Title of the Book, eMatter Edition

WormChase as an Applet | 71

The applet’s init() method reads the FPS value from the web page, sets up the GUI,
and starts the game:

public void init()
{
 String str = getParameter("fps");
 int fps = (str != null) ? Integer.parseInt(str) : DEFAULT_FPS;

 long period = (long) 1000.0/fps;
 System.out.println("fps: " + fps + "; period: "+period+" ms");

 makeGUI(period);
 wp.startGame();
}

makeGUI() is the same as the one in the JFrame version. The call to startGame()

replaces the use of addNotify() in the JPanel.

The applet life-cycle methods—start(), stop(), and destroy()—contain calls to
WormPanel to resume, pause, and terminate the game:

public void start()
{ wp.resumeGame(); }

public void stop()
{ wp.pauseGame(); }

public void destroy()
{ wp.stopGame(); }

Figure 3-11. WormChaseApplet in detail

This is the Title of the Book, eMatter Edition

72 | Chapter 3: Worms in Windows and Applets

A browser calls destroy() prior to deleting the web page (and its applet) or perhaps
as the browser itself is closed. The browser will wait for the destroy() call to return
before exiting.

The WormPanel Class
The only major change to WormPanel is how printStats() is called. The stopGame()

method is modified to call finishOff(), which calls printStats():

public void stopGame()
{ running = false;
finishOff(); // new bit, different from the application

}

private void finishOff()
{ if (!finishedOff) {
 finishedOff = true;
 printStats();
 }
} // end of finishedOff()

finishOff() checks a global finishedOff Boolean to decide whether to report the sta-
tistics. finishedOff starts with the value false.

finishOff() is called at the end of run() as the animation loop finishes. The first call
to finishOff() will pass the if test, set the finishedOff flag to true, and print the
data. The flag will then prevent a second call from repeating the output.

A race condition could occur, with two simultaneous calls to finishOff()
getting past the if test at the same time, but it’s not serious or likely, so I
ignore it.

In the windowed application, stopGame() only sets running to false before return-
ing, with no call to finishOff(). The threaded animation loop may then execute for
a short time before checking the flag, stopping, and calling printStats().

This approach is fine in an application where the animation thread will be allowed to
finish before the application terminates. Unfortunately, as soon as an applet’s destroy()
method returns, then the applet or the browser can exit. In this case, the animation
thread may not have time to reach its printStats() call.

To ensure the statistics are printed, finishOff() is called in the applet’s stopGame()

method. The other call to finishOff() at the end of run() is a catch-all in case I
modify the game so it can terminate the animation loop without passing through
stopGame().

This is the Title of the Book, eMatter Edition

Compilation in J2SE 5.0 | 73

Timing Results
The timing results are given in Table 3-3.

The poor showing for the frame rate on the Windows 2000 machine is expected, but
the applet performs well on more modern hardware.

Compilation in J2SE 5.0
One of my aims is to make the examples portable, which means that they should
compile and execute in J2SE 5.0 and J2SE 1.4. At the moment, May 2005, many
Java users haven’t upgraded to the latest version, and many PCs come with JRE 1.4
preinstalled.

As mentioned in the Preface, the main areas where I lose out because of this portabil-
ity are in type-safe collections and the nanosecond time method, System.nanoTime().
The Java 3D nanosecond timer is a good replacement for nanoTime(). But what
about type-safe collections?

What Is a Type-Safe Collection?
A type-safe collection is a generified collection declared with a type argument for its
generic component. For example, this J2SE 1.4 code doesn’t use generics:

ArrayList al = new ArrayList();
al.add(0, new Integer(42));
int num = ((Integer) al.get(0)).intValue();

Collections without generic arguments are called raw types.

The following J2SE 5.0 code uses a generified ArrayList with an Integer type:

ArrayList<Integer> al = new ArrayList<Integer>();
al.add(0, new Integer(42));
int num = ((Integer) al.get(0)).intValue();

Type safety means that the compiler can detect if the programmer tries to add a non-
Integer object to the ArrayList. Poor coding like that would only be caught at runtime
in J2SE 1.4, as a ClassCastException.

Table 3-3. Average FPS/UPS for the applet version of WormChase

Requested FPS 20 50 80 100

Windows 98 20/20 50/50 82/83 97/100

Windows 2000 20/20 46/50 63/83 61/100

Windows XP 20/20 50/50 83/83 100/100

This is the Title of the Book, eMatter Edition

74 | Chapter 3: Worms in Windows and Applets

Generified collections can make use of J2SE 5.0’s enhanced for loop, enumerations,
and autoboxing. For example, the code snippet above can be revised to employ auto-
boxing and autounboxing:

ArrayList<Integer> al = new ArrayList<Integer>();
al.add(0, 42);
int num = al.get(0);

This is less verbose, and much easier to understand, debug, and maintain.

Dealing with Raw Types in J2SE 5.0
The J2SE 5.0 compiler will accept raw types (such as the ArrayList in the first code
fragment in the previous section) but will issue warnings. This can be seen when the
WormChase application is compiled with J2SE 5.0:

>javac *.java
Note: Obstacles.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

The code has been compiled, but the unchecked warning indicates a raw type may
be in Obstacles. Recompiling with the –Xlint argument leads to the following:

>javac -Xlint:unchecked *.java
Obstacles.java:27: warning: [unchecked] unchecked call to add(E) as a member of
the raw type java.util.ArrayList
 { boxes.add(new Rectangle(x,y, BOX_LENGTH, BOX_LENGTH));
 ^
1 warning

The problem is the boxes collection in the Obstacles class, specifically when a
Rectangle object is added to it.

I’ve two options at this point: ignore the warning or fix it. Fixing it is straightfor-
ward, so I’ll work through the stages here. Here is the original declaration of boxes in
the Obstacles class:

private ArrayList boxes; // arraylist of Rectangle objects

This should be generified:

private ArrayList<Rectangle> boxes; // arraylist of Rectangle objects

The line that creates the boxes object must be changed from:

boxes = new ArrayList();

to:

boxes = new ArrayList<Rectangle>();

The program now compiles without any warnings.

This is the Title of the Book, eMatter Edition

Compilation in J2SE 5.0 | 75

A brisk introduction to the new features in J2SE 5.0 can be found in Java 1.5 Tiger: A
Developer’s Notebook by David Flanagan and Brett McLaughlin (O’Reilly). The issues
involved with making type-safe collections are explored in more detail in: “Case Study:
Converting to Java 1.5 Type-Safe Collections” by Wes Munsil in the Journal of Object
Technology, September 2004 (http://www.jot.fm/issues/issue_2004_09/column1).

This is the Title of the Book, eMatter Edition

76

Chapter 4CHAPTER 4

Full-Screen Worms

A popular aim for games is to be an immersive experience, where the player becomes
so enthralled with the game that he or she forgets everyday trivia such as eating and
visiting the bathroom. One simple way of encouraging immersion is to make the
game window the size of the desktop; a full-screen display hides tiresome text edi-
tors, spreadsheets, or database applications requiring urgent attention.

I’ll look at three approaches to creating full-screen games:

• An almost full-screen JFrame (I’ll call this AFS)

• An undecorated full-screen JFrame (UFS)

• Full-screen exclusive mode (FSEM)

FSEM is getting a lot of attention since its introduction in J2SE 1.4 because it has
increased frame rates over traditional gaming approaches using repaint events and
paintComponent(). However, comparisons between AFS, UFS, and FSEM show their
maximum frame rates to be similar. This is due to my use of the animation loop
developed in Chapter 2, with its active rendering and high-resolution Java 3D timer.
You should read Chapter 2 before continuing.

The examples in this chapter will continue using the WormChase game, first intro-
duced in Chapter 3, so you’d better read that chapter as well. By sticking to a single
game throughout this chapter, the timing comparisons more accurately reflect differ-
ences in the animation code rather than in the game-specific parts.

The objective is to produce 80 to 85 FPS, which is near the limit of a typical graphics
card’s rendering capacity. If the game’s frame rate falls short of this, then the updates
per second (UPS) should still stay close to 80 to 85, causing the game to run quickly
but without every update being rendered.

This is the Title of the Book, eMatter Edition

An Almost Full-Screen (AFS) Worm | 77

An Almost Full-Screen (AFS) Worm
Figure 4-1 shows the WormChase application running inside a JFrame that almost covers
the entire screen. The JFrame’s titlebar, including its close box and iconification/de-
iconfication buttons are visible, and a border is around the window. The OS desktop
controls are visible (in this case, Windows’s task bar at the bottom of the screen).

These JFrame and OS components allow the player to control the game (e.g., pause it
by iconification) and to switch to other applications in the usual way, without the
need for GUI controls inside the game. Also, little code has to be modified to change
a windowed game into an AFS version, aside from resizing the canvas.

Though the window can be iconified and switched to the background, it can’t be
moved. To be more precise, it can be selected and dragged, but as soon as the mouse
button is released, the window snaps back to its original position.

This is a fun effect, as if the window is attached by a rubber band to
the top lefthand corner of the screen.

Figure 4-2 gives the class diagrams for the AFS version of WormChase, including the
public methods.

Figure 4-1. An AFS WormChase

This is the Title of the Book, eMatter Edition

78 | Chapter 4: Full-Screen Worms

The AFS approach and the windowed application are similar as shown by the class
diagrams in Figure 4-2 being identical to those for the windowed WormChase applica-
tion at the start of Chapter 3. The differences are located in the private methods and
the constructor, where the size of the JFrame is calculated and listener code is put in
place to keep the window from moving.

WormPanel is almost the same as before, except that WormChase passes it a calculated
width and height (in earlier version these were constants in the class). The Worm and
Obstacles classes are unaltered from Chapter 3.

The code for the AFS WormChase can be found in the directory Worm/
WormAFS/ .

The AFS WormChase Class
Figure 4-3 gives a class diagram for WormChase showing all its variables and methods.

The constructor has to work hard to obtain correct dimensions for the JPanel. The
problem is that the sizes of three distinct kinds of elements must be calculated:

• The JFrame’s insets (e.g., the titlebar and borders)

• The desktop’s insets (e.g., the taskbar)

• The other Swing components in the window (e.g., two text fields)

Figure 4-2. Class diagrams for the AFS version of WormChase

This is the Title of the Book, eMatter Edition

An Almost Full-Screen (AFS) Worm | 79

The insets of a container are the unused areas around its edges (at the top, bottom,
left, and right). Typical insets are the container’s border lines and its titlebar. The
widths and heights of these elements must be subtracted from the screen’s dimen-
sions to get WormPanel’s width and height. Figure 4-4 shows the insets and GUI ele-
ments for WormChase.

The subtraction of the desktop and JFrame inset dimensions from the screen size is
standard, but the calculation involving the on-screen positions of the GUI elements
depends on the game design. For WormChase, only the heights of the text fields affect
WormPanel’s size.

A subtle problem is that the dimensions of the JFrame insets and GUI elements will
be unavailable until the game window has been constructed. In that case, how can
the panel’s dimensions be calculated if the application has to be created first?

The answer is that the application must be constructed in stages. First, the JFrame

and other pieces needed for the size calculations are put together. This fixes their
sizes, so the drawing panel’s area can be determined. The sized JPanel is then added
to the window to complete it, and the window is made visible. The WormChase con-
structor utilizes these stages:

public WormChase(long period)
{ super("The Worm Chase");

 makeGUI();

Figure 4-3. WormChase in detail

This is the Title of the Book, eMatter Edition

80 | Chapter 4: Full-Screen Worms

 pack(); // first pack (the GUI doesn't include the JPanel yet)
 setResizable(false); //so sizes are for nonresizable GUI elems
 calcSizes();
 setResizable(true); // so panel can be added

 Container c = getContentPane();
 wp = new WormPanel(this, period, pWidth, pHeight);
 c.add(wp, "Center");
 pack(); // second pack, after JPanel added

 addWindowListener(this);

 addComponentListener(new ComponentAdapter() {
 public void componentMoved(ComponentEvent e)
 { setLocation(0,0); }
 });

 setResizable(false);
 setVisible(true);
} // end of WormChase() constructor

makeGUI() builds the GUI without a drawing area, and the call to pack() makes the
JFrame displayable and calculates the component’s sizes. Resizing is turned off since
some platforms render insets differently (i.e., with different sizes) when their enclos-
ing window can’t be resized.

calcSizes() initializes two globals, pWidth and pHeight, which are later passed to the
WormPanel constructor as the panel’s width and height:

private void calcSizes()
{

Figure 4-4. Dimensions in the AFS WormChase

JFrame insets

GUI elements

Desktop insets

Boxes Textfield Time Textfield

Title Bar

Screen dimensions

WormPanel drawing area

This is the Title of the Book, eMatter Edition

An Almost Full-Screen (AFS) Worm | 81

 GraphicsConfiguration gc = getGraphicsConfiguration();
 Rectangle screenRect = gc.getBounds(); // screen dimensions

 Toolkit tk = Toolkit.getDefaultToolkit();
 Insets desktopInsets = tk.getScreenInsets(gc);

 Insets frameInsets = getInsets(); // only works after pack()

 Dimension tfDim = jtfBox.getPreferredSize(); // textfield size

pWidth = screenRect.width
 - (desktopInsets.left + desktopInsets.right)
 - (frameInsets.left + frameInsets.right);

pHeight = screenRect.height
 - (desktopInsets.top + desktopInsets.bottom)
 - (frameInsets.top + frameInsets.bottom)
 - tfDim.height;
}

If the JFrame’s insets (stored in frameInsets) are requested before a call
to pack(), then they will have zero size.

An Insets object has four public variables—top, bottom, left, and right—that hold
the thickness of its container’s edges. Only the dimensions for the box’s text field
(jtfBox) is retrieved since its height will be the same as the time-used text field. Back
in WormChase(), resizing is switched back on so the correctly sized JPanel can be
added to the JFrame. Finally, resizing is switched off permanently, and the applica-
tion is made visible with a call to show().

Stopping Window Movement
Unfortunately, there is no simple way of preventing an application’s window from
being dragged around the screen. The best you can do is move it back to its starting
position as soon as the user releases the mouse.

The WormChase constructor sets up a component listener with a componentMoved()

handler. This method is called whenever a move is completed:

addComponentListener(new ComponentAdapter() {
 public void componentMoved(ComponentEvent e)
 { setLocation(0,0); }
});

setLocation() positions the JFrame so its top-left corner is at the top left of the
screen.

This is the Title of the Book, eMatter Edition

82 | Chapter 4: Full-Screen Worms

Timings for AFS
Timing results for the AFS WormChase are given in Table 4-1.

WormChase on the slow Windows 2000 machine is the worst performer again, as seen
in Chapter 3, though its slowness is barely noticeable due to the update rate remain-
ing high.

The Windows 98 and XP boxes produce good frame rates when 80 FPS is requested,
which is close to or inside my desired range (80 to 85 FPS). The numbers start to flat-
ten as the FPS request goes higher, indicating that the frames can’t be rendered any
faster.

The timing tests for Windows XP were run on two machines to high-
light the variation in WormChase’s performance at higher requested
FPSs.

An Undecorated Full-Screen (UFS) Worm
Figure 4-5 shows the UFS version of WormChase, a full-screen JFrame without a title-
bar or borders.

The absence of a titlebar means I have to rethink how to pause and resume the appli-
cation (previously achieved by minimizing/maximizing the window) and how to ter-
minate the game. The solution is to draw Pause and Quit buttons on the canvas at
the bottom-right corner. Aside from using the Quit button, ending the game is possi-
ble by typing the Esc key, Ctrl-C, the q key, or the End key. Data that were previ-
ously displayed in text fields are written to the canvas at the lower-left corner.

Figure 4-6 gives the class diagrams for the UFS version of WormChase, including the
public methods.

A comparison with the AFS class diagrams in Figure 4-2 shows a considerable simpli-
fication of WormChase and fewer methods in WormPanel.

Table 4-1. Average FPS/UPS rates for the AFS WormChase

Requested FPS 20 50 80 100

Windows 98 20/20 49/50 75/83 86/100

Windows 2000 20/20 20/50 20/83 20/100

Windows XP (1) 20/20 50/50 82/83 87/100

Windows XP (2) 20/20 50/50 75/83 75/100

This is the Title of the Book, eMatter Edition

An Undecorated Full-Screen (UFS) Worm | 83

The WormChase class no longer has to be a WindowListener and, therefore, doesn’t
contain window handler methods, such as windowClosing(). The pauseGame(),
resumeGame(), and stopGame() methods in WormPanel are no longer required. The
Worm class is unchanged, and the Obstacles class is altered only so it can call
setBoxNumber() in WormPanel; this method was formerly in WormChase and wrote to a
text field.

Figure 4-5. The UFS worm

Figure 4-6. Class diagrams for the UFS version of WormChase

This is the Title of the Book, eMatter Edition

84 | Chapter 4: Full-Screen Worms

The code for the UFS WormChase can be found in the Worm/WormUFS/
directory.

The UFS WormChase Class
With the removal of the WindowListener methods, WormChase hardly does anything. It
reads the requested FPS value from the command line, and its constructor creates the
WormPanel object:

public WormChase(long period)
{ super("The Worm Chase");

 Container c = getContentPane();
 c.setLayout(new BorderLayout());

 WormPanel wp = new WormPanel(this, period);
 c.add(wp, "Center");

setUndecorated(true); // no borders or titlebar
setIgnoreRepaint(true); // turn off paint events since doing active rendering

 pack();
 setResizable(false);
 setVisible(true);
} // end of WormChase() constructor

The titlebars and other insets are switched off by calling setUndecorated().
setIgnoreRepaint() is utilized since no GUI components require paint events;
WormPanel uses active rendering and, therefore, doesn’t need paint events.

The simplicity of WormChase indicates that a separate JPanel as a drawing canvas is no
longer needed. Moving WormPanel’s functionality into WormChase is straightforward,
and I’ll explore that approach as part of the FSEM version of WormChase later in this
chapter.

The Game Panel
WormPanel’s constructor sets its size to that of the screen and stores the dimensions in
the global variables pWidth and pHeight:

Toolkit tk = Toolkit.getDefaultToolkit();
Dimension scrDim = tk.getScreenSize();
setPreferredSize(scrDim); // set JPanel size

pWidth = scrDim.width; // store dimensions for later
pHeight = scrDim.height;

This is the Title of the Book, eMatter Edition

An Undecorated Full-Screen (UFS) Worm | 85

The constructor creates two rectangles, pauseArea and quitArea, which represent the
screen areas for the Pause and Quit buttons:

private Rectangle pauseArea, quitArea; // globals

// in WormPanel()
// specify screen areas for the buttons
pauseArea = new Rectangle(pWidth-100, pHeight-45, 70, 15);
quitArea = new Rectangle(pWidth-100, pHeight-20, 70, 15);

The drawing of these buttons is left to gameRender(), which is described in the next
section.

Button Behavior
As is common with many games, the Pause and Quit buttons are highlighted when
the mouse moves over them. This transition is shown in Figure 4-7 when the mouse
passes over the Pause button.

Another useful kind of feedback is to indicate that the game is paused by changing
the wording of the Pause button to “Paused,” as in Figure 4-8.

When the mouse moves over the Paused button, the text turns green.

Figure 4-7. Highlighting the Pause button

Figure 4-8. The Pause button when the game is paused

Pause

Quit

Pause

Quit

pause button highlighted

Paused

Quit

This is the Title of the Book, eMatter Edition

86 | Chapter 4: Full-Screen Worms

The first step to implementing these behaviors is to record when the cursor is inside
the pause or quit screen area. This is done by monitoring mouse movements, started
in the constructor for WormPanel:

addMouseMotionListener(new MouseMotionAdapter() {
 public void mouseMoved(MouseEvent e)
 { testMove(e.getX(), e.getY()); }
});

testMove() sets two global Booleans (isOverPauseButton and isOverQuitButton)
depending on whether the cursor is inside the pause or quit area:

private void testMove(int x, int y)
// is (x,y) over the Pause or Quit button?
{
 if (running) { // stops problems with a rapid move
 // after pressing Quit
 isOverPauseButton = pauseArea.contains(x,y) ? true : false;
 isOverQuitButton = quitArea.contains(x,y) ? true : false;
 }
}

The test of the running Boolean prevents button highlight changes after the player
has pressed Quit but before the application exits.

The other aspect of button behavior is to deal with a mouse press on top of a but-
ton. This is handled by extending testPress(), which previously only dealt with
clicks on or near the worm:

// in the WormPanel constructor
addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e)
 { testPress(e.getX(), e.getY()); }
});

private void testPress(int x, int y)
{
 if (isOverPauseButton)
 isPaused = !isPaused; // toggle pausing
 else if (isOverQuitButton)
 running = false;
 else {
 if (!isPaused && !gameOver) {
 // was mouse pressed on or near the worm?
 . . .
 }
 }
}

The highlighted lines in testPress() replace the functionality supported by
resumeGame(), pauseGame(), and stopGame() in the earlier windowed versions of
WormChase.

This is the Title of the Book, eMatter Edition

An Undecorated Full-Screen (UFS) Worm | 87

Drawing the Game Canvas
The WormPanel canvas contains two elements absent in previous examples:

• The time used and boxes information, drawn in the bottom-left corner

• The Pause and Quit buttons, drawn in the bottom-right corner

The buttons are drawn in a different way if the cursor is over them, and the wording
on the Pause button changes depending on whether the game is paused.

These new features are implemented in gameRender():

private void gameRender()
{
 // as before: create the image buffer initially
 // set the background to white
 ...

 // report average FPS and UPS at top left
 dbg.drawString("Average FPS/UPS: " + df.format(averageFPS) +
 ", " + df.format(averageUPS), 20, 25);

 // report time used and boxes used at bottom left
 dbg.drawString("Time Spent: " + timeSpentInGame + " secs", 10, pHeight-15);
 dbg.drawString("Boxes used: " + boxesUsed, 260, pHeight-15);

 // draw the Pause and Quit "buttons"
 drawButtons(dbg);

 dbg.setColor(Color.black);

 // as before: draw game elements: the obstacles and the worm
 obs.draw(dbg);
 fred.draw(dbg);

 if (gameOver)
 gameOverMessage(dbg);
} // end of gameRender()

private void drawButtons(Graphics g)
{
 g.setColor(Color.black);

 // draw the Pause "button"
 if (isOverPauseButton)
 g.setColor(Color.green);

 g.drawOval(pauseArea.x, pauseArea.y, pauseArea.width, pauseArea.height);
 if (isPaused)
 g.drawString("Paused", pauseArea.x, pauseArea.y+10);
 else
 g.drawString("Pause", pauseArea.x+5, pauseArea.y+10);

This is the Title of the Book, eMatter Edition

88 | Chapter 4: Full-Screen Worms

 if (isOverPauseButton)
 g.setColor(Color.black);

 // draw the Quit "button"
 if (isOverQuitButton)
 g.setColor(Color.green);

 g.drawOval(quitArea.x, quitArea.y, quitArea.width, quitArea.height);
 g.drawString("Quit", quitArea.x+15, quitArea.y+10);

 if (isOverQuitButton)
 g.setColor(Color.black);
} // drawButtons()

Each button is an oval with a string over it. Highlighting triggers a change in the fore-
ground color, using setColor(). Depending on the value of the isPaused Boolean,
“Paused” or “Pause” is drawn.

Exiting the Game
The primary means for terminating the game remains the same as in previous exam-
ples: When the running Boolean is true, the animation loop will terminate. Before
run() returns, the finishOff() method is called:

private void finishOff()
{ if (!finishedOff) {
 finishedOff = true;
 printStats();
 System.exit(0);
 }
}

The finishedOff Boolean is employed to stop a second call to finishOff() from
printing the statistics information again.

The other way of calling finishOff() is from a shutdown hook (handler) set up
when the JPanel is created:

Runtime.getRuntime().addShutdownHook(new Thread() {
 public void run()
 { running = false;
 System.out.println("Shutdown hook executed");
 finishOff();
 }
});

This code is normally called just before the application exits and is superfluous since
finishOff() will have been executed. Its real benefit comes if the program terminates
unexpectedly. The shutdown hook ensures that the statistics details are still reported
in an abnormal exit situation.

This is the Title of the Book, eMatter Edition

A Full-Screen Exclusive Mode (FSEM) Worm | 89

This kind of defensive programming is often useful. For example, if the game state
must be saved to an external file before the program terminates or if critical
resources, such as files or sockets, must be properly closed.

Timings for UFS
Timing results for the UFS WormChase are given in Table 4-2.

WormChase on the Windows 2000 machine is the slowest, as usual, with marginally
slower FPS values than the AFS version (it produces about 20 FPS). However, the
poor performance is hidden by the high UPS number.

The Windows 98 and XP boxes produce reasonable to good frame rates when the
requested FPS are 80 but are unable to go much faster. UFS frame rates are about 10
FPS slower than the AFS values at 80 FPS, which may be due to the larger rendering
area. The UPS figures are unaffected.

A Full-Screen Exclusive Mode (FSEM) Worm
Full-screen exclusive mode (FSEM) suspends most of Java’s windowing environ-
ment, bypassing the Swing and AWT graphics layers to offer almost direct access to
the screen. It allows graphics card features, such as page flipping and stereo buffer-
ing, to be exploited and permits the screen’s resolution and bit depth to be adjusted.

The graphics hardware acceleration used by FSEM has a disadvantage: it utilizes
video memory (VRAM), which may be grabbed back by the OS when, for example, it
needs to draw another window, display a screensaver, or change the screen’s resolu-
tion. The application’s image buffer, which is stored in the VRAM, will have to be
reconstructed from scratch. A related issue is that VRAM is a finite resource, and
placing too many images there may cause the OS to start swapping them in and out
of memory, causing a slowdown in the rendering.

Aside from FSEM, J2SE 1.4 includes a VolatileImage class to allow images to take
advantage of VRAM. Only opaque images and those with transparent areas are accel-
erated; translucent images can be accelerated as well but only in J2SE 5.0. Many
forms of image manipulation can cause the acceleration to be lost.

Table 4-2. Average FPS/UPS rates for the UFS WormChase

Requested FPS 20 50 80 100

Windows 98 20/20 48/50 70/83 70/100

Windows 2000 18/20 19/50 18/83 18/100

Windows XP (1) 20/20 50/50 77/83 73/100

Windows XP (2) 20/20 50/50 68/83 69/100

This is the Title of the Book, eMatter Edition

90 | Chapter 4: Full-Screen Worms

In practice, direct use of VolatileImage is often not required since most graphical
applications, such as those written with Swing, attempt to employ hardware acceler-
ation implicitly. For instance, Swing uses VolatileImage for its double buffering and
visuals loaded with getImage() are accelerated if possible, as are images used by the
Java 2D API (e.g., those built using createImage()). However, more complex render-
ing features, such as diagonal lines, curved shapes, and anti-aliasing utilize software
rendering at the JVM level.

Another issue with hardware acceleration is that it is principally a Windows feature
since DirectDraw is employed by the JVM to access the VRAM. Neither Solaris nor
Linux provide a way to directly contact the VRAM.

A Sun tutorial for FSEM is at http://java.sun.com/docs/books/tutorial/
extra/fullscreen/, and the rationale behind the VolatileImage class is
described at http://java.sun.com/j2se/1.4/pdf/VolatileImage.pdf.

Figure 4-9 shows a screenshot of the FSEM version of WormChase, which is identical to
the UFS interface in Figure 4-5.

Class diagrams showing the public methods for this version of WormChase are shown
in Figure 4-10.

The WormChase and WormPanel classes have been combined into a single WormChase

class; it now contains the animation loop, which explains its use of the Runnable

interface. This approach could be employed in the UFS version of WormChase. The
Worm and Obstacles classes are unchanged.

Figure 4-9. The FSEM WormChase

This is the Title of the Book, eMatter Edition

A Full-Screen Exclusive Mode (FSEM) Worm | 91

The code for the FSEM WormChase can be found in the Worm/Worm-
FSEM/ directory.

The FSEM WormChase Class
The constructor for WormChase is similar to the constructors for the WormPanel classes
of previous sections:

public WormChase(long period)
{
 super("Worm Chase");

 this.period = period;
initFullScreen(); // switch to FSEM

 readyForTermination();

 // create game components
 obs = new Obstacles(this);
 fred = new Worm(pWidth, pHeight, obs);

 addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e)
 { testPress(e.getX(), e.getY()); }
 });

Figure 4-10. Class diagrams for the FSEM version of WormChase

This is the Title of the Book, eMatter Edition

92 | Chapter 4: Full-Screen Worms

 addMouseMotionListener(new MouseMotionAdapter() {
 public void mouseMoved(MouseEvent e)
 { testMove(e.getX(), e.getY()); }
 });

 // set up message font
 font = new Font("SansSerif", Font.BOLD, 24);
 metrics = this.getFontMetrics(font);

 // specify screen areas for the buttons
 pauseArea = new Rectangle(pWidth-100, pHeight-45, 70, 15);
 quitArea = new Rectangle(pWidth-100, pHeight-20, 70, 15);

 // initialise timing elements
 fpsStore = new double[NUM_FPS];
 upsStore = new double[NUM_FPS];
 for (int i=0; i < NUM_FPS; i++) {
 fpsStore[i] = 0.0;
 upsStore[i] = 0.0;
 }

 gameStart(); // replaces addNotify()
} // end of WormChase()

WormChase() ends with a call to gameStart(), which contains the code formerly in the
addNotify() method. As you may recall, addNotify() is called automatically as its
component (e.g., a JPanel) and is added to its container (e.g., a JFrame). Since I’m no
longer using a JPanel, the game is started directly from WormChase’s constructor.

Setting Up Full-Screen Exclusive Mode
The steps necessary to switch the JFrame to FSEM are contained in initFullScreen():

// globals used for FSEM tasks
private GraphicsDevice gd;
private Graphics gScr;
private BufferStrategy bufferStrategy;

private void initFullScreen()
{
 GraphicsEnvironment ge =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
 gd = ge.getDefaultScreenDevice();

 setUndecorated(true); // no menu bar, borders, etc.
 setIgnoreRepaint(true);
 // turn off paint events since doing active rendering
 setResizable(false);

 if (!gd.isFullScreenSupported()) {
 System.out.println("Full-screen exclusive mode not supported");
 System.exit(0);
 }
 gd.setFullScreenWindow(this); // switch on FSEM

This is the Title of the Book, eMatter Edition

A Full-Screen Exclusive Mode (FSEM) Worm | 93

 // I can now adjust the display modes, if I wish
 showCurrentMode(); // show the current display mode

 // setDisplayMode(800, 600, 8); // or try 8 bits
 // setDisplayMode(1280, 1024, 32);

 pWidth = getBounds().width;
 pHeight = getBounds().height;

 setBufferStrategy();
} // end of initFullScreen()

The graphics card is accessible via a GraphicsDevice object, gd. It’s tested with
GraphicsDevice.isFullScreenSupported() to see if FSEM is available. Ideally, if the
method returns false, the code should switch to using AFS or UFS, but I give up and
keep things as simple as possible.

Once FSEM has been turned on by calling GraphicsDevice.setFullScreenWindow(),
modifying display parameters, such as screen resolution and bit depth, is possible.
Details on how this can be done are explained below. In the current version of the
program, WormChase only reports the current settings by calling my showCurrentMode();
the call to my setDisplayMode() is commented out.

initFullScreen() switches off window decoration and resizing, which otherwise
tend to interact badly with FSEM. Paint events are not required since I’m continuing
to use active rendering, albeit a FSEM version (which I explain in the section
“Rendering the Game”).

After setting the display characteristics, the width and height of the drawing area are
stored in pWidth and pHeight. Once in FSEM, a buffer strategy for updating the
screen is specified by calling setBufferStrategy():

private void setBufferStrategy()
{ try {
 EventQueue.invokeAndWait(new Runnable() {
 public void run()
 { createBufferStrategy(NUM_BUFFERS); }
 });
 }
 catch (Exception e) {
 System.out.println("Error while creating buffer strategy");
 System.exit(0);
 }

 try { // sleep to give time for buffer strategy to be done
 Thread.sleep(500); // 0.5 sec
 }
 catch(InterruptedException ex){}

 bufferStrategy = getBufferStrategy(); // store for later
}

This is the Title of the Book, eMatter Edition

94 | Chapter 4: Full-Screen Worms

Window.createBufferStrategy() is called with a value of 2 (the NUM_BUFFERS value), so
page flipping with a primary surface and one back buffer is utilized.

Page flipping is explained in detail in the next section.

EventQueue.invokeAndWait() is employed to avoid a possible deadlock between the
createBufferStrategy() call and the event dispatcher thread, an issue that’s been
fixed in J2SE 5.0. The thread holding the createBufferStrategy() call is added to the
dispatcher queue, and executed when earlier pending events have been processed.
When createBufferStrategy() returns, so will invokeAndWait().

However, createBufferStrategy() is an asynchronous operation, so the sleep() call
delays execution for a short time so the getBufferStrategy() call will get the correct
details.

The asynchronous nature of many of the FSEM methods is a weakness of the API
making it difficult to know when operations have been completed. Adding arbitrary
sleep() calls is inelegant and may slow down execution unnecessarily.

Other asynchronous methods in GraphicsDevice include setDis-
playMode() and setFullScreenWindow().

Double Buffering, Page Flipping, and More
All of my earlier versions of WormChase have drawn to an off-screen buffer (some-
times called a back buffer), which is copied to the screen by a call to drawImage().
The idea is illustrated in Figure 4-11.

The problem with this approach is that the amount of copying required to display
one frame is substantial. For example, a display of 1,024 × 768 pixels, with 32-bit
depth, will need a 3-MB copy (1024 × 768 × 4 bytes), occurring as often as 80 times

Figure 4-11. Double buffering rendering

back buffer

copy with DrawImage()

This is the Title of the Book, eMatter Edition

A Full-Screen Exclusive Mode (FSEM) Worm | 95

per second. This is the principal reason for modifying the display mode: switching to
800 × 600 pixels and 16 bits reduces the copy size to about 940 KB (800 × 600 × 2).

Page flipping avoids these overheads by using a video pointer if one is available since
a pointer may not be offered by older graphics hardware. The video pointer tells the
graphics card where to look in VRAM for the image to be displayed during the next
refresh. Page flipping involves two buffers, which are used alternatively as the pri-
mary surface for the screen. While the video pointer is pointing at one buffer, the
other is updated. When the next refresh cycle comes around, the pointer is changed
to refer to the second buffer and the first buffer is updated.

This approach is illustrated by Figures 4-12 and 4-13.

The great advantage of this technique is that only pointer manipulation is required,
with no need for copying.

I’ll be using two buffers in my code, but it’s possible to use more, cre-
ating a flip chain. The video pointer cycles through the buffers while
rendering is carried out to the other buffers in the chain.

In initFullScreen(), Window.createBufferStrategy() sets up the buffering for the
window, based on the number specified (which should be two or more). The method
tries a page flipping strategy with a video pointer first and then copies using hard-
ware acceleration is used as a fallback. If both of these are unavailable, an unacceler-
ated copying strategy is used.

Figure 4-12. Page flipping (1); point to buffer 1; update buffer 2

buffer 2

drawing

buffer 1

video pointer

This is the Title of the Book, eMatter Edition

96 | Chapter 4: Full-Screen Worms

Rendering the Game
The game update and rendering steps are at the core of run(), represented by two
method calls:

public void run()
{
 // previously shown code

 while(running) {
 gameUpdate();
 screenUpdate();
 // sleep a while
 // maybe do extra gameUpdate()'s
 }

 // previously shown code
}

gameUpdate() is unchanged from before; it updates the worm’s state. screenUpdate()
still performs active rendering but with the FSEM buffer strategy created in
initFullScreen():

private void screenUpdate()
{ try {
 gScr = bufferStrategy.getDrawGraphics();

gameRender(gScr);
 gScr.dispose();
 if (!bufferStrategy.contentsLost())

Figure 4-13. Page flipping (2); update buffer 1; point to buffer 2

buffer 2

video pointer

buffer 1

drawing

This is the Title of the Book, eMatter Edition

A Full-Screen Exclusive Mode (FSEM) Worm | 97

 bufferStrategy.show();
 else
 System.out.println("Contents Lost");
 Toolkit.getDefaultToolkit().sync(); // sync the display on some systems
 }
 catch (Exception e)
 { e.printStackTrace();
 running = false;
 }
} // end of screenUpdate()

screenUpdate() utilizes the bufferStrategy reference to get a graphics context (gScr)
for drawing. The try-catch block around the rendering operations means their fail-
ure causes the running Boolean to be set to false, which will terminate the anima-
tion loop.

gameRender() writes to the graphic context in the same way that the gameRender()

methods in earlier versions of WormChase write to their off-screen buffer:

private void gameRender(Graphics gScr)
{
 // clear the background
 gScr.setColor(Color.white);
 gScr.fillRect (0, 0, pWidth, pHeight);

 gScr.setColor(Color.blue);
 gScr.setFont(font);

 // report frame count & average FPS and UPS at top left
 // report time used and boxes used at bottom left

 // draw the Pause and Quit buttons
 // draw game elements: the obstacles and the worm
 // game over stuff
} // end of gameRender()

The only change is at the start of gameRender(); there’s no longer any need to create an
off-screen buffer because initFullScreen() does it by calling createBufferStrategy().

Back in screenUpdate(), BufferStrategy.contentsLost() returns true or false, depend-
ing on if the VRAM used by the buffer has been lost since the call to getDrawGraphics();
buffer loss is caused by the OS taking back the memory.

Normally, the result will be false, and BufferStrategy.show() will then make the
buffer visible on screen. This is achieved by changing the video pointer (flipping) or
by copying (blitting).

If contentsLost() returns true, it means the entire image in the off-screen buffer
must be redrawn. In my code, redrawing will happen anyway, during the next itera-
tion of the animation loop, when screenUpdate() is called again.

This is the Title of the Book, eMatter Edition

98 | Chapter 4: Full-Screen Worms

Finishing Off
The finishOff() method is called in the same way as in the UFS version of
WormChase: either at the end of run() as the animation loop is finishing or in response
to a shutdown event:

private void finishOff()
{
 if (!finishedOff) {
 finishedOff = true;
 printStats();

restoreScreen();
 System.exit(0):
 }
}

private void restoreScreen()
{ Window w = gd.getFullScreenWindow();
 if (w != null)
 w.dispose();
 gd.setFullScreenWindow(null);
}

The call to restoreScreen() is the only addition to finishOff(). It switches off
FSEM by executing GraphicsDevice.setFullScreenWindow(null). This method also
restores the display mode to its original state if it was previously changed with
setDisplayMode().

Displaying the Display Mode
initFullScreen() calls methods for reading and changing the display mode (though
the call to setDisplayMode() is commented out). The display mode can only be
changed after the application is in full-screen exclusive mode:

public void initFullScreen()
{
 // existing code

 gd.setFullScreenWindow(this); // switch on FSEM

 // I can now adjust the display modes, if I wish
showCurrentMode();

 // setDisplayMode(800, 600, 8); // 800 by 600, 8 bits, or
 // setDisplayMode(1280, 1024, 32); // 1280 by 1024, 32 bits

 // more previously existing code

} // end of initFullScreen()

This is the Title of the Book, eMatter Edition

A Full-Screen Exclusive Mode (FSEM) Worm | 99

showCurrentMode() prints the display mode details for the graphic card:

private void showCurrentMode()
{
 DisplayMode dm = gd.getDisplayMode();
 System.out.println("Current Display Mode: (" +
 dm.getWidth() + "," + dm.getHeight() + "," +
 dm.getBitDepth() + "," + dm.getRefreshRate() + ") ");
}

A display mode is composed of the width and height of the monitor (in pixels), bit
depth (the number of bits per pixel), and refresh rate. DisplayMode.getBitDepth()
returns the integer BIT_DEPTH_MULTI (–1) if multiple bit depths are allowed in this
mode (unlikely on most monitors). DisplayMode.getRefreshRate() returns
REFRESH_RATE_UNKNOWN (0) if no information is available on the refresh rate and this
means the refresh rate cannot be changed.

The output from showCurrentMode() is shown below, with a screen resolution of
1,024 × 768, 32-bit depth and an unknown (unchangeable) refresh rate:

>java WormChase 100
fps: 100; period: 10 ms
Current Display Mode: (1024,768,32,0)

Changing the Display Mode
A basic question is, “Why bother changing the display mode since the current set-
ting is probably the most suitable one for the hardware?”

The answer is to increase performance. A smaller screen resolution and bit depth
reduces the amount of data transferred when the back buffer is copied to the screen.
However, this advantage is irrelevant if the rendering is carried out by page flipping
with video pointer manipulation.

A game can run more quickly if its images share the same bit depth as the screen.
This is easier to do if I fix the bit depth inside the application. A known screen size
may make drawing operations simpler, especially for images that would normally
have to be scaled to fit different display sizes.

My setDisplayMode() method is supplied with a width, height, and bit depth, and
attempts to set the display mode accordingly:

private void setDisplayMode(int width, int height, int bitDepth)
{
 if (!gd.isDisplayChangeSupported()) {
 System.out.println("Display mode changing not supported");
 return;
 }

This is the Title of the Book, eMatter Edition

100 | Chapter 4: Full-Screen Worms

 if (!isDisplayModeAvailable(width, height, bitDepth)) {
 System.out.println("Display mode (" + width + "," +
 height + "," + bitDepth + ") not available");
 return;
 }

 DisplayMode dm = new DisplayMode(width, height, bitDepth,
 DisplayMode.REFRESH_RATE_UNKNOWN); // any refresh rate
 try {
 gd.setDisplayMode(dm);
 System.out.println("Display mode set to: (" +
 width + "," + height + "," + bitDepth + ")");
 }
 catch (IllegalArgumentException e)
 { System.out.println("Error setting Display mode (" +
 width + "," + height + "," + bitDepth + ")"); }

 try { // sleep to give time for the display to be changed
 Thread.sleep(1000); // 1 sec
 }
 catch(InterruptedException ex){}
} // end of setDisplayMode()

The method checks if display mode changing is supported (the application must be
in FSEM for changes to go ahead) and if the given mode is available for this graphics
device, via a call to my isDisplayModeAvailable() method.

isDisplayModeAvailable() retrieves an array of display modes usable by this device,
and cycles through them to see if one matches the requested parameters:

private boolean isDisplayModeAvailable(int width, int height, int bitDepth)
/* Check that a displayMode with this width, height, and
 bit depth is available.
 I don't care about the refresh rate, which is probably
 REFRESH_RATE_UNKNOWN anyway.
*/
{ DisplayMode[] modes = gd.getDisplayModes(); // modes list
showModes(modes);

 for(int i = 0; i < modes.length; i++) {
 if (width == modes[i].getWidth() &&
 height == modes[i].getHeight() &&
 bitDepth == modes[i].getBitDepth())
 return true;
 }
 return false;
} // end of isDisplayModeAvailable()

showModes() is a pretty printer for the array of DisplayMode objects:

private void showModes(DisplayMode[] modes)
{
 System.out.println("Modes");
 for(int i = 0; i < modes.length; i++) {
 System.out.print("(" + modes[i].getWidth() + "," +

This is the Title of the Book, eMatter Edition

A Full-Screen Exclusive Mode (FSEM) Worm | 101

 modes[i].getHeight() + "," +
 modes[i].getBitDepth() + "," +
 modes[i].getRefreshRate() + ") ");
 if ((i+1)%4 == 0)
 System.out.println();
 }
 System.out.println();
}

Back in my setDisplayMode(), a new display mode object is created and set with
GraphicDevice’s setDisplayMode(), which may raise an exception if any of its argu-
ments are incorrect. GraphicDevice.setDisplayMode() is asynchronous, so the subse-
quent sleep() call delays execution a short time in the hope that the display will be
changed before the method returns. Some programmers suggest a delay of two
seconds.

The GraphicsDevice.setDisplayMode() method (different from my setDisplayMode())
is known to have bugs. However, it has improved in recent versions of J2SE 1.4, and
in J2SE 5.0. My tests across several versions of Windows, using J2SE 1.4.2, some-
times resulted in a JVM crash, occurring after the program had been run successfully
a few times. This is one reason why the call to my setDisplayMode() is commented
out in initFullScreen().

My setDisplayMode() can be employed to set the screen size to 800x600 with an
8-bit depth:

setDisplayMode(800, 600, 8);

The resulting on-screen appearance is shown in Figure 4-14. The reduced screen res-
olution means that the various graphical elements (e.g., the text, circles, and boxes)
are bigger. The reduced bit depth causes a reduction in the number of available col-
ors, but the basic colors used here (blue, black, red, and green) are still present.

The output from WormChase lists the initial display mode, the range of possible
modes, and the new mode:

D>java WormChase 100
fps: 100; period: 10 ms
Current Display Mode: (1024,768,32,0)
Modes
(400,300,8,0) (400,300,16,0) (400,300,32,0) (512,384,8,0)
(512,384,16,0) (512,384,32,0) (640,400,8,0) (640,400,16,0)
(640,400,32,0) (640,480,8,0) (640,480,16,0) (640,480,32,0)
(800,600,8,0) (800,600,16,0) (800,600,32,0) (848,480,8,0)
(848,480,16,0) (848,480,32,0) (1024,768,8,0) (1024,768,16,0)
(1024,768,32,0) (1152,864,8,0) (1152,864,16,0) (1152,864,32,0)
(1280,768,8,0) (1280,768,16,0) (1280,768,32,0) (1280,960,8,0)
(1280,960,16,0) (1280,960,32,0) (1280,1024,8,0) (1280,1024,16,0)
(1280,1024,32,0)
Display mode set to: (800,600,8)

This is the Title of the Book, eMatter Edition

102 | Chapter 4: Full-Screen Worms

An essential task if the display mode is changed is to change it back to its original
setting at the end of the application. WormChase does this by calling gd.

setFullScreenWindow(null) in restoreScreen().

Timings for FSEM
Timing results for the FSEM WormChase are given in Table 4-3.

WormChase on the Windows 2000 machine is the worst performer as usual, but its
UPS values are fine. FSEM produces a drastic increase in the frame rate; it produces
60 FPS when 80 is requested compared to the UFS version of WormChase, which only
manages 18 FPS.

The Windows 98 and XP boxes produce good to excellent frame rates at 80 FPS, but
can’t go any faster. FSEM improves the frame rates by around 20 percent compared
to UFS, except in the case of the first XP machine.

Figure 4-14. WormChase with a modified display mode

Table 4-3. Average FPS/UPS rates for the FSEM WormChase

Requested FPS 20 50 80 100

Windows 98 20/20 50/50 81/83 84/100

Windows 2000 20/20 50/50 60/83 60/100

Windows XP (1) 20/20 50/50 74/83 76/100

Windows XP (2) 20/20 50/50 83/83 85/100

This is the Title of the Book, eMatter Edition

Timings at 80 to 85 FPS | 103

One reason for flattening out the frame rate values may be that BufferStrategy’s
show() method—used in my screenUpdate() to render to the screen—is tied to the
frequency of the vertical synchronization (often abbreviated to vsync) of the moni-
tor. In FSEM, show() blocks until the next vsync signal.

Frame rates for Windows-based FSEM applications can be collected using the
FRAPS utility (http://www.fraps.com). Figure 4-15 shows WormChase with a FRAPS-
generated FPS value in the top righthand corner.

Timings at 80 to 85 FPS
Table 4-4 shows the UFS, AFS, and FSEM results for different versions of Windows
when 80 FPS are requested.

Figure 4-15. FSEM WormChase with FRAPS output

Table 4-4. Average FPS/UPS rates for the AFS, UFS, and FSEM versions of WormChase when 80
FPS are requested

Requested 80 FPS AFS UFS FSEM

Windows 98 75/83 70/83 81/83

Windows 2000 20/83 18/83 60/83

Windows XP (1) 82/83 77/83 74/83

Windows XP (2) 75/83 68/83 83/83

This is the Title of the Book, eMatter Edition

104 | Chapter 4: Full-Screen Worms

The numbers send mixed signals and, in any case, the sample size is too small for
strong conclusions. Nevertheless, I’ll make a few observations:

• The use of additional state updates to keep the UPS close to the requested FPS is
an important technique for giving the appearance of speed even when the ren-
dering rate is sluggish.

• FSEM offers better frame rates than UFS, sometimes dramatically better. How-
ever, FSEM’s benefits rely on MS Window’s access to the graphics device via
DirectDraw. The improvements on Linux, Solaris, and the Mac OS may not be
so striking.

• AFS produces higher frame rates than UFS and may be a good choice if full-
screen exclusive mode is unavailable.

All the approaches supply good to excellent frame rates on modern CPUs (the Win-
dows 2000 machine sports a Pentium II). Consequently, the best full-screen tech-
nique for a particular game will probably have to be determined by timing the game.
Additional optimization techniques, such as clipping, may highlight the benefits of
one technique over another.

I’d like to thank two of my students, Patipol Kulasi and Thana Kong-
likhit, who helped gather the timing data used in this chapter and
Chapter 3.

This is the Title of the Book, eMatter Edition

105

Chapter 5 CHAPTER 5

An Introduction to Java Imaging

This chapter presents an overview of image loading and processing in Java, areas that
have seen major changes in recent releases of the SDK, mainly driven by the wish for
speed. It’s principally about introducing concepts that are illustrated in more detail
in Chapter 6.

I begin by reviewing the (rather outmoded) AWT imaging model, which is being
superseded by the BufferedImage and VolatileImage classes, ImageIO, and the wide
range of BufferedImageOp image operations offered by Java 2D. If these aren’t
enough, then Java Advanced Imaging (JAI) has even more capabilities.

Many of the topics discussed here are utilized in Chapter 6, where I develop a
ImagesLoader class. It loads images from a Java ARchive (JAR) file using ImageIO’s
read() and holds them as BufferedImage objects.

Chapter 6 utilizes ImagesLoader in an ImagesTests application, which
demonstrates 11 different visual effects, including zapping, teleporta-
tion, reddening, blurring, and flipping. The effects are derived from
Java 2D operations, such as convolution and affine transformation.

Image Formats
A game will typically use a mix of the GIF, JPEG, and PNG images, popular graph-
ics formats that have advantages and disadvantages.

A Graphics Interchange Format (GIF) image is best for cartoon-style graphics using
few colors, since only a maximum of 256 colors can be represented in a file. This is
due to GIF’s use of a 256-element color table to store information.

One of these color table entries can represent a “transparent” color,
which Java honors by not drawing.

This is the Title of the Book, eMatter Edition

106 | Chapter 5: An Introduction to Java Imaging

GIF offers rudimentary animation by permitting a file to contain several images.
These are drawn consecutively when the file is displayed (e.g., with drawImage() in
Java). This feature isn’t of much use since there’s no simple way of controlling the
animation from within Java.

A Joint Photographic Experts Group (JPEG) file employs 3 bytes (24 bits) per pixel
(1 byte for each of the red, green, and blue [RGB] components), but a lossy compres-
sion scheme reduces the space quite considerably. This may cause large areas using a
single color to appear blotchy, and sharp changes in contrast can become blurred
(e.g., at the edges of black text on a white background). JPEG files are best for large
photographic images, such as game backgrounds. JPEG files do not offer transparency.

The Portable Network Graphics (PNG) format is intended as a replacement for GIF.
It includes an alpha channel along with the usual RGB components, which permits
an image to include translucent areas. Translucency is particularly useful for gaming
effects like laser beams, smoke, and ghosts (of course). Other advantages over GIF
are gamma correction, which enables image brightness to be controlled across plat-
forms, as well as 2D interlacing and (slightly) better lossless compression. This last
feature makes PNG a good storage choice while a photographic image is being
edited, but JPEG is probably better for the finished image since its lossy compres-
sion achieves greater size reductions.

Some developers prefer PNG since it’s an open source standard (see
http://www.libpng.org/pub/png/), with no patents involved; the GIF for-
mat is owned by CompuServe.

The AWT Imaging Model
JDK 1.0 introduced the AWT imaging model for downloading and drawing images.
Back then, it was thought that the most common use of imaging would involve
applets pulling graphics from the Web. A standard ’90s example (with the exception
of using JApplet) is shown in Example 5-1.

Example 5-1. ShowImage applet (Version 1) using Image

import javax.swing.*;
import java.awt.*;

public class ShowImage extends JApplet
{
 private Image im;

 public void init()
 { im = getImage(getDocumentBase(), "ball.gif"); }

 public void paint(Graphics g)
 { g.drawImage(im, 0, 0, this); }
}

This is the Title of the Book, eMatter Edition

The AWT Imaging Model | 107

The getDocumentBase() method returns the URL of the directory holding the origi-
nal web document, and this is prepended to the image’s filename to get a URL suit-
able for getImage().

The central problem with networked image retrieval is speed. Consequently, the Java
designers considered it a bad idea to have an applet stop while an image crawled over
from the server side. As a result, we have confusing behavior for getImage() and
drawImage(). Neither of these do what their name implies. The getImage() method is
poorly named since it doesn’t get (or download) the image at all; instead it prepares
an empty Image object (im) for holding the image, returning immediately after that.
The downloading is triggered by drawImage() in paint(), which is called as the
applet is loaded into the browser after init() has finished.

The fourth argument supplied to drawImage() is an ImageObserver (usually the applet
or JFrame in an application), which will monitor the gradual downloading of the
image. As data arrives, the Component’s imageUpdate() is repeatedly called.
imageUpdate()’s default behavior is to call repaint(), to redraw the image since more
data are available, and return true. However, if an error has occurred with the image
retrieval then imageUpdate() will return false. imageUpdate() can be overridden and
modified by the programmer.

The overall effect is that paint() will be called repeatedly as the image is down-
loaded, causing the image to appear gradually on-screen. This effect is only notice-
able if the image is coming over the network; if the file is stored locally, then it will
be drawn in full almost instantaneously.

The result of this coding style means that the Image (im) contains no data until paint()
is called and even then may not contain complete information for several seconds or
minutes. This makes programming difficult: for instance, a GUI cannot easily allo-
cate an on-screen space to the image since it has no known width or height until
painting has started.

Since the introduction of JDK 1.0, experience has shown that most programs do not
want graphics to be drawn incrementally during execution. For example, game
sprites should be fully realized from the start.

The getImage() method is only for applets; there is a separate getImage() method for
applications, accessible from Toolkit. For example:

Image im = Toolkit.getDefaultToolkit().getImage("http://....");

As with the getImage() method for applets, it doesn’t download anything. That task
is done by paint().

The MediaTracker Class
Most programs (and most games) want to preload images before drawing them. In
other words, we do not want to tie downloading to painting.

This is the Title of the Book, eMatter Edition

108 | Chapter 5: An Introduction to Java Imaging

One solution is the java.awt.MediaTracker class: a MediaTracker object can start the
download of an image and suspend execution until it has fully arrived or an error
occurs. The init() method in the ShowImage class can be modified to do this:

public void init()
{
 im = getImage(getDocumentBase(), "ball.gif");

 MediaTracker tracker = new MediaTracker(this);
 tracker.addImage(im, 0);
 try {
 tracker.waitForID(0);
 }
 catch (InterruptedException e)
 { System.out.println("Download Error"); }
}

waitForID() starts the separate download thread, and suspends until it finishes. The
ID used in the MediaTracker object can be any positive integer.

This approach means that the applet will be slower to start since init()’s
execution will be suspended while the image is retrieved.

In paint(), drawImage() will only draw the image since a download is unnecessary.
Consequently, drawImage() can be supplied with a null (empty) ImageObserver:

drawImage(im, 0, 0, null);

A common way of accelerating the downloading of multiple images is to spawn a
pool of threads, each one assigned to the retrieval of a single image. Only when every
thread has completed will init() return.

ImageIcon
Writing MediaTracker code in every applet/application can be boring, so an ImageIcon

class was introduced, which sets up a MediaTracker by itself. The ImageIcon name is a
bit misleading: any size of image can be downloaded, not just an icon.

Using ImageIcon, the init() method becomes:

public void init()
{ im = new ImageIcon(getDocumentBase()+"ball.gif").getImage(); }

The ImageIcon object can be converted to an Image (as here) or can be painted with
ImageIcon’s paintIcon() method.

This is the Title of the Book, eMatter Edition

The AWT Imaging Model | 109

The Rise of JARs
A JAR file is a way of packaging code and resources together into a single, com-
pressed file. Resources can be almost anything, including images and sounds.

If an applet (or application) is going to utilize a lot of images, repeated network con-
nections to download them will severely reduce execution speed. It’s better to create
a single JAR file containing the applet (or application) and all the images and to have
the browser (or user) download it. Then, when an image comes to be loaded, it’s a
fast, local load from the JAR file. From a user’s point of view, the download of the
code takes a little longer, but it executes without any annoying delays caused by
image loading.

At the end of Chapter 6, I’ll explain how to package the ImagesTests code, and the
large number of images it uses, as a JAR file. The only coding change occurs in speci-
fying the location of an image file. Going back to a simpler example, the ImageIcon

example from above would need to be rewritten this way:

im = new ImageIcon(getClass().getResource("ball.gif")).getImage();

getClass() gets the Class reference for the object (e.g., ShowImage), and getResource()

specifies the resource is stored in the same place as that class.

AWT Image Processing
It can be difficult to access the various elements of an Image object, such as pixel data
or the color model. For instance, the image manipulation features in AWT are pri-
marily aimed at modifying individual pixels as they pass through a filter. A stream of
pixel data is sent out by a ImageProducer, passes through an ImageFilter, and on to
an ImageConsumer (see Figure 5-1). This is known as the push model since stream data
are “pushed” out by the producer.

Figure 5-1. Image processing in AWT

ImageConsumer

ImageFilter

ImageProducer

data stream

data stream

This is the Title of the Book, eMatter Edition

110 | Chapter 5: An Introduction to Java Imaging

The two predefined ImageFilter subclasses are CropImageFilter for cropping regions
of pixels and RGBImageFilter for processing individual pixels.

Chaining filters together is possible by making a consumer of one fil-
ter the producer for another.

This stream-view of filtering makes it difficult to process groups of pixels, especially
ones that are noncontiguous. For example, a convolution operation for image
smoothing would require a new subclass of ImageFilter and a new ImageConsumer to
deal with the disruption to the pixels stream.

An alternative approach is to use the PixelGrabber class to collect all the pixel data
from an image into an array, where it can then be conveniently processed in its
entirety. The MemoryImageSource class is necessary to output the changed array’s data
as a stream to a specified ImageConsumer. The additional steps in the push model are
shown in Figure 5-2.

Modern Java code (since J2SE 1.2) can utilize the image processing capabilities of
Java 2D, with its many predefined operations, so you’re unlikely to meet the push
model except in legacy code. If Java 2D is insufficient, then JAI should be considered.

Figure 5-2. Processing the image as an array

MemoryImageSource

Array Processing

PixelGrabber

an array

ImageProducer

data stream

ImageConsumer

data stream

an array

This is the Title of the Book, eMatter Edition

An Overview of Java 2D | 111

An Overview of Java 2D
Java 2D offers a set of graphics features that address the inadequacies in the older
AWT graphics classes. Weaknesses in AWT include only supporting single pixel
thickness lines, limited fonts, poor shape manipulation (e.g., no rotation), and no
special fills, gradients, or patterns inside shapes.

Java 2D replaces most of the shape primitives in AWT (e.g., rectangles, arcs, lines,
ellipses, polygons) with versions that can take double or floating pointing coordi-
nates, though many people still use the old drawLine(), drawRect(), and fillRect()

methods. Of more interest is the ability to create arbitrary geometric shapes by using
set operations on other shapes with union, intersection, subtraction, and exclusive-
or. A GeneralPath class permits a shape to be built from a series of connected lines
and curves, and curves can be defined using splines. (A spline’s curviness is specified
using a series of control point.)

Java 2D distinguishes between shape stroking and filling. Stroking is the drawing of
lines and shape outlines, which may employ various patterns and thicknesses. Shape
filling can use a solid color (as in AWT), and patterns, color gradients, and images
acting as textures.

Affine transformations can be applied to shapes and images, including translation,
rotation, scaling, and shearing, and groups of transformations can be composed
together. drawImage() can be supplied with such a transformation, which is applied
before the image is rendered. Shapes and images can be drawn together using eight
different compositing rules, optionally combined with varying transparency values.
Clipping can be applied, based on an arbitrary shape (not just a rectangle, as in
AWT).

Rendering hints include the anti-aliasing of shapes and text (i.e., the smoothing of
their jagged edges), image interpolation, and whether to use high-speed or high-
quality rendering.

As a bonus, Java-based printing became relatively easy to control with
Java 2D.

Java’s top-level web page for Java 2D is http://java.sun.com/products/java-media/2D/,
with extensive documentation and a tutorial trail in J2SE.

The Graphics2D Class
The central Java 2D class is Graphics2D, a subclass of AWT’s Graphics. paint() or
paintComponent() must cast the graphics context to become a Graphics2D object

This is the Title of the Book, eMatter Edition

112 | Chapter 5: An Introduction to Java Imaging

before Java 2D operations can be employed, as shown in the paintComponent()

method:

public void paintComponent(Graphics g)
// draw a blue square
{
 super.paintComponent(g);
 Graphics2D g2d = (Graphics2D) g; // cast the graphics context

 g2d.setPaint(Color.blue);
 Rectangle2D.Double square = new Rectangle2D.Double(10,10,350,350);
 g2d.fill(square);
}

The shape can be drawn in outline with draw() or filled using the current pen set-
tings by calling fill().

Java 2D and Active Rendering
Java 2D operations can be easily utilized in the active rendering approach described
in Chapters 2 through 4. As you may recall, a Graphics object for the off-screen
buffer is obtained by calling getGraphics() inside gameRender(). This can be cast to a
Graphics2D object:

// global variables for off-screen rendering
private Graphics2D dbg2D; // was a Graphics object, dbg
private Image dbImage = null;

private void gameRender()
// draw the current frame to an image buffer
{
 if (dbImage == null){ // create the buffer
 dbImage = createImage(PWIDTH, PHEIGHT);
 if (dbImage == null) {
 System.out.println("dbImage is null");
 return;
 }
 else

dbg2D = (Graphics2D) dbImage.getGraphics();
 }

 // clear the background using Java 2D
 // draw game elements using Java 2D
 // existing logic

 if (gameOver)
 gameOverMessage(dbg2D);
} // end of gameRender()

Methods called from gameRender(), such as gameOverMessage(), can utilize the
Graphics2D object, dbg2D.

This is the Title of the Book, eMatter Edition

Buffering an Image | 113

In FSEM, the Graphics object is obtained by calling getDrawGraphics(), and its result
can be cast:

private Graphics2D gScr2d; // global, was Graphics gScr

private void screenUpdate()
{ try {

gScr2d = (Graphics2D) bufferStrategy.getDrawGraphics();
 gameRender(gScr2d);
 gScr2d.dispose();
 // previously shown logic
}

gameRender() receives a Graphics2D object, so it has the full range of Java 2D opera-
tions at its disposal.

Buffering an Image
The BufferedImage class is a subclass of Image, so it can be employed instead of Image
in methods such as drawImage(). BufferedImage has two main advantages: the data
required for image manipulation are easily accessible through its methods, and
BufferedImage objects are automatically converted to managed images by the JVM
(when possible). A managed image may allow hardware acceleration to be employed
when the image is being rendered.

The code in Example 5-2 is the ShowImage applet, recoded to use a BufferedImage.

Example 5-2. ShowImage applet (Version 2) using BufferedImage

import javax.swing.*;
import java.awt.*;
import java.io.*;
import java.awt.image.*;
import javax.imageio.ImageIO;

public class ShowImage extends JApplet
{
 private BufferedImage im;

 public void init()
 { try {
 im = ImageIO.read(getClass().getResource("ball.gif"));
 }
 catch(IOException e) {
 System.out.println("Load Image error:");
 }
 } // end of init()

 public void paint(Graphics g)
 { g.drawImage(im, 0, 0, this); }
}

This is the Title of the Book, eMatter Edition

114 | Chapter 5: An Introduction to Java Imaging

The simplest, and perhaps fastest, way of loading a BufferedImage object is with
read() from the ImageIO class. Some tests suggest that it may be 10 percent faster
than using ImageIcon, which can be significant when the image is large. InputStream,
and ImageInputStream are different versions of read() for reading from a URL.

Optimizing the BufferedImage is possible so it has the same internal data format and
color model as the underlying graphics device. This requires us to make a copy of the
input image using GraphicsConfiguration’s createCompatibleImage(). The various
steps are packaged together inside a loadImage() method; the complete (modified)
class is given in Example 5-3.

Example 5-3. ShowImage applet (Version 3) using an optimized BufferedImage

import javax.swing.*;
import java.awt.*;
import java.io.*;
import java.awt.image.*;
import javax.imageio.ImageIO;

public class ShowImage extends JApplet
{
 private GraphicsConfiguration gc;
 private BufferedImage im;

 public void init()
 {
 // get this device's graphics configuration
 GraphicsEnvironment ge =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
 gc = ge.getDefaultScreenDevice().getDefaultConfiguration();

 im = loadImage("ball.gif");
 } // end of init()

 public BufferedImage loadImage(String fnm)
 /* Load the image from <fnm>, returning it as a BufferedImage
 which is compatible with the graphics device being used.
 Uses ImageIO. */
 {
 try {
 BufferedImage im = ImageIO.read(getClass().getResource(fnm));

 int transparency = im.getColorModel().getTransparency();
 BufferedImage copy = gc.createCompatibleImage(
 im.getWidth(),im.getHeight(),transparency);

 // create a graphics context
 Graphics2D g2d = copy.createGraphics();

This is the Title of the Book, eMatter Edition

Buffering an Image | 115

The three-argument version of createCompatibleImage() is utilized, which requires the
BufferedImage’s width, height, and transparency value. The possible transparency val-
ues are Transparency.OPAQUE, Transparency.BITMASK, and Transparency.TRANSLUCENT.
The BITMASK setting is applicable to GIFs that have a transparent area, and TRANSLUCENT

can be employed by translucent PNG images.

There’s a two-argument version of createCompatibleImage(), which only requires the
image’s width and height, but if the source image has a transparent or translucent
component, then it (most probably) will be copied incorrectly. For instance, the
transparent areas in the source may be drawn as solid black.

Fortunately, it’s quite simple to access the transparency information in the source
BufferedImage, by querying its ColorModel (explained later):

int transparency = im.getColorModel().getTransparency();

The BufferedImage object copy is initialized by drawing the source image into its
graphics context.

Another reason for the use of createCompatibleImage() is that it permits J2SE 1.4.2
to mark the resulting BufferedImage as a managed image, which may later be drawn
to the screen using hardware acceleration. In J2SE 5.0, the JVM knows that anything
read in by ImageIO’s read() can become a managed image, so the call to
createCompatibleImage() is no longer necessary for that reason. The call should still
be made though since it optimizes the BufferedImage’s internals for the graphics
device.

 // copy image
 g2d.drawImage(im,0,0,null);
 g2d.dispose();
 return copy;
 }
 catch(IOException e) {
 System.out.println("Load Image error for " + fnm + ":\n" + e);
 return null;
 }
 } // end of loadImage()

 public void paint(Graphics g)
 { g.drawImage(im, 0, 0, this); }

} // end of ShowImage class

Example 5-3. ShowImage applet (Version 3) using an optimized BufferedImage (continued)

This is the Title of the Book, eMatter Edition

116 | Chapter 5: An Introduction to Java Imaging

From Image to BufferedImage
Legacy code usually employs Image, and it may not be feasible to rewrite the entire
code base to utilize BufferedImage. Instead, is there a way to convert an Image object
to a BufferedImage object? makeBIM() makes a gallant effort:

private BufferedImage makeBIM(Image im, int width, int height)
// make a BufferedImage copy of im, assuming an alpha channel
{
 BufferedImage copy = new BufferedImage(width, height,
 BufferedImage.TYPE_INT_ARGB);
 // create a graphics context
 Graphics2D g2d = copy.createGraphics();

 // copy image
 g2d.drawImage(im,0,0,null);
 g2d.dispose();
 return copy;
}

This method can be used in ShowImage:

public void init()
// load an imageIcon, convert to BufferedImage
{
 ImageIcon imIcon = new ImageIcon(getClass().getResource("ball.gif"));
 im = makeBIM(imIcon.getImage(), imIcon.getIconWidth(),
 imIcon.getIconHeight());
}

I load an ImageIcon (to save on MediaTracker coding) and pass its Image, width, and
height into makeBIM(), getting back a suitable BufferedImage object.

A thorny issue with makeBIM() is located in the BufferedImage() constructor. The
constructor must be supplied with a type, and there’s a lot to choose from (look at
the Java documentation for BufferedImage for a complete list). A partial list appears
in Table 5-1.

Table 5-1. Some BufferedImage types

BufferedImage type Description

TYPE_INT_ARGB 8-bit alpha, red, green, and blue samples packed into a 32-bit integer

TYPE_INT_RGB 8-bit red, green, and blue samples packed into a 32-bit integer

TYPE_BYTE_GRAY An unsigned byte grayscale image (1 pixel/byte)

TYPE_BYTE_BINARY A byte-packed binary image (8 pixels/byte)

TYPE_INT_BGR 8-bit blue, green, and red samples packed into a 32-bit integer

TYPE_3BYTE_RGB 8-bit blue, green, and red samples packed into 1 byte each

This is the Title of the Book, eMatter Edition

Buffering an Image | 117

An image is made up of pixels (of course), and each pixel is composed from (per-
haps) several samples. Samples hold the color component data that combine to make
the pixel’s overall color.

A standard set of color components are red, green, and blue (RGB for short). The
pixels in a transparent or translucent color image will include an alpha (A) compo-
nent to specify the degree of transparency for the pixels. A grayscale image only uti-
lizes a single sample per pixel.

BufferedImage types specify how the samples that make up a pixel’s data are packed
together. For example, TYPE_INT_ARGB packs its four samples into 8 bits each so that a
single pixel can be stored in a single 32-bit integer. This is shown graphically in
Figure 5-3.

This format is used for the BufferedImage object in makeBIM() since it’s the most gen-
eral. The RGB and alpha components can have 256 different values (28), with 255

being full-on. For the alpha part, 0 means fully transparent, ranging up to 255 for
fully opaque.

Is such flexibility always needed, for instance, when the image is opaque or a gray-
scale? It may not be possible to accurately map an image stored using a drastically
different color model to the range of colors here. An example would be an image
using 16-bit color components. Nevertheless, makeBIM() deals with the normal range
of image formats, e.g., GIF, JPEG, and PNG, and so is satisfactory for our needs.

A more rigorous solution is to use AWT’s imaging processing capabilities to analyze
the source Image object and construct a BufferedImage accordingly. A PixelGrabber

can access the pixel data inside the Image and determine if an alpha component exists
and if the image is grayscale or RGB.

A third answer is to go back to basics and ask why the image is being converted to a
BufferedImage object at all? A common reason is to make use of BufferedImageOp

operations, but they’re available without the image being converted. It’s possible to
wrap a BufferedImageOp object in a BufferedImageFilter to make it behave like an
AWT ImageFilter.

The Internals of BufferedImage
The data maintained by a BufferedImage object are represented by Figure 5-4.

Figure 5-3. A TYPE_INT_ARGB pixel

int

bit 32 bit 24 bit 16 bit 8 bit 0

alpha red green blue

This is the Title of the Book, eMatter Edition

118 | Chapter 5: An Introduction to Java Imaging

A BufferedImage instance is made up of a Raster object that stores the pixel data and
a ColorModel, which contains methods for converting those data into colors.
DataBuffer holds a rectangular array of numbers that make up the data, and
SampleModel explains how those numbers are grouped into the samples for each
pixel.

One way of viewing the image is as a collection of bands or channels: a band is a col-
lection of the same samples from all the pixels. For instance, an ARGB file contains
four bands for alpha, red, green, and blue.

The ColorModel object defines how the samples in a pixel are mapped to color com-
ponents, and ColorSpace specifies how the components are combined to form a ren-
derable color.

Java 2D supports many color spaces, including the standardized RGB (sRGB) color
space, which corresponds to the TYPE_INT_ARGB format in Figure 5-3. The
BufferedImage method getRGB(x,y) utilizes this format: (x, y) is the pixel coordi-
nate, and a single integer is returned which, with the help of bit manipulation, can
expose its 8-bit alpha, red, green, and blue components.

setRGB() updates an image pixel, and there are get and set methods to manipulate all
the pixels as an array of integers. Two of the ImagesTests visual effects in Chapter 6
use these methods.

Figure 5-4. BufferedImage internals

BufferedImage

ColorSpace

SampleModel

DataBuffer

ColorModel

Raster

pixel arrays

This is the Title of the Book, eMatter Edition

Buffering an Image | 119

BufferedImageOp Operations
Java 2D’s image processing operations are (for the most part) subclasses of the
BufferedImageOp interface, which supports an immediate imaging model. Image
processing is a filtering operation that takes a source BufferedImage as input and pro-
duces a new BufferedImage as output. The idea is captured by Figure 5-5.

This doesn’t appear to be much different from the ImageFilter idea in Figure 5-1.
The differences are in the expressibility of the operations that can, for instance,
manipulate groups of pixels and affect the color space. This is due to the data model
offered by BufferedImage.

The code fragment below shows the creation of a new BufferedImage, by manipulating
a source BufferedImage using RescaleOp; RescaleOp implements the BufferedImageOp

interface:

RescaleOp negOp = new RescaleOp(-1.0f, 255f, null);
BufferedImage destination = negOp.filter(source, null);

The filter() method does the work, taking the source image as input and returning
the resulting image as destination.

Certain image processing operations can be carried out in place, which means that
the destination BufferedImage can be the source; there’s no need to create a new
BufferedImage object.

Another common way of using a BufferedImageOp is as an argument to drawImage();
the image will be processed, and the result drawn straight to the screen:

g2d.drawImage(source, negOp, x, y);

The predefined BufferedImageOp image processing classes are listed in Table 5-2.

Figure 5-5. The BufferedImageOp imaging model

Table 5-2. Image processing classes

Class name Description Some possible effects In place?

AffineTransformOp Apply a geometric transformation to the
image’s coordinates.

Scaling, rotating, shearing. No

BandCombineOp Combine bands in the image’s Raster. Change the mix of colors. Yes

ColorConvertOp ColorSpace conversion. Convert RGB to grayscale. Yes

BufferedImage BufferedImage

input (source) output (destination)

BufferedImageOp

This is the Title of the Book, eMatter Edition

120 | Chapter 5: An Introduction to Java Imaging

Various examples of these, together with more detailed explanations of the opera-
tions, will be given in Chapter 6 when I discuss ImagesTests.

Managed Images
A managed image is automatically cached in video memory (VRAM) by the JVM.
When drawImage() is applied to its original version located in system memory
(RAM), the JVM uses the VRAM cache instead, and employs a hardware copy (blit)
to draw it to the screen. The payoff is speed since a hardware blit will be faster than a
software-based copy from RAM to the screen. This idea is illustrated by Figure 5-6.

A managed image is not explicitly created by the programmer because there’s no
ManagedImage class that can be used to instantiate suitable objects. Managed images
are created at the whim of the JVM, though the programmer can “encourage” the
JVM to make them.

Image, ImageIcon, and BufferedImage objects qualify to become managed images if
they have been created with createImage(), createCompatibleImage(), read in with
getImage() or ImageIO’s read(), or created with the BufferedImage() constructor.
Opaque images and images with BITMASK transparency (e.g., GIF files) can be man-
aged. Translucent images can be managed but require property flags to be set, which
vary between Windows and Linux/Solaris.

ConvolveOp Combine groups of pixel values to obtain a
new pixel value.

Blurring, sharpening, edge
detection.

No

LookupOp Modify pixel values based on a table lookup. Color inversion, reddening,
brightening, darkening.

Yes

RescaleOp Modify pixel values based on a linear
equation.

Mostly the same as
LookupOp.

Yes

Figure 5-6. Drawing images and managed images

Table 5-2. Image processing classes (continued)

Class name Description Some possible effects In place?

system memory

video memory

desg2d.drawImage(dog);

screen

software blit

desg2d.drawImage(dog);

screen

JVM copy

managed image

hardware blit

This is the Title of the Book, eMatter Edition

VolatileImage | 121

The JVM will copy an image to VRAM when it detects that the image has not been
changed or edited for a significant amount of time; typically, this means when two
consecutive drawImage() calls have used the same image. The VRAM copy will be
scrapped if the original image is manipulated by an operation that is not hardware
accelerated, and the next drawImage() will switch back to the RAM version.

Exactly which operations are hardware accelerated depends on the OS. Virtually
nothing aside from image translation is accelerated in Windows; this is not due to
inadequacies in DirectDraw but rather to the Java interface. The situation is a lot bet-
ter on Linux/Solaris where all affine transformations, composites, and clips will be
accelerated. However, these features depend on underlying OS support for a version
of OpenGL that offers pbuffers. A pbuffer is a kind of off-screen rendering area,
somewhat like a pixmap but with support for accelerated rendering.

Bearing in mind how the JVM deals with managed images, it is inadvisable to mod-
ify them excessively at run time since their hardware acceleration will probably be
lost, at least for a short time.

In some older documentation, managed images are known as automated
images.

VolatileImage
Whereas managed images are created by the JVM, the VolatileImage class allow pro-
grammers to create and manage their own hardware-accelerated images. In fact, a
VolatileImage object exists only in VRAM; it has no system memory copy at all (see
Figure 5-7).

VolatileImage objects stay in VRAM, so they get the benefits of hardware blitting all
the time. Well, that’s sort of true, but it depends on the underlying OS. In Win-
dows, VolatileImage is implemented using DirectDraw, which manages the image in
video memory, and may decide to grab the memory back to give to another task,
such as a screensaver or new foreground process. This means that the programmer
must keep checking his VolatileImage objects to see if they’re still around. If a

Figure 5-7. A VolatileImage object

system memory

video memory

desg2d.drawImage(dog);

Volatile Image screen

hardware blit

This is the Title of the Book, eMatter Edition

122 | Chapter 5: An Introduction to Java Imaging

VolatileImage’s memory is lost, then the programmer has to re-create the object. The
situation is better on Linux/Solaris since VolatileImage is implemented with
OpenGL pbuffers, which can’t be deallocated by the OS.

Another drawback with VolatileImages is that any processing of an image must be
done in VRAM, which is generally slower to do as a software operation than similar
calculations in RAM. Of course, if the manipulation (e.g., applying an affine trans-
form such as a rotation) can be done by the VRAM hardware, then it will be faster
than in system memory. Unfortunately, the mix of software/hardware-based opera-
tions depends on the OS.

Bearing in mind the issues surrounding VolatileImage, when is it useful? Its key ben-
efit over managed images is that the programmer is in charge rather than the JVM.
The programmer can decide when to create, update, and delete an image.

However, managed image support is becoming so good in the JVM that most pro-
grams probably do not need the complexity that VolatileImage adds to the code.
ImagesTests in Chapter 6 uses only managed images, which it encourages by creat-
ing only BufferedImages.

Java 2D Speed
The issues over the speed of Java 2D operations mirror my discussion about the use
of managed images and VolatileImages, since speed depends on which operations
are hardware accelerated, and the hardware accelerated options depends on the OS.

On Windows, hardware acceleration is mostly restricted to the basic 2D operations
such as filling, copying rectangular areas, line drawing (vertical and horizontal only),
and basic text rendering. Unfortunately, the fun parts of Java 2D—such as curves,
anti-aliasing, and compositing—all use software rendering. In Linux/Solaris, so long
as OpenGL buffers are supported, most elements of Java 2D are accelerated.

The situation described here is for J2SE 5.0 and will improve. The best check is to
profile your code. A Java 2D-specific profiling approach is described in Chapter 6,
based around the switching on of Java 2D’s low-level operation logging.

Portability and Java 2D
The current situation with Java 2D’s hardware acceleration exposes a rather nasty
portability problem with Java. Graphics, especially gaming graphics, require speed,
and the Java implementers have taken a two-track approach. The Windows-based
version of Java utilizes DirectX and other Windows features, yet on other platforms,
the software underlying Java 2D relies on OpenGL.

This is the Title of the Book, eMatter Edition

JAI | 123

This approach seems like an unnecessary duplication of effort and a source of confu-
sion to programmers. The same situation exists for Java 3D, as described in
Chapter 14 and beyond.

In my opinion, Java graphics should restrict itself to OpenGL, an open standard that is
under active development by many talented people around the world. In fact, this view
may already be prevailing inside Sun, indicated by its promotion of a Java/OpenGL
(JOGL) (https://jogl.dev.java.net/) binding.

JAI
Java Advanced Imaging (JAI) offers extended image processing capabilities beyond
those found in Java 2D. For example, geometric operations include translation, rota-
tion, scaling, shearing, transposition, and warping. Pixel-based operations utilize
lookup tables and rescaling equations but can be applied to multiple sources, then
combined to get a single outcome. Modifications can be restricted to regions in the
source, statistical operations are available (e.g., mean and median), and frequency
domains can be employed.

An intended application domain for JAI is the manipulation of images too large to be
loaded into memory in their entirety. A TiledImage class supports pixel editing based
on tiles, which can be processed and displayed independently of their overall image.

Image processing can be distributed over a network by using RMI to farm out areas
of the image to servers, with the results returned to the client for displaying.

JAI employs a pull imaging model, where an image is constructed from a series of
source images, arranged into a graph. When a particular pixel (or tile) is required,
only then will the image request data from the necessary sources. These kinds of
extended features aren’t usually required for gaming and aren’t used in this book.

More information on JAI can be found at its home page: http://java.sun.com/
products/java-media/jai/.

This is the Title of the Book, eMatter Edition

124

Chapter 6CHAPTER 6

Image Loading, Visual Effects,
and Animation

Images are a central part of every game, and this chapter examines how we can (effi-
ciently) load and display them, apply visual effects such as blurring, fading, and rota-
tion, and animate them.

The ImagesTests application is shown in Figure 6-1. The screenshot includes the
name of the images for ease of reference later.

Figure 6-1. ImagesTests and image names

atomic balls bee cheese eyeChart house pumpkin

cats kaboom cars fighter owl figure basn6a08 basn6a08

scooter ufo numbers

This is the Title of the Book, eMatter Edition

Image Loading, Visual Effects, and Animation | 125

An image name is the filename of the image, minus its extension.

The images (in GIF, JPEG, or PNG format) are loaded by my own ImagesLoader class
from a JAR file containing the application and the images. The images are loaded
using ImageIO’s read(), and stored as BufferedImage objects, to take advantage of the
JVM’s “managed image” features.

ImagesLoader can load individual images, image strips, and multiple image files that
represent an animation sequence.

The animation effects utilized by ImagesTests fall into two categories:

• Those defined by repeatedly applying a visual effect, such as blurring, to the
same image but by an increasing amount

• Those where the animation is represented by a series of different images dis-
played one after another

Table 6-1 lists the image names against the visual effect they demonstrate.

Table 6-1. Images names and their visual effects

Image name Visual effect

atomic Rotation

balls
basn6a08

Mixed colors

bee Teleportation (uneven fading)

cheese Horizontal/vertical flipping

eyeChart Progressive blurring

house Reddening

pumpkin Zapping (red/yellow pixels)

scooter Brightening

ufo Fading

owl Negation

basn6a16 Resizing

cars
kaboom
cats
figure

Numbered animation

fighter Named animation

numbers Callback animation

This is the Title of the Book, eMatter Edition

126 | Chapter 6: Image Loading, Visual Effects, and Animation

The effects are mostly implemented with Java 2D operations, such as convolution or
affine transformation. Occasionally, I make use of capabilities in drawImage(), e.g.,
for resizing and flipping an image.

The majority of the images are GIFs with a transparent background; balls.jpg is the only
JPEG. The PNG files are: owl.png, pumpkin.png, basn6a08.png, and basn6a16.png. The
latter two use translucency, and come from the PNG suite maintained by Willem van
Schaik at http://www.schaik.com/pngsuite/pngsuite.html.

I’ve utilized several images from the excellent SpriteLib sprite library by Ari Feld-
man, available at http://www.arifeldman.com/games/spritelib.html, notably for the
cats, kaboom, cars, and fighter animations.

The application code for this chapter can be found in the ImagesTests/
directory.

Class Diagrams for the Application
Figure 6-2 shows the class diagrams for the ImagesTests application. The class
names, public methods, and constants are shown.

ImagesTests creates a JFrame and the JPanel where the images are drawn, and it starts
a Swing timer to update its images every 0.1 second.

ImagesTests employs an ImagesLoader object to load the images named in a configu-
ration file (imsInfo.txt in the Images/ subdirectory). ImagesLoader will be used in sev-
eral subsequent chapters to load images and animations into my games.

The visual effects methods, such as blurring, are grouped together in ImagesSFXs.
Animations represented by sequences of images (e.g., numbers, cars, kaboom, cats,
and figure) are controlled by ImagesPlayer objects. A sequence may be shown repeat-
edly, stopped, and restarted.

A completed animation sequence can call sequenceEnded() in an object implement-
ing the ImagesPlayerWatcher interface. ImagesTests implements ImagesPlayerWatcher

and is used as a callback by the numbers sequence.

Loading Images
The ImagesLoader class can load four different formats of images, which I call o, n, s,
and g images. The images are assumed to be in a local JAR file in a subdirectory
Images/ below ImagesLoader. They are loaded as BufferedImages using ImageIO’s
read(), so they can become managed images.

The typical way of using an ImagesLoader object is to supply it with a configuration
file containing the filenames of the images that should be loaded before game play

This is the Title of the Book, eMatter Edition

Loading Images | 127

begins. However, it is possible to call ImagesLoader’s load methods at any time dur-
ing execution.

Here is the imsInfo.txt configuration file used in ImagesTests:

// imsInfo.txt images

o atomic.gif
o balls.jpg
o bee.gif
o cheese.gif
o eyeChart.gif
o house.gif
o pumpkin.png
o scooter.gif
o ufo.gif
o owl.png

n numbers*.gif 6
n figure*.gif 9

g fighter left.gif right.gif still.gif up.gif

Figure 6-2. Class diagrams for ImagesTests

This is the Title of the Book, eMatter Edition

128 | Chapter 6: Image Loading, Visual Effects, and Animation

s cars.gif 8
s cats.gif 6
s kaboom.gif 6

o basn6a08.png
o basn6a16.png

Blank lines, and lines beginning with //, are ignored by the loader. The syntax for
the four image formats is:

o <fnm>
n <fnm*.ext> <number>
s <fnm> <number>
g <name> <fnm> [<fnm>]*

An o line causes a single filename, called <fnm>, to be loaded from Images/.

A n line loads a series of numbered image files, whose filenames use the numbers 0–
<number>-1 in place of the * character in the filename. For example:

n numbers*.gif 6

This indicates that the files numbers0.gif, numbers1.gif, and so forth, up to numbers5.gif,
should be loaded.

An s line loads a strip file (called fnm) containing a single row of <number> images.
After the file’s graphic has been loaded, it’s automatically divided up into the compo-
nent images. For instance:

s kaboom.gif 6

This refers to the strip file kaboom.gif containing a row of six images, as shown in
Figure 6-3.

A g line specifies a group of files with different names. After being loaded, the images
can be accessible using a positional notation or by means of their filenames (minus
the extension). For example, the fighter g images are defined this way:

g fighter left.gif right.gif still.gif up.gif

Subsequently, the image in right.gif can be accessed using the number 1 or the string
"right".

Figure 6-3. The kaboom.gif strip file

This is the Title of the Book, eMatter Edition

Loading Images | 129

Internal Data Structures
The ImagesLoader object creates two main data structures as it loads the images, both
of them HashMaps:

private HashMap imagesMap, gNamesMap;

The imagesMap key is the image’s name, and its value is an ArrayList of BufferedImage
objects associated with that name. The exact meaning of the name depends on the
type of image loaded:

• For an o image (e.g., "o atomic.gif"), the name is the filename minus its exten-
sion (i.e., atomic), and the ArrayList holds just a single image.

• For an n image (e.g., "n numbers*.gif 6"), the name is the part of the filename
before the * (i.e., numbers), and the ArrayList holds several images (six in this
case).

• For an s image (e.g., "s cars.gif 8"), the name is the filename minus the exten-
sion (i.e., cars), and the ArrayList holds the images pulled from the strip graphic
(eight in this example).

• For a g image (e.g., "g fighter left.gif right.gif still.gif up.gif"), the name
is the string after the g character (i.e., fighter), and the ArrayList is as large as the
sequence of filenames given (four).

The loading of g images also causes updates to the gNamesMap HashMap. Its key is the
g name (e.g., fighter), but its value is an ArrayList of filename strings (minus their
extensions). For instance, the fighter name has an ArrayList associated with it hold-
ing the strings "left", "right", "still", and "up".

Getting an Image
The image accessing interface is uniform and independent of whether o, n, s, or g

images are being accessed.

Three public getImage() methods are in ImagesLoader and getImages(). Their proto-
types are shown here:

BufferedImage getImage(String name);
BufferedImage getImage(String name, int posn);
BufferedImage getImage(String name, String fnmPrefix);
ArrayList getImages(String name);

The single argument version of getImage() returns the image associated with name

and is intended primarily for accessing o images, which only have a single image. If
an n, s, or g image is accessed, then the first image in the ArrayList will be returned.

This is the Title of the Book, eMatter Edition

130 | Chapter 6: Image Loading, Visual Effects, and Animation

The two-argument version of getImage(), which takes an integer position argument,
is more useful for accessing n, s, and g names with multiple images in their
ArrayLists. If the supplied number is negative, then the first image will be returned.
If the number is too large, then it will be reduced modulo the ArrayList size.

The third getImage() method takes a String argument and is aimed at g images. The
String should be a filename, which is used to index into the g name’s ArrayList.

The getImages() method returns the entire ArrayList for the given name.

Using ImagesLoader
ImagesTests employs ImagesLoader by supplying it with an images configuration file:

ImagesLoader imsLoader = new ImagesLoader("imsInfo.txt");

The ImagesLoader constructor assumes the file (and all the images) is in the Images/
subdirectory below the current directory, and everything is packed inside a JAR.

Details about creating the JAR are given at the end of this chapter.

Loading o images is straightforward:

BufferedImage atomic = imsLoader.getImage("atomic");

Loading n, s, and g images usually requires a numerical value:

BufferedImage cats1 = imsLoader.getImage("cats", 1);

A related method is numImages(), which returns the number of images associated
with a given name:

int numCats = imsLoader.numImage("cats");

g images can be accessed using a filename prefix:

BufferedImage leftFighter = imsLoader.getImage("fighter", "left");

If a requested image cannot be found, then null will be returned by the loader.

An alternative way of using ImagesLoader is to create an empty loader (in other
words, no configuration file is supplied to the constructor). Then public methods for
loading o, n, s, and g images can then be called by the application, rather than being
handled when a configuration file is loaded:

ImagesLoader imsLoader = new ImagesLoader(); // empty loader

imsLoader.loadSingleImage("atomic.gif"); // load images at run-rime
imsLoader.loadNumImages("numbers*.gif", 6);
imsLoader.loadStripImages("kaboom.gif", 6);

String[] fnms = {"left.gif", "right.gif", "still.gif", "up.gif"};
imsLoader.loadGroupImages("fighter", fnms);

This is the Title of the Book, eMatter Edition

Loading Images | 131

Implementation Details
A large part of ImagesLoader is given over to parsing and error checking. The top-
level method for parsing the configuration file is loadImagesFile():

private void loadImagesFile(String fnm)
{
 String imsFNm = IMAGE_DIR + fnm;
 System.out.println("Reading file: " + imsFNm);
 try {
 InputStream in = this.getClass().getResourceAsStream(imsFNm);
 BufferedReader br = new BufferedReader(
 new InputStreamReader(in));
 String line;
 char ch;
 while((line = br.readLine()) != null) {
 if (line.length() == 0) // blank line
 continue;
 if (line.startsWith("//")) // comment
 continue;
 ch = Character.toLowerCase(line.charAt(0));
 if (ch == 'o') // a single image

getFileNameImage(line);
 else if (ch == 'n') // a numbered sequence of images

getNumberedImages(line);
 else if (ch == 's') // an images strip

getStripImages(line);
 else if (ch == 'g') // a group of images

getGroupImages(line);
 else
 System.out.println("Do not recognize line: " + line);
 }
 br.close();
 }
 catch (IOException e)
 { System.out.println("Error reading file: " + imsFNm);
 System.exit(1);
 }
} // end of loadImagesFile()

One line of the file is read at a time, and a multiway branch decides which syntactic
form should be processed, depending on the first character on the input line. The
input stream coming from the configuration file is created using Class.

getResourceAsStream(), which is needed when the application and all the resources
all wrapped up inside a JAR.

getFileNameImage() is typical in that it extracts the tokens from the line and pro-
cesses them by calling loadSingleImage():

private void getFileNameImage(String line)
// format is o <fnm>
{ StringTokenizer tokens = new StringTokenizer(line);

This is the Title of the Book, eMatter Edition

132 | Chapter 6: Image Loading, Visual Effects, and Animation

 if (tokens.countTokens() != 2)
 System.out.println("Wrong no. of arguments for " + line);
 else {
 tokens.nextToken(); // skip command label
 System.out.print("o Line: ");

loadSingleImage(tokens.nextToken());
 }
}

loadSingleImage() is the public method for loading an o image. If an entry for the
image’s name doesn’t exist, then imagesMap will be extended with a new key (hold-
ing name) and an ArrayList containing a single BufferedImage:

public boolean loadSingleImage(String fnm)
{
 String name = getPrefix(fnm);

 if (imagesMap.containsKey(name)) {
 System.out.println("Error: " + name + "already used");
 return false;
 }

 BufferedImage bi = loadImage(fnm);
 if (bi != null) {
 ArrayList imsList = new ArrayList();
 imsList.add(bi);
 imagesMap.put(name, imsList);
 System.out.println(" Stored " + name + "/" + fnm);
 return true;
 }
 else
 return false;
}

Image Loading
We arrive at the image-loading method, loadImage(), which is at the heart of the
processing of n and g lines. Its implementation is almost identical to the loadImage()

method described in the section “The Internals of BufferedImage” in Chapter 5:

public BufferedImage loadImage(String fnm)
{
 try {
 BufferedImage im = ImageIO.read(
 getClass().getResource(IMAGE_DIR + fnm));

 int transparency = im.getColorModel().getTransparency();
 BufferedImage copy = gc.createCompatibleImage(
 im.getWidth(), im.getHeight(),
 transparency);

 // create a graphics context
 Graphics2D g2d = copy.createGraphics();

This is the Title of the Book, eMatter Edition

Loading Images | 133

 // reportTransparency(IMAGE_DIR + fnm, transparency);

 // copy image
 g2d.drawImage(im,0,0,null);
 g2d.dispose();
 return copy;
 }
 catch(IOException e) {
 System.out.println("Load Image error for " +
 IMAGE_DIR + "/" + fnm + ":\n" + e);
 return null;
 }
} // end of loadImage() using ImageIO

reportTransparency() is a debugging utility for printing out the transparency value
of the loaded image. It’s useful for checking if the transparency/translucency of the
image has been detected.

As this is the version of code ready to use, reportTransparency() is
commented out. For debugging purposes, you may want to uncom-
ment this method’s invocation.

ImagesLoader contains two other versions of loadImages(), called loadImages2() and
loadImages3(). They play no part in the functioning of the class and are only
included to show how BufferedImages can be loaded using ImageIcon or Image’s
getImage(). The ImageIcon code in loadImages2() uses this code:

ImageIcon imIcon = new ImageIcon(getClass().getResource(IMAGE_DIR + fnm));

Then, it calls makeBIM() to convert its Image into a BufferedImage. makeBIM() is
described in the section “From Image to BufferedImage” in Chapter 5.

The Image code in loadImage3() uses a MediaTracker to delay execution until the
image is fully loaded and then calls makeBIM() to obtain a BufferedImage.

Loading Strip File Images
The images from a strip file are obtained in steps: First, the entire graphic is loaded
from the file, cut into pieces, and each resulting image is placed in an array. This
array is subsequently stored as an ArrayList in imagesMap under the s name:

public BufferedImage[] loadStripImageArray(String fnm, int number)
{
 if (number <= 0) {
 System.out.println("number <= 0; returning null");
 return null;
 }

 BufferedImage stripIm;
 if ((stripIm = loadImage(fnm)) == null) {

This is the Title of the Book, eMatter Edition

134 | Chapter 6: Image Loading, Visual Effects, and Animation

 System.out.println("Returning null");
 return null;
 }

 int imWidth = (int) stripIm.getWidth() / number;
 int height = stripIm.getHeight();
 int transparency = stripIm.getColorModel().getTransparency();

 BufferedImage[] strip = new BufferedImage[number];
 Graphics2D stripGC;

 // each BufferedImage from the strip file is stored in strip[]
 for (int i=0; i < number; i++) {
 strip[i]=gc.createCompatibleImage(imWidth,height,transparency);

 // create a graphics context
 stripGC = strip[i].createGraphics();

 // copy image
 stripGC.drawImage(stripIm,
 0,0, imWidth,height,
 i*imWidth,0, (i*imWidth)+imWidth,height, null);
 stripGC.dispose();
 }
 return strip;
} // end of loadStripImageArray()

drawImage() is used to clip the images out of the strip.

An alternative approach would be to use a CropImageFilter combined
with a FilteredImageSource. However, this is too much work for
images that are positioned so simply in their source graphic.

Applying Image Effects
ImagesTests uses a Swing timer to animate its image effects rather than the active
rendering approach developed in early chapters. This is purely a matter of prevent-
ing the code from becoming overly complicated since the high accuracy offered by
active rendering isn’t required. The visual effects employed here are generally com-
posed from 5 to 10 distinct frames, displayed over the course of one or two seconds;
this implies a need for a maximum of 10 FPS, which is within the capabilities of the
Swing timer.

If necessary, the effects techniques can be easily translated to an active
rendering setting.

The timer-driven framework is illustrated by Figure 6-4. The details of
actionPerformed() and paintComponent() are explained below.

This is the Title of the Book, eMatter Edition

Applying Image Effects | 135

ImagesTests maintains a global variable (counter) that starts at 0 and is incremented
at the end of each paintComponent() call, modulo 100.

The modulo operation isn’t significant but is used to keep the counter
value from becoming excessively large.

counter is used in many places in the code, often to generate input arguments to the
visual effects.

Starting ImagesTests
The main() method for ImagesTests creates a JFrame and adds the ImagesTests JPanel

to it:

public static void main(String args[])
{

Figure 6-4. ImagesTests and the Swing timer

JFrame

paintComponent()
// draw’o’ images visual effects;
// show current image in Imagesplayers,
// counter = (counter +1)% 100;

actionPerformed()
// send tick to ImagesPlayers;
repaint();

JVM repaint request

ImagesTests
JPanel

Swing Timer

tick every period ms
(0.1 sec)

This is the Title of the Book, eMatter Edition

136 | Chapter 6: Image Loading, Visual Effects, and Animation

 // switch on translucency acceleration in Windows
 System.setProperty("sun.java2d.translaccel", "true");
 System.setProperty("sun.java2d.ddforcevram", "true");

 // switch on hardware acceleration if using OpenGL with pbuffers
 // System.setProperty("sun.java2d.opengl", "true");

 ImagesTests ttPanel = new ImagesTests();

 // create a JFrame to hold the test JPanel
 JFrame app = new JFrame("Image Tests");
 app.getContentPane().add(ttPanel, BorderLayout.CENTER);
 app.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 app.pack();
 app.setResizable(false);
 app.setVisible(true);
} // end of main()

More interesting are the calls to setProperty(). If I require hardware acceleration
of translucent images in Windows (e.g., for the PNG files basn6a08.png and
basn6a16.png), then the Java 2D translaccel and ddforcevram flags should be
switched on. They also accelerate alpha composite operations. On Linux/Solaris,
only the opengl flag is required for hardware acceleration, but pbuffers are an
OpenGL extension, so may not be supported by the graphics card. The simplest
solution is to try code with and without the flag and see what happens. The
ImagesTests constructor initiates image loading, creates the ImageSFXs visual effects
object, obtains references to the o images, and starts the timer:

// globals
private ImagesLoader imsLoader; // the image loader
private int counter;
private boolean justStarted;
private ImageSFXs imageSfx; // the visual effects class

private GraphicsDevice gd; // for reporting accl. memory usage
private int accelMemory;
private DecimalFormat df;

public ImagesTests()
{
 df = new DecimalFormat("0.0"); // 1 dp

 GraphicsEnvironment ge =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
 gd = ge.getDefaultScreenDevice();

 accelMemory = gd.getAvailableAcceleratedMemory(); // in bytes
 System.out.println("Initial Acc. Mem.: " +
 df.format(((double)accelMemory)/(1024*1024)) + " MB");

This is the Title of the Book, eMatter Edition

Applying Image Effects | 137

 setBackground(Color.white);
 setPreferredSize(new Dimension(PWIDTH, PHEIGHT));

 // load and initialise the images
 imsLoader = new ImagesLoader(IMS_FILE); // "imsInfo.txt"
 imageSfx = new ImageSFXs();
initImages();

 counter = 0;
 justStarted = true;

 new Timer(PERIOD, this).start(); // PERIOD = 0.1 sec
} // end of ImagesTests()

The GraphicsDevice.getAvailableAcceleratedMemory() call returns the current amount
of available hardware-accelerated memory. The application continues to report this
value as it changes to give an indication of when BufferedImage objects become man-
aged images. This is explained more fully later in this chapter.

Initializing Images
initImages() does three tasks: It stores references to the o images as global vari-
ables, creates ImagesPlayers objects for the n and s images and references the first g

fighter image, its left image:

// global variables
// hold the single 'o' images
private BufferedImage atomic, balls, bee, cheese, eyeChart,
 house, pumpkin, scooter,
 fighter, ufo, owl, basn8, basn16;

// for manipulating the 'n' and 's' images
private ImagesPlayer numbersPlayer, figurePlayer, carsPlayer,
 catsPlayer, kaboomPlayer;

private void initImages()
{
 // initialize the 'o' image variables
 atomic = imsLoader.getImage("atomic");
 balls = imsLoader.getImage("balls");
 bee = imsLoader.getImage("bee");
 cheese = imsLoader.getImage("cheese");
 eyeChart = imsLoader.getImage("eyeChart");
 house = imsLoader.getImage("house");
 pumpkin = imsLoader.getImage("pumpkin");
 scooter = imsLoader.getImage("scooter");
 ufo = imsLoader.getImage("ufo");
 owl = imsLoader.getImage("owl");
 basn8 = imsLoader.getImage("basn6a08");
 basn16 = imsLoader.getImage("basn6a16");

This is the Title of the Book, eMatter Edition

138 | Chapter 6: Image Loading, Visual Effects, and Animation

 /* Initialize ImagesPlayers for the 'n' and 's' images.
 The 'numbers' sequence is not cycled, the other are.
 */
 numbersPlayer = new ImagesPlayer("numbers", PERIOD, 1, false, imsLoader);
 numbersPlayer.setWatcher(this);
 // report the sequence's finish back to ImagesTests

 figurePlayer = new ImagesPlayer("figure", PERIOD, 2, true, imsLoader);
 carsPlayer = new ImagesPlayer("cars", PERIOD, 1, true, imsLoader);
 catsPlayer = new ImagesPlayer("cats", PERIOD, 0.5, true, imsLoader);
 kaboomPlayer = new ImagesPlayer("kaboom", PERIOD, 1.5, true, imsLoader);

 // the 1st 'g' image for 'fighter' is set using a filename prefix
 fighter = imsLoader.getImage("fighter", "left");
} // end of initImages()

The ImagesPlayer class wraps up code for playing a sequence of images. ImagesTests
uses ImagesPlayer objects for animating the n and s figure, cars, kaboom, and cats
images. Each sequence is shown repeatedly.

numbers is also an n type, made up of several images, but its ImagesPlayer is set up a
little differently. The player will call sequenceEnded() in ImagesTests when the end of
the sequence is reached, and it doesn’t play the images again. The callback requires
that ImagesTests implements the ImagesPlayerWatcher interface:

public class ImagesTests extends JPanel
 implements ActionListener, ImagesPlayerWatcher
{ // other methods

 public void sequenceEnded(String imageName)
 // called by ImagesPlayer when its images sequence has finished
 { System.out.println(imageName + " sequence has ended"); }

}

The name of the sequence (i.e., numbers) is passed as an argument to sequenceEnded()

by its player. The implementation in ImagesTests only prints out a message, but it
could do something more useful. For example, the end of an animation sequence
could trigger the start of the next stage in a game.

Updating the Images
Image updating is carried out by imagesUpdate() when actionPerformed() is called
(i.e., every 0.1 second):

public void actionPerformed(ActionEvent e)
// triggered by the timer: update, repaint
{
 if (justStarted) // don't do updates the first time through
 justStarted = false;
 else

imagesUpdate();

This is the Title of the Book, eMatter Edition

Applying Image Effects | 139

 repaint();
} // end of actionPerformed()

private void imagesUpdate()
{
 // numbered images ('n' images); using ImagesPlayer
 numbersPlayer.updateTick();
 if (counter%30 == 0) // restart image sequence periodically
 numbersPlayer.restartAt(2);

 figurePlayer.updateTick();

 // strip images ('s' images); using ImagesPlayer
 carsPlayer.updateTick();
 catsPlayer.updateTick();
 kaboomPlayer.updateTick();

 // grouped images ('g' images)
 // The 'fighter' images are the only 'g' images in this example.
updateFighter();

} // end of imagesUpdate()

imagesUpdate() does nothing to the o images, since they are processed by
paintComponent(); instead, it concentrates on the n, s, and g images.

updateTick() is called in all of the ImagesPlayers (i.e., for numbers, figure, cars, cats,
and kaboom). This informs the players that another animation period has passed in
ImagesTests. This is used to calculate timings and determine which of the images in a
sequence is the current one.

The n numbers images are utilized differently: When the counter value reaches a
multiple of 30, the sequence is restarted at image number 2:

if (counter%30 == 0)
 numbersPlayer.restartAt(2);

The on-screen behavior of numbers is to step through its six images (pictures num-
bered 0 to 5) and stop after calling sequenceEnded() in ImagesTests. Later, when
ImagesTests’s counter reaches a multiple of 30, the sequence will restart at picture 2,
step through to picture 5 and stop again (after calling sequenceEnded() again). This
behavior will repeat whenever the counter reaches another multiple of 30.

With a little more work, behaviors such as this can be quite useful. For example, a
repeating animation may skip its first few frames since they contain startup images.
This is the case for a seated figure that stands up and starts dancing. The numbers
behavior illustrates that ImagesPlayer can do more than endlessly cycle through
image sequences.

updateFighter() deals with the g fighter images, defined in imsInfo.txt:

g fighter left.gif right.gif still.gif up.gif

This is the Title of the Book, eMatter Edition

140 | Chapter 6: Image Loading, Visual Effects, and Animation

Back in initImages(), the global BufferedImage variable, fighter, was set to refer to
the “left” image. updateFighter() cycles through the other images using the counter
value modulo 4:

private void updateFighter()
/* The images are shown using their filename prefixes (although a
 positional approach could be used, which would allow an
 ImagesPlayer to be used.
*/
{ int posn = counter % 4; // number of fighter images;
 // could use imsLoader.numImages("fighter")
 switch(posn) {
 case 0:
 fighter = imsLoader.getImage("fighter", "left");
 break;
 case 1:
 fighter = imsLoader.getImage("fighter", "right");
 break;
 case 2:
 fighter = imsLoader.getImage("fighter", "still");
 break;
 case 3:
 fighter = imsLoader.getImage("fighter", "up");
 break;
 default:
 System.out.println("Unknown fighter group name");
 fighter = imsLoader.getImage("fighter", "left");
 break;
 }
} // end of updateFighter()

This code only updates the fighter reference; the image is not displayed until
paintComponent() is called.

Painting the Images
paintComponent() has four jobs:

• Applies a visual effect to each o image and displays the result

• Requests the current image from each ImagesPlayer and displays it

• Displays any change in the amount of hardware accelerated memory (VRAM)

• Increments the counter (modulo 100)

Here’s the implementation:

public void paintComponent(Graphics g)
{
 super.paintComponent(g);
 Graphics2D g2d = (Graphics2D)g;

 //antialiasing
 g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);

This is the Title of the Book, eMatter Edition

Applying Image Effects | 141

 // smoother (and slower) image transforms (e.g., for resizing)
 g2d.setRenderingHint(RenderingHints.KEY_INTERPOLATION,
 RenderingHints.VALUE_INTERPOLATION_BILINEAR);

 // clear the background
 g2d.setColor(Color.blue);
 g2d.fillRect(0, 0, PWIDTH, PHEIGHT);

 // ------------------ 'o' images ---------------------
 /* The programmer must manually edit the code here in order to
 draw the 'o' images with different visual effects. */

 // drawImage(g2d, atomic, 10, 25); // only draw the image

 rotatingImage(g2d, atomic, 10, 25);
 mixedImage(g2d, balls, 110, 25);
 teleImage = teleportImage(g2d, bee, teleImage, 210, 25);
 flippingImage(g2d, cheese, 310, 25);
 blurringImage(g2d, eyeChart, 410, 25);
 reddenImage(g2d, house, 540, 25);
 zapImage = zapImage(g2d, pumpkin, zapImage, 710, 25);
 brighteningImage(g2d, scooter, 10, 160);
 fadingImage(g2d, ufo, 110, 140);
 negatingImage(g2d, owl, 450, 250);
 mixedImage(g2d, basn8, 650, 250);
 resizingImage(g2d, basn16, 750, 250);

 // --------------- numbered images -------------------
 drawImage(g2d, numbersPlayer.getCurrentImage(), 280, 140);
 drawImage(g2d, figurePlayer.getCurrentImage(), 550, 140);

 // --------------- strip images ----------------------
 drawImage(g2d, catsPlayer.getCurrentImage(), 10, 235);
 drawImage(g2d, kaboomPlayer.getCurrentImage(), 150, 250);
 drawImage(g2d, carsPlayer.getCurrentImage(), 250, 250);

 // --------------- grouped images --------------------
 drawImage(g2d, fighter, 350, 250);

 reportAccelMemory();
 counter = (counter + 1)% 100; // 0-99 is a large enough range
} // end of paintComponent()

The calls to Graphics2D.setRenderingHint() show how Java 2D can make rendering
requests, based around a key and value scheme.

The anti-aliasing rendering hint has no appreciable effect in this example since no
lines, shapes, or text are drawn in the JPanel. Consequently, it might be better not to
bother with it, thereby gaining a little extra speed. The interpolation hint is more
useful though, especially for the resizing operation. For instance, there is a notice-
able improvement in the resized smoothness of basn6a16 with the hint compared to
when the hint is absent.

This is the Title of the Book, eMatter Edition

142 | Chapter 6: Image Loading, Visual Effects, and Animation

The 11 visual effects applied to the o images are explained below. However, all the
methods have a similar interface, requiring a reference to the graphics context, the
name of the image, and the (x, y) coordinate where the modified image will be
drawn.

The n and s images are managed by ImagesPlayer objects, so the current image is
obtained by calling the objects’ getCurrentImage() method. The returned image ref-
erence is passed to drawImage(), which wraps a little extra error processing around
Graphics’ drawImage() method:

private void drawImage(Graphics2D g2d, BufferedImage im, int x, int y)
/* Draw the image, or a yellow box with ?? in it if
 there is no image. */
{
 if (im == null) {
 // System.out.println("Null image supplied");
 g2d.setColor(Color.yellow);
 g2d.fillRect(x, y, 20, 20);
 g2d.setColor(Color.black);
 g2d.drawString("??", x+10, y+10);
 }
 else
 g2d.drawImage(im, x, y, this);
}

Information on Accelerated Memory
reportAccelMemory() prints the total amount of VRAM left and the size of the change
since the last report. This method is called at the end of every animation loop but
only writes output if the VRAM quantity has changed:

private void reportAccelMemory()
// report any change in the amount of accelerated memory
{
 int mem = gd.getAvailableAcceleratedMemory(); // in bytes
 int memChange = mem - accelMemory;

 if (memChange != 0)
 System.out.println(counter + ". Acc. Mem: " +
 df.format(((double)accelMemory)/(1024*1024)) +
 " MB; Change: " +
 df.format(((double)memChange)/1024) + " K");
 accelMemory = mem;
}

A typical run of ImagesTests produces the following stream of messages edited to
emphasize the memory related prints:

DirectDraw surfaces constrained to use vram
Initial Acc. Mem.: 179.6 MB
Reading file: Images/imsInfo.txt
 // many information lines printed by the loader

This is the Title of the Book, eMatter Edition

Applying Image Effects | 143

0. Acc. Mem: 179.6 MB; Change: -1464.8 K
1. Acc. Mem: 178.1 MB; Change: -115.5 K
3. Acc. Mem: 178.0 MB; Change: -113.2 K
4. Acc. Mem: 177.9 MB; Change: -16.3 K
5. Acc. Mem: 177.9 MB; Change: -176.8 K
numbers sequence has ended
6. Acc. Mem: 177.7 MB; Change: -339.0 K
7. Acc. Mem: 177.4 MB; Change: -99.0 K
 // 9 similar accelerated memory lines edited out

18. Acc. Mem: 176.6 MB; Change: -16.2 K
19. Acc. Mem: 176.6 MB; Change: -93.9 K
21. Acc. Mem: 176.5 MB; Change: -48.8 K
25. Acc. Mem: 176.4 MB; Change: -60.0 K
numbers sequence has ended
numbers sequence has ended
numbers sequence has ended
numbers sequence has ended
 // etc.

The images use about 120 K in total and appear to be moved into VRAM at load
time, together with space for other rendering tasks (see line number 0). The large
additional allocation is probably caused by Swing, which uses VolatileImage for its
double buffering.

The later VRAM allocations are due to the rendering carried out by the visual effect
operations, and they stop occurring after the counter reaches 25 (or thereabouts).
Since each loop takes about 0.1 seconds, this means that new VRAM allocations
cease after about 2.5 seconds. VRAM isn’t claimed in every animation loop; for
instance, no VRAM change is reported when the counter is 20, 22, and 24.

This behavior can be understood by considering how the visual effects methods
behave. Typically, about every few animation frames, they generate new images
based on the original o images. The operations are cyclic, i.e., after a certain number
of frames they start over. The longest running cyclic is the fade method, which com-
pletes one cycle after 25 frames (2.5 seconds). Some of the operations write directly
to the screen, and so will not require additional VRAM; others use temporary
BufferedImage variables. These will probably trigger the VRAM allocations. Once
these claims have been granted, the space can be reused by the JVM when the meth-
ods restart their image processing cycle.

Consider if the ddforcevram flag is commented out from main() in ImagesTests:

// System.setProperty("sun.java2d.ddforcevram", "true");

Only the first reduction to VRAM occurs (of about 1.4 MB), and the subsequent
requests are never made. In this case, the benefits of using the flag are fairly mini-
mal, but its utility depends on the mix of graphics operations used in the application.

More information can be obtained about the low-level workings of Java 2D by turn-
ing on logging:

java -Dsun.java2d.trace=log,count,out:log.txt ImagesTests

This is the Title of the Book, eMatter Edition

144 | Chapter 6: Image Loading, Visual Effects, and Animation

This will record all the internal calls made by Java 2D, together with a count of the
calls, to the text file log.txt. Unfortunately, the sheer volume of data can be over-
whelming. However, if only the call counts are recorded, then the data will be more
manageable:

java -Dsun.java2d.trace=count,out:log.txt ImagesTests

The vast majority of the calls, about 92 percent, are software rendering operations
for drawing filled blocks of color (the MaskFill() function). The percentage of hard-
ware-assisted copies (blits) is greater when the ddforcevram flag is switched on. These
operations have “Win32,” “DD,” or “D3D” in their names. Nevertheless, the per-
centage increases from a paltry 0.5 percent to 2.3 percent.

The comparatively few hardware-based operations in the log is a reflection of Java’s
lack of support for image processing operations in Windows. Undoubtedly, this will
improve in future versions of the JVM and depends on the mix of operations that an
application utilizes. It may be worth moving the application to FSEM since
VolatileImages are automatically utilized for page flipping in FSEM.

Displaying Image Sequences
ImagesPlayer is aimed at displaying the sequence of images making up an n, s, or g

set of images.

The ImagesPlayer constructor takes the image’s name, an animPeriod value, a
seqDuration value, a Boolean indicating if the sequence should repeat, and a refer-
ence to the ImagesLoader:

ImagesPlayer player = new ImagesPlayer(imagesName, animPeriod, seqDuration,
 isRepeating, imsLoader);

seqDuration is the total time required to show the entire sequence. Internally, this is
used to calculate showPeriod, the amount of time each image will be the current one
before the next image takes its place. animPeriod states how often ImagesPlayer’s
updateTick() method will be called (the animation period). updateTick() will be
called periodically by the update() method in the top-level animation framework.

The current time is calculated when updateTick() is called and used to calculate
imPosition, which specifies which image should be returned when getCurrentImage()

is called. This process is illustrated in Figure 6-5.

This approach relies on the animation loop calling updateTick() regularly at a fixed
time interval, which is true for ImagesTests. Another implicit assumption is that the
showPeriod time duration will be larger than animPeriod. For example, showPeriod

might be in tenths of seconds even though animPeriod may be in milliseconds. If
showPeriod is less than animPeriod, then rendering progresses too slowly to display all

This is the Title of the Book, eMatter Edition

Displaying Image Sequences | 145

the images within the required seqDuration time, and images (frames) will be
skipped.

When the sequence finishes, a callback, sequenceEnded(), can be invoked on a speci-
fied object implementing the ImagesPlayerWatcher interface. This is done for the n

numbers images:

numbersPlayer = new ImagesPlayer("numbers", PERIOD, 1, false, imsLoader);
numbersPlayer.setWatcher(this);
 // report sequence's finish to ImagesTests

In the case of numbers, animPeriod is PERIOD (0.1 seconds), seqDuration is one sec-
ond, and the sequence will not repeat. Since there are six numbers files, showPeriod
will be about 0.17 seconds and, therefore, (just) greater than the animPeriod.

Though ImagesPlayer is principally aimed at supporting regularly repeating anima-
tions, it also includes public methods for stopping, resuming, and restarting an ani-
mation at a given image position.

Figure 6-5. ImagesPlayer in use

0

1

2

8

showPeriod

images

seqDuration

ImagesPlayer
object

call to
sequenceEnded()

imagesTests animation loop

animPeriod

updateTick()
every

animPeriod

getCurrentImage()

time

This is the Title of the Book, eMatter Edition

146 | Chapter 6: Image Loading, Visual Effects, and Animation

Implementation Details
The ImagesPlayer object maintains an animTotalTime variable, which holds the cur-
rent time (in milliseconds) since the object was created. It is incremented when
updateTick() is called:

public void updateTick()
// I assume that this method is called every animPeriod ms
{
 if (!ticksIgnored) {
 // update total animation time, modulo seq duration
 animTotalTime = (animTotalTime + animPeriod) %
 (long)(1000 * seqDuration);

 // calculate current displayable image position
 imPosition = (int) (animTotalTime / showPeriod);

 if ((imPosition == numImages-1) && (!isRepeating)) { //seq end
 ticksIgnored = true; // stop at this image
 if (watcher != null)
 watcher.sequenceEnded(imName); // call callback
 }
 }
}

imPosition holds the index into the sequence of images. showPeriod is defined as:

showPeriod = (int) (1000 * seqDuration / numImages);

This means that imPosition can only be a value between 0 and
numImages-1.

getCurrentImage() uses imPosition to access the relevant image in the loader:

public BufferedImage getCurrentImage()
{ if (numImages != 0)
 return imsLoader.getImage(imName, imPosition);
 else
 return null;
}

getCurrentImage()’s test of numImages is used to detect problems which may have
arisen when the ImagesPlayer was created, for example, when the image name
(imName) is unknown to the loader.

The ticksIgnored Boolean is employed to stop the progression of a sequence. In
updateTick(), if ticksIgnored is true, then the internal time counter, animTotalTime,
will not be incremented. It is controlled by the stop(), resume(), and restartAt()

methods. stop() sets the ticksIgnored Boolean:

public void stop()
{ ticksIgnored = true; }

This is the Title of the Book, eMatter Edition

Visual Effects for ‘o’ Images | 147

Visual Effects for ‘o’ Images
A quick look at Table 6-1 shows that ImagesTests utilizes a large number of visuals
effects. These can be classified into two groups:

• Animations of image sequences, carried out by ImagesPlayer objects

• Image-processing operations applied to o images

I’ve already described the first group, which leaves a total of 11 effects. These are
applied to the o images inside paintComponent() of ImagesTests. The relevant code
fragment is:

// ------------------ 'o' images ---------------------
/* The programmer must manually edit the code here in order to
 draw the 'o' images with different visual effects. */

// drawImage(g2d, atomic, 10, 25); // only draw the image

rotatingImage(g2d, atomic, 10, 25);
mixedImage(g2d, balls, 110, 25);
teleImage = teleportImage(g2d, bee, teleImage, 210, 25);
flippingImage(g2d, cheese, 310, 25);
blurringImage(g2d, eyeChart, 410, 25);
reddenImage(g2d, house, 540, 25);
zapImage = zapImage(g2d, pumpkin, zapImage, 710, 25);
brighteningImage(g2d, scooter, 10, 160);
fadingImage(g2d, ufo, 110, 140);
negatingImage(g2d, owl, 450, 250);
mixedImage(g2d, basn8, 650, 250);
resizingImage(g2d, basn16, 750, 250);

All the methods have a similar interface, requiring a reference to the graphics con-
text (g2d), the name of the image, and the (x, y) coordinate where the modified image
will be drawn.

The operations can be grouped into eight categories, shown in Table 6-2.

Table 6-2. Visual-effect operations by category

Category Example methods Description

drawImage()-based resizingImage() Make the image grow.

flippingImage() Keep flipping the image horizontally and vertically.

Alpha compositing fadingImage() Smoothly fade the image away to nothing.

Affine transforms rotatingImage() Spin the image in a clockwise direction.

ConvolveOp blurringImage() Make the image increasingly more blurred.

LookupOp reddenImage() Turn the image ever more red, using LookupOp.

RescaleOp reddenImage() Turn the image ever more red , this time using RescaleOp.

brighteningImage() Keep turning up the image’s brightness.

negatingImage() Keep switching between the image and its negative.

This is the Title of the Book, eMatter Edition

148 | Chapter 6: Image Loading, Visual Effects, and Animation

The following subsections are organized according to the eight categories, with the
operations explained in their relevant category. However, some general comments
can be made about them here.

The methods in ImagesTest do not do image processing. Their main task is to use the
current counter value, modulo some constant, to generate suitable arguments to the
image processing methods located in ImageSFXs. The use of the modulo operator
means that the effects will repeat as the counter progresses. For example,
resizingImage() makes the image grow for six frames, at which point the image is
redrawn at its starting size and growth begins again.

The image processing methods in ImagesSFXs do not change the original o images.
Some of the methods write directly to the screen, by calling drawImage() with an
image processing operator. Other methods generate a temporary BufferedImage

object, which is subsequently drawn to the screen. The object exists only until the
end of the method.

teleportImage() and zapImage() are different in that their images are stored globally
in ImagesTests, in the variables teleImage and zapImage. This means that method
processing can be cumulative since earlier changes will be stored and remembered in
the global variables. These operations don’t modify the original o images; they only
modify the teleImage and zapImage variables. The main reason for not changing the
original images is to allow them to be reused as the effects cycles repeat. Another rea-
son is that any changes to the images will cause the JVM to drop them from VRAM.
This would make their future rendering slower for a short time.

Where possible, image operations should be applied through drawImage() directly to
the screen, as this will make hardware acceleration more likely to occur. If a tempo-
rary variable is necessary, then apply the image operation to a copy of the graphic in a
VolatileImage object, forcing processing to be carried out in VRAM. There is a chance
that this will allow the operation to be accelerated, but it may slow things down.

On Windows, the ddforcevram flag appears to force the creation of man-
aged images for temporary BufferedImage variables, so the VolatileImage
approach is unnecessary.

BandCombineOp mixedImage() Keep mixing up the colors of the image.

Pixel effects teleportImage() Make the image fade, groups of pixels at a time.

zapImage() Change the image to a mass of red and yellow pixels.

Table 6-2. Visual-effect operations by category (continued)

Category Example methods Description

This is the Title of the Book, eMatter Edition

Visual Effects for ‘o’ Images | 149

Precalculation Is Faster
The main drawback with image processing operations is their potentially adverse
effect on speed. On Windows, none of the operations, except perhaps for those
using drawImage() resizing and flipping, will be hardware accelerated.

The situation should be considerably better on Solaris/Linux.

In general, visual effects based around image processing operations should be used
sparingly due to their poor performance. In many cases, alternatives using image
sequences can be employed; rotation is an example. The s cars images display an ani-
mated series of rotated car images, which may all be in VRAM since the images are
never modified. By comparison, the rotatingImage() method applied to the atomic
o image makes it rotate, but this is achieved by generating new images at runtime
using affine transformations. On Windows, none of these images would be hardware-
accelerated.

One way of viewing this suggestion is that graphical effects should be precalculated
outside of the application and stored as ready-to-use images. The cost/complexity of
image processing is, therefore, separated from the executing game.

drawImage()-Based Processing
Several variants of drawImage(), useful for visual effects such as scaling and flipping,
are faster than the corresponding BufferedImageOp operations.

The version of drawImage() relevant for resizing is:

boolean drawImage(Image im, int x, int y,
 int width, int height, ImageObserver imOb)

The width and height arguments scale the image so it has the required dimensions.
By default, scaling uses a nearest neighbor algorithm; the color of an on-screen pixel
is based on the scaled image pixel that is nearest to the on-screen one. This tends to
make an image look blocky if it is enlarged excessively. A smoother appearance,
though slower to calculate, can be achieved with bilinear interpolation. The color of
an on-screen pixel is derived from a combination of all the scaled image pixels that
overlap the on-screen one. Bilinear interpolation can be requested at the start of
paintComponent():

g2d.setRenderingHint(RenderingHints.KEY_INTERPOLATION,
 RenderingHints.VALUE_INTERPOLATION_BILINEAR);

Here’s the resizingImage() method in ImagesTests:

private void resizingImage(Graphics2D g2d, BufferedImage im,
 int x, int y)

This is the Title of the Book, eMatter Edition

150 | Chapter 6: Image Loading, Visual Effects, and Animation

{ double sizeChange = (counter%6)/2.0 + 0.5; // gives 0.5 -- 3
 imageSfx.drawResizedImage(g2d, im, x, y, sizeChange, sizeChange);
}

The sizeChange value is calculated from the counter value so it increases from 0.5 to
3.0, in steps of 0.5, and then restarts. This causes the image (basn6a16) to start at
half-size and grow to three times its actual dimensions.

The two copies of sizeChange passed into drawResizedImage() in ImageSFXs become
widthChange and heightChange. After some error-checking, this is the method’s resiz-
ing code:

int destWidth = (int) (im.getWidth() * widthChange);
int destHeight = (int) (im.getHeight() * heightChange);

// adjust top-left (x,y) coord of resized image so remains centered
int destX = x + im.getWidth()/2 - destWidth/2;
int destY = y + im.getHeight()/2 - destHeight/2;

g2d.drawImage(im, destX, destY, destWidth, destHeight, null);

The drawing coordinate (destX, destY) is adjusted so the image’s center point doesn’t
move on-screen when the image is resized.

Here is the version of drawImage() suitable for image flipping:

boolean drawImage(Image im, int dx1, int dy1, int dx2, int dy2,
 int sx1, int sy1, int sx2, int sy2,
 ImageObserver imOb)

The eight integers represent four coordinates: (sx1, sy1) and (sx2, sy2) are the top-left
and bottom-right corners of the image, and (dx1, dy1) and (dx2, dy2) are the top-left
and bottom-right corners of a rectangle somewhere on-screen where those points
will be drawn. This idea is illustrated by Figure 6-6.

Usually, the image coordinates are (0, 0) and (width, height) so the entire image is
drawn. The versatility comes in the range of possibilities for the on-screen rectangle;
it can be used to scale, stretch, and flip.

Figure 6-6. Drawing an image into an on-screen rectangle

(sx1, sy1)

(sx2, sy2)

source
image

destination
rectangle

(dx1, dy1)

(dx2, dy2)

This is the Title of the Book, eMatter Edition

Visual Effects for ‘o’ Images | 151

flippingImage() in ImagesTests calls getFlippedImage() in ImageSFXs with an ImageSFXs

flipping constant:

private void flippingImage(Graphics2D g2d, BufferedImage im,
 int x, int y)
{ BufferedImage flipIm = null;
 if (counter%4 == 0)
 flipIm = im; // no flipping
 else if (counter%4 == 1)
 flipIm = imageSfx.getFlippedImage(im, ImageSFXs.HORIZONTAL_FLIP);
 else if (counter%4 == 2)
 flipIm = imageSfx.getFlippedImage(im, ImageSFXs.VERTICAL_FLIP);
 else
 flipIm = imageSfx.getFlippedImage(im, ImageSFXs.DOUBLE_FLIP);

 drawImage(g2d, flipIm, x, y);
}

The counter value is manipulated so the image (cheese) will be repeatedly drawn nor-
mally, flipped horizontally, vertically, then flipped both ways. The image returned
from getFlippedImage() is drawn by drawImage(). This code does not make further
use of flipIm, but it might be useful to store flipped copies of images for use later.

getFlippedImage() creates an empty copy of the source BufferedImage and then
writes a flipped version of the image into it by calling renderFlip():

public BufferedImage getFlippedImage(BufferedImage im,int flipKind)
{
 if (im == null) {
 System.out.println("getFlippedImage: input image is null");
 return null;
 }

 int imWidth = im.getWidth();
 int imHeight = im.getHeight();
 int transparency = im.getColorModel().getTransparency();

 BufferedImage copy =
 gc.createCompatibleImage(imWidth, imHeight, transparency);
 Graphics2D g2d = copy.createGraphics();

 // draw in the flipped image
renderFlip(g2d, im, imWidth, imHeight, flipKind);

 g2d.dispose();

 return copy;
} // end of getFlippedImage()

renderFlip() is a multiway branch based on the flipping constant supplied in the
top-level call:

private void renderFlip(Graphics2D g2d, BufferedImage im,
 int imWidth, int imHeight, int flipKind)
{

This is the Title of the Book, eMatter Edition

152 | Chapter 6: Image Loading, Visual Effects, and Animation

 if (flipKind == VERTICAL_FLIP)
 g2d.drawImage(im, imWidth, 0, 0, imHeight,
 0, 0, imWidth, imHeight, null);
 else if (flipKind == HORIZONTAL_FLIP)
 g2d.drawImage(im, 0, imHeight, imWidth, 0,
 0, 0, imWidth, imHeight, null);
 else // assume DOUBLE_FLIP
 g2d.drawImage(im, imWidth, imHeight, 0, 0,
 0, 0, imWidth, imHeight, null);
}

To illustrate how the flipping works, consider the vertical flip shown in Figure 6-7.

ImageSFXs contains two flipping methods that draw directly to the screen:
drawVerticalFlip() and drawHorizFlip() are not used by ImagesTests.

Alpha Compositing
Compositing is the process of combining two images. The existing image (often the
screen’s drawing surface) is called the destination, and the image being rendered onto
it is the source. Java 2D offers eight compositing rules which specify various ways
that the source can be combined with the destination. The most useful is probably
SRC_OVER (source over destination); the others include DST_OVER (destination over
source), and SRC_IN, which clips the source to be visible only inside the boundaries of
the destination.

Java 2D’s AlphaComposite class adds another element to the compositing rules: the
alpha values for the source and destination. This can be somewhat confusing, espe-
cially when both images have alpha channels. However, for the SRC_OVER case, when
the destination image is opaque (e.g., the on-screen background), the alpha applies
only to the source image. An alpha value of 0.0f makes the source disappear, and 1.0f

makes it completely opaque; various degrees of translucency exist between.

Figure 6-8 shows the result of applying three different alpha values to a rectangle.

fadingImage() in ImagesTests hacks together an alpha value based on counter, such
that as the counter increases toward 25, the alpha value goes to 0. The result is that

Figure 6-7. A vertical flip

(sx1, sy1) = (0, 0)

(sx2, sy2) = (imWidth, imHeight)

source
image

destination
rectangle

(dx1, dy1) = (imWidth, 0)

(dx2, dy2) = (0, imHeight)

This is the Title of the Book, eMatter Edition

Visual Effects for ‘o’ Images | 153

the image (ufo in ImagesTests) will fade in 2.5 seconds (25 frames, each of 0.1 sec-
ond) and then spring back into view as the process starts again:

private void fadingImage(Graphics2D g2d, BufferedImage im,
 int x, int y)
{ float alpha = 1.0f - (((counter*4)%100)/100.0f);
 imageSfx.drawFadedImage(g2d, ufo, x, y, alpha);
}

drawFadedImage() in ImageSFXs does various forms of error checking, and then cre-
ates an AlphaComposite object using SRC_OVER and the alpha value:

Composite c = g2d.getComposite(); // backup the old composite

g2d.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER, alpha));
g2d.drawImage(im, x, y, null);

g2d.setComposite(c);
 // restore old composite so it doesn't mess up future rendering

g2d is the screen’s graphics context, and its composite is modified prior to calling
drawImage(). Care must be taken to back up the existing composite so it can be
restored after the draw.

Affine Transforms
rotatingImage() in ImagesTests rotates the image (atomic) in steps of 10 degrees in a
clockwise direction, using the image’s center as the center of rotation.

The ImageSFXs method getRotatedImage() utilizes an AffineTransform operation to
rotate a copy of the image, which is returned to rotatingImage() and drawn:

private void rotatingImage(Graphics2D g2d, BufferedImage im, int x, int y)
{ int angle = (counter * 10) % 360;
 BufferedImage rotIm = imageSfx.getRotatedImage(im, angle);
 drawImage(g2d, rotIm, x, y);
}

getRotatedImage() makes a new BufferedImage, called dest. An AffineTransform object
is created, which rotates dest’s coordinate space by angle degrees counterclockwise

Figure 6-8. Alpha values applied to a rectangle

alpha = 0.0 0.5 1.0

This is the Title of the Book, eMatter Edition

154 | Chapter 6: Image Loading, Visual Effects, and Animation

around its center. The source image is copied in, which makes it appear to be rotated
by angle degrees clockwise around the center of dest:

public BufferedImage getRotatedImage(BufferedImage src, int angle)
{
 if (src == null) {
 System.out.println("getRotatedImage: input image is null");
 return null;
 }

 int transparency = src.getColorModel().getTransparency();
 BufferedImage dest = gc.createCompatibleImage(
 src.getWidth(), src.getHeight(), transparency);
 Graphics2D g2d = dest.createGraphics();

 AffineTransform origAT = g2d.getTransform(); // save original

 // rotate the coord. system of the dest. image around its center
 AffineTransform rot = new AffineTransform();
 rot.rotate(Math.toRadians(angle), src.getWidth()/2, src.getHeight()/2);
 g2d.transform(rot);

 g2d.drawImage(src, 0, 0, null); // copy in the image

 g2d.setTransform(origAT); // restore original transform
 g2d.dispose();

 return dest;
}

The AffineTransform object (rot) could be composed from multiple transforms—
such as translations, scaling, and shearing—by applying more operations to it. For
instance, translate(), scale(), and shear() applied to rot will be cumulative in
effect. Ordering is important since a translation followed by a rotation is not the
same as a rotation followed by a translation.

The main problem with this approach is the image is transformed within the
image space of dest, which acts as a clipping rectangle. Thus, if the image is trans-
lated/rotated/sheared outside dest’s boundaries, for example, beyond the bottom-
right corner. Then, the image will be clipped or perhaps disappear completely
This problem can occur even with rotations around dest’s center; a look at the
rotating atomic image highlights the problem.

The simplest solution is a careful design of the graphic to ensure that its opaque
areas all fall within a rotation circle placed at the center of the image file, with a
radius constrained by the file’s dimensions. For example, image (a) in Figure 6-9 is
safe to rotate around the file’s center point, and image (b) is not.

When an image is rotated, areas in the destination image may not correspond to pixels
in the source. For instance, in image (b) in Figure 6-9, strips on the left and right of the
rotated image don’t correspond to pixels in the original. They are drawn transparently if

This is the Title of the Book, eMatter Edition

Visual Effects for ‘o’ Images | 155

the original image has an alpha channel. However, if the original image is opaque (e.g., a
JPEG), then the pixels will be colored black.

For example, the balls.jpg image can be rotated with:

rotatingImage(g2d, balls, 110, 25);

Figure 6-10 shows the image after being rotated clockwise; black strips are visible on
the left and right.

ConvolveOp Processing
A convolution operator calculates the color of each pixel in a destination image in
terms of a combination of the colors of the corresponding pixel in the source image,
and its neighbors. A matrix (called a kernel) specifies the neighbors and gives weights
for how their colors should be combined with the source pixel to give the destina-
tion pixel value. The kernel must have an odd number of rows and columns (e.g., 3 ×

3) so the central cell can represent the source pixel (e.g., cell [1, 1]) and the surround-
ing cells its neighbors.

Figure 6-9. Safe and unsafe rotations

Figure 6-10. Rotation of an opaque image

transparent area

safe rotation

unsafe rotation

a

b

This is the Title of the Book, eMatter Edition

156 | Chapter 6: Image Loading, Visual Effects, and Animation

Convolution is carried out by applying the kernel to every pixel in the source, gener-
ating destination pixels as it traverses the image. The example in Figure 6-11 is using
a 3 × 3 kernel.

Figure 6-12 is a typical 3 × 3 kernel.

The 1/9 values are the weights. This kernel combines the source pixel and its eight
neighbors using equal weights, which causes the destination pixel to be a combina-
tion of all those pixel’s colors, resulting in an overall blurry image.

The weights should add up to 1 in order to maintain the brightness of the destina-
tion image. A total weight of more than 1 will make the image brighter, and less than
1 will darken it. The resulting pixel color values are constrained to be between 0 and
255; values higher than 255 are converted to 255.

One tricky aspect is what to do at the edges of the image. For example, what hap-
pens with the source pixel at (0, 0), which has no left and top neighbors? In most
image processing packages, the solution is to treat the graphic as a wraparound so
the pixels at the bottom of the image are used as the top neighbors, and the pixels at
the right edge as left neighbors. Unfortunately, Java 2D is a little lacking in this area
since its edge behaviors are simplistic. Either the destination pixel (e.g., [0, 0]) is auto-
matically filled with black or set to contain the source pixel value unchanged. These
possibilities are denoted by the ConvolveOp constants EDGE_ZERO_FILL and EDGE_NO_OP.

Figure 6-11. Convolution from source to destination

Figure 6-12. A kernel for blurring an image

S

S S S

S S S

S S D

source image destination image

1–
9

1–
9

1–
9

1–
9

1–
9

1–
9

1–
9

1–
9

1–
9

This is the Title of the Book, eMatter Edition

Visual Effects for ‘o’ Images | 157

Aside from blurring, convolution is utilized for edge detection and sharpening.
Examples of both are given in Figure 6-13.

The edge detection kernel highlights the places where the colors in the image change
sharply (usually at the boundaries between parts of the images), drawing them in
white or gray. Meanwhile, large blocks of similar color will be cast into gloom. The
result is a destination image showing only the edges between areas in the original
picture.

The sharpening kernel is a variant of the edge detection matrix, with more weight
applied to the source pixel, making the overall weight 1.0 so the destination image’s
brightness is maintained. The result is that the original image will remain visible, but
the edges will be thicker and brighter.

ImageSFXs contains a drawBluredImage() method, which applies a precalculated blur-
ring kernel:

private ConvolveOp blurOp; // global for image blurring

private void initEffects()
// Create pre-defined ops for image negation and blurring.
{ // image negative, explained later...

 // blur by convolving the image with a matrix
 float ninth = 1.0f / 9.0f;

 float[] blurKernel = { // the 'hello world' of Image Ops :)
 ninth, ninth, ninth,
 ninth, ninth, ninth,
 ninth, ninth, ninth
 };
 blurOp = new ConvolveOp(
 new Kernel(3, 3, blurKernel), ConvolveOp.EDGE_NO_OP, null);
}

public void drawBlurredImage(Graphics2D g2d,
 BufferedImage im, int x, int y)

Figure 6-13. Edge detection and sharpening kernels

0.0 -1.0 0.0

-1.0 4.0 -1.0

0.0 -1.0 0.0

0.0 -1.0 0.0

-1.0 5.0 -1.0

0.0 -1.0 0.0

edge detection kernel sharpening kernel

This is the Title of the Book, eMatter Edition

158 | Chapter 6: Image Loading, Visual Effects, and Animation

// blurring with a fixed convolution kernel
{ if (im == null) {
 System.out.println("getBlurredImage: input image is null");
 return;
 }
 g2d.drawImage(im, blurOp, x, y); // use predefined ConvolveOp
}

When the ImageSFXs object is created, initEffects() is called to initialize the
blurOp ConvolveOp object. A 3 × 3 array of floats is used to create the kernel. The
EDGE_NO_OP argument states that pixels at the edges of the image will be unaffected
by the convolution.

drawBlurredImage() uses the version of drawImage() which takes a BufferedImageOp

argument, so the modified image is written directly to the screen.

This coding is satisfactory, but I require an image to become increasingly blurry over
a period of several frames (see “eyeChart” in Figure 6-1). One solution would be to
store the destination image at the end of the convolution and apply blurring to it
again during the next frame. Unfortunately, ConvolveOps cannot be applied in place,
so a new destination image must be created each time. Instead, my approach is to
generate increasingly blurry ConvolveOps in each frame and apply this to the original
image via drawImage().

Increasingly blurry kernels are larger matrices that generate a destination pixel based
on more neighbors. I begin with a 3 × 3 matrix, then a 5 × 5, and so on, increasing to
15 × 15. The matrices must have odd length dimensions so there’s a center point.
The weights in the matrix must add up to 1 so, for instance, the 5 × 5 matrix will be
filled with 1/25s.

The top-level method in ImagesTests is blurringImage():

private void blurringImage(Graphics2D g2d, BufferedImage im, int x, int y)
{
 int fadeSize = (counter%8)*2 + 1; // gives 1,3,5,7,9,11,13,15
 if (fadeSize == 1)
 drawImage(g2d, im, x, y); // start again with original image
 else
 imageSfx.drawBlurredImage(g2d, im, x, y, fadeSize);
}

drawBlurredImage() in ImageSFXs takes a fadeSize argument, which becomes the row
and column lengths of the kernel. The method is complicated by ensuring the kernel
dimensions are odd, not too small, and not bigger than the image:

public void drawBlurredImage(Graphics2D g2d,
 BufferedImage im, int x, int y, int size)
/* The size argument is used to specify a size*size blur kernel,
 filled with 1/(size*size) values. */
{
 if (im == null) {
 System.out.println("getBlurredImage: input image is null");

This is the Title of the Book, eMatter Edition

Visual Effects for ‘o’ Images | 159

 return;
 }
 int imWidth = im.getWidth();
 int imHeight = im.getHeight();
 int maxSize = (imWidth > imHeight) ? imWidth : imHeight;

 if ((maxSize%2) == 0) // if even
 maxSize--; // make it odd

 if ((size%2) == 0) { // if even
 size++; // make it odd
 System.out.println(
 "Blur size must be odd; adding 1 to make size = " + size);
 }

 if (size < 3) {
 System.out.println("Minimum blur size is 3");
 size = 3;
 }
 else if (size > maxSize) {
 System.out.println("Maximum blur size is " + maxSize);
 size = maxSize;
 }

 // create the blur kernel
 int numCoords = size * size;
 float blurFactor = 1.0f / (float) numCoords;

 float[] blurKernel = new float[numCoords];
 for (int i=0; i < numCoords; i++)
 blurKernel[i] = blurFactor;

 ConvolveOp blurringOp = new ConvolveOp(
 new Kernel(size, size, blurKernel),
 ConvolveOp.EDGE_NO_OP, null); // leaves edges unaffected
 // ConvolveOp.EDGE_ZERO_FILL, null); //edges filled with black

 g2d.drawImage(im, blurringOp, x, y);
} // end of drawBlurredImage() with size argument

A drawback with larger kernels is that more of the pixels at the edges of the source
image will be affected by the edge behavior constants. With EDGE_NO_OP, an increas-
ingly thick band of pixels around the edges will be unaffected. With EDGE_ZERO_FILL,
the band will be pitch black. Figure 6-14 shows both effects when blurring is applied
to the balls image with:

blurringImage(g2d, balls, 110, 25);

The black-edged image was generated after the ConvolveOp.EDGE_NO_OP constant was
replaced by ConvolveOp.EDGE_ZERO_FILL in the call to ConvolveOp’s constructor in
drawBlurredImage().

This is the Title of the Book, eMatter Edition

160 | Chapter 6: Image Loading, Visual Effects, and Animation

There’s a need for more edge behavior options in future versions of the ConvolveOp

class.

LookupOp Processing
At the heart of LookupOp is the representation of a pixel using the sRGB color space,
which stores the red, green, blue, and alpha channels in 8 bits (1 byte) each, snugly
fitting them all into a single 32-bit integer. This is shown in Figure 6-15.

The red, green, blue, and alpha components can each have 256 different values (28),
with 255 being full on. For the alpha part, 0 means fully transparent, and 255 means
fully opaque.

A LookupOp operation utilizes a lookup table with 256 entries. Each entry contains a
color value (i.e., an integer between 0 and 255), so the table defines a mapping from
the image’s existing color values to new values.

The simplest form of LookupOp is one that uses one lookup table. The example below
converts a color component value i to (255-i) and is applied to all the channels in
the image. For example, a red color component of 0 (no red) is mapped to 255 (full
on red). In this way, the table inverts the color scheme:

short[] invert = new short[256];
for (int i = 0; i < 256; i++)
 invert[i] = (short)(255 - i);

Figure 6-14. Edge behaviors with ConvolveOp

Figure 6-15. The sRGB color space format

EDGE_NO_OP EDGE_ZERO_FILL

int

bit 32 bit 24 bit 16 bit 8 bit 0

alpha red green blue

This is the Title of the Book, eMatter Edition

Visual Effects for ‘o’ Images | 161

LookupTable table = new ShortLookupTable(0, invert);
LookupOp invertOp = new LookupOp(table, null);

g2d.drawImage(im, invertOp, x, y); // draw the image

The ShortLookupTable constructor is supplied with an array to initialize the table
mapping. A ByteLookupTable is built with an array of bytes.

A visual way of understanding the mapping defined by invert[] is shown in
Figure 6-16.

The table defines a straight line in this case, but a table can hold any mapping from
source color component values to destination values. It’s more common to utilize
several lookup tables, using different ones for different channels. Also, no mapping is
generally applied to an alpha channel of a transparent or translucent image.

reddenImage() in ImagesTests draws its source image with increasing amounts of red
over a period of 20 frames and then starts again (e.g., see the house image). The origi-
nal image is unaffected since the LookupOp writes directly to the screen via drawImage().
To increase the effect, as the redness increases, the amount of green and blue
decreases, necessitating two lookup tables: one for red and one for green and blue.
Any alpha component in the image is left unaffected:

private void reddenImage(Graphics2D g2d, BufferedImage im,
 int x, int y)
{
 float brightness = 1.0f + (((float) counter%21)/10.0f);
 // gives values in the range 1.0-3.0, in steps of 0.1
 if (brightness == 1.0f)
 drawImage(g2d, im, x, y); // start again with original image
 else
 imageSfx.drawRedderImage(g2d, im, x, y, (float) brightness);
}

Figure 6-16. The invert[] lookup table

255

255

destination
value

source value

This is the Title of the Book, eMatter Edition

162 | Chapter 6: Image Loading, Visual Effects, and Animation

A minor hassle, illustrated by drawRedderImage(), is dealing with opaque versus
nonopaque images. An opaque image requires two lookup tables (one for red, one
for green and blue), and a nonopaque image requires a third lookup table for the
alpha channel. This separation occurs in all LookupOp methods that are passed both
types of image. The same issue arises with RescaleOp and BandCombineOp operations.
drawRedderImage() in ImageSFXs changes the colors, based on a brightness value that
ranges from 1.0 to 3.0:

public void drawRedderImage(Graphics2D g2d, BufferedImage im,
 int x, int y, float brightness)
/* Draw the image with its redness is increased, and its greenness
 and blueness decreased. Any alpha channel is left unchanged.
*/
{ if (im == null) {
 System.out.println("drawRedderImage: input image is null");
 return;
 }

 if (brightness < 0.0f) {
 System.out.println("Brightness must be >= 0.0f;set to 0.0f");
 brightness = 0.0f;
 }
 // brightness may be less than 1.0 to make the image less red

 short[] brighten = new short[256]; // for red channel
 short[] lessen = new short[256]; // for green and blue channels
 short[] noChange = new short[256]; // for the alpha channel

 for(int i=0; i < 256; i++) {
 float brightVal = 64.0f + (brightness * i);
 if (brightVal > 255.0f)
 brightVal = 255.0f;
 brighten[i] = (short) brightVal;
 lessen[i] = (short) ((float)i / brightness);
 noChange[i] = (short) i;
 }

 short[][] brightenRed;
 if (hasAlpha(im)) {
 brightenRed = new short[4][];
 brightenRed[0] = brighten; // for the red channel
 brightenRed[1] = lessen; // for the green channel
 brightenRed[2] = lessen; // for the blue channel
 brightenRed[3] = noChange; // for the alpha channel
 // without this the LookupOp fails; a bug (?)
 }
 else { // not transparent
 brightenRed = new short[3][];
 brightenRed[0] = brighten; // red
 brightenRed[1] = lessen; // green
 brightenRed[2] = lessen; // blue
 }

This is the Title of the Book, eMatter Edition

Visual Effects for ‘o’ Images | 163

 LookupTable table = new ShortLookupTable(0, brightenRed);
 LookupOp brightenRedOp = new LookupOp(table, null);

 g2d.drawImage(im, brightenRedOp, x, y);
} // end of drawRedderImage()

The three lookup tables—brighten[], lessen[], and noChange[]—are shown in
Figure 6-17 when brightness has the value 2.0. As the value increases, more of the
red color components will be mapped to full on and the blue and green color values
will be lowered further.

A 2D array, brightenRed[][], is declared and filled with three or four tables depend-
ing on if the image is opaque (i.e., only has RGB components) or also has an alpha
channel. This array is used to create a LookupOp table called table, and then the oper-
ation proceeds.

A LookupOp operation will raise an exception if the source image has an alpha chan-
nel and the operation only contains three tables. Therefore, check for the presence of
an alpha band in the image, which is achieved with hasAlpha():

public boolean hasAlpha(BufferedImage im)
// does im have an alpha channel?
{
 if (im == null)
 return false;

 int transparency = im.getColorModel().getTransparency();

 if ((transparency == Transparency.BITMASK) ||
 (transparency == Transparency.TRANSLUCENT))
 return true;
 else
 return false;
}

Figure 6-17. Lookup tables used in drawReddenImage()

255

255

source value

96

64

255

255

128

255

255

brighten[] table lessen[] table noChange[] table

destination
value

This is the Title of the Book, eMatter Edition

164 | Chapter 6: Image Loading, Visual Effects, and Animation

A color model may use BITMASK transparency (found in GIFs),
TRANSULENT (as in translucent PNGs), or OPAQUE (as in JPEGs).

RescaleOp Processing
The rescaling operation is a specialized form of LookupOp. As with a lookup, a pixel is
considered to be in sRGB form; the red, green, blue (and alpha) channels are each
stored in 8 bits (1 byte), allowing the color components to range between 0 and 255.

Instead of specifying a table mapping, the new color component is defined as a lin-
ear equation involving a scale factor applied to the existing color value, plus an
optional offset:

colordest = scaleFactor*colorsource + offset

The destination color is bounded to be between 0 and 255.

Any LookupOp table that can be defined by a straight line can be rephrased as a
RescaleOp operation. Conversely, any RescaleOp can be written as a LookupOp.
LookupOp is more general since the table mapping permits nonlinear relationships
between the source and destination color components.

Since LookupOp is functionally a superset of RescaleOp and probably
more efficient to execute, why Java 2D offers RescaleOp at all is
unclear.

drawReddenImage(), which was defined as a LookupOp using three (or four) tables, can
be rephrased as a RescaleOp consisting of three (or four) rescaling equations. Each
equation has two parts, which are a scale factor and an offset:

RescaleOp brigherOp;
if (hasAlpha(im)) {
 float[] scaleFactors = {brightness, 1.0f/brightness, 1.0f/brightness, 1.0f};
 // don't change alpha
 // without the 1.0f the RescaleOp fails; a bug (?)
 float[] offsets = {64.0f, 0.0f, 0.0f, 0.0f};
brigherOp = new RescaleOp(scaleFactors, offsets, null);

}
else { // not transparent
 float[] scaleFactors = {brightness, 1.0f/brightness, 1.0f/brightness};
 float[] offsets = {64.0f, 0.0f, 0.0f};
brigherOp = new RescaleOp(scaleFactors, offsets, null);

}
g2d.drawImage(im, brigherOp, x, y);

This is the Title of the Book, eMatter Edition

Visual Effects for ‘o’ Images | 165

The RescaleOp constructor takes an array of scale factors, an array of offsets, and
optional rendering hints as its arguments.

The three equations are employed in the code fragment:

• red_colordest = brightness*red_colorsource + 64

• green/blue_colordest = (1/brightness)*green/blue_colorsource + 0

• alpha_colordest = 1*alpha_colorsource + 0

The new red color component is bounded at 255 even if the equation returns a larger
value. The green/blue_color equation is used for the green and blue channels.

These equations are the same as the LookupOp tables in the first version
of drawReddenImage().

As with LookupOp, the right number of scale factors and offsets must be supplied
according to the number of channels in the image. For instance, if only three equa-
tions are defined for an image with an alpha channel, then an exception will be
raised at runtime when the operation is applied.

Brightening the image

ImagesTests’s brigheningImage() increases the brightness of its image over a period
of nine frames and starts again with the original colors. (Take a look at the scooter
image in ImageTests for an example.) The original image is unaffected since the
operation writes to the screen. The brightness only affects the RGB channels; the
alpha component remains unchanged:

private void brighteningImage(Graphics2D g2d, BufferedImage im,
 int x, int y)
{ int brightness = counter%9; // gives 0-8
 if (brightness == 0)
 drawImage(g2d, im, x, y); // start again with original image
 else
 imageSfx.drawBrighterImage(g2d, im, x, y, (float) brightness);
}

The ImageSFXs method, drawBrighterImage(), uses a RescaleOp based around the fol-
lowing equations:

• RGB_colordest = brightness*RGB_colorsource + 0

• alpha_colordest = 1*alpha_colorsource + 0

The RGB_color equation is used for the red, green, and blue channels. When the
source image has no alpha, I can utilize a RescaleOp constructor that takes a single
scale factor and offset. It will automatically apply the equation to all the RGB channels:

public void drawBrighterImage(Graphics2D g2d, BufferedImage im,
 int x, int y, float brightness)

This is the Title of the Book, eMatter Edition

166 | Chapter 6: Image Loading, Visual Effects, and Animation

{ if (im == null) {
 System.out.println("drawBrighterImage: input image is null");
 return;
 }
 if (brightness < 0.0f) {
 System.out.println("Brightness must be >= 0.0f; set to 0.5f");
 brightness = 0.5f;
 }
 RescaleOp brigherOp;
 if (hasAlpha(im)) {
 float[] scaleFactors = {brightness, brightness, brightness, 1.0f};
 float[] offsets = {0.0f, 0.0f, 0.0f, 0.0f};

brigherOp = new RescaleOp(scaleFactors, offsets, null);
 }
 else // not transparent

brigherOp = new RescaleOp(brightness, 0, null);

 g2d.drawImage(im, brigherOp, x, y);
} // end of drawBrighterImage()

Negating the image

ImagesTests’s negatingImage() keeps switching between the original image and its
negative depending on the counter value. (See the owl image in ImageTests to see
this in action—e.g., as shown in Figure 6-1.) A color component value, i, is con-
verted to (255-i) in the RGB channels, but the alpha is untouched:

private void negatingImage(Graphics2D g2d, BufferedImage im, int x, int y)
{
 if (counter%10 < 5) // show the negative
 imageSfx.drawNegatedImage(g2d, im, x, y);
 else // show the original
 drawImage(g2d, im, x, y);
}

When the ImageSFXs object is first created, the negative rescaling operations, negOp

and negOpTrans, are predefined. negOpTrans is used when the image has an alpha
channel, and contains these equations:

• RGB_colordest = -1*RGB_colorsource + 255

• alpha_colordest = 1*alpha_colorsource + 0

The RGB_color equation is applied to the red, green, and blue channels.

negOp is for opaque images, so only requires the RGB equation:

// global rescaling ops for image negation
private RescaleOp negOp, negOpTrans;

private void initEffects()
{
 // image negative.
 // Multiply each color value by -1.0 and add 255
negOp = new RescaleOp(-1.0f, 255f, null);

This is the Title of the Book, eMatter Edition

Visual Effects for ‘o’ Images | 167

 // image negative for images with transparency
 float[] negFactors = {-1.0f, -1.0f, -1.0f, 1.0f};
 // don't change the alpha
 float[] offsets = {255f, 255f, 255f, 0.0f};
negOpTrans = new RescaleOp(negFactors, offsets, null);

 // other initialization code
}

public void drawNegatedImage(Graphics2D g2d, BufferedImage im, int x, int y)
{
 if (im == null) {
 System.out.println("drawNegatedImage: input image is null");
 return;
 }
 if (hasAlpha(im))
 g2d.drawImage(im, negOpTrans, x, y); // predefined RescaleOp
 else
 g2d.drawImage(im, negOp, x, y);
} // end of drawNegatedImage()

BandCombineOp Processing
LookupOp and RescaleOp specify transformations that take a single color component in
a pixel (e.g., the red color) and maps it to a new value. A BandCombineOp generalizes
this idea to allow a new color component to be potentially defined in terms of a com-
bination of all the color components in the source pixel.

The destination pixel {redN, greenN, blueN, alphaN} is created from some combina-
tion of the source pixel {red, green, blue, alpha}, where the combination is defined
using matrix multiplication, as in Figure 6-18.

Here’s an example equation:

redNsample = m11*redsample + m12*greensample + m13*bluesample +
m14*alphasample

Figure 6-18. BandCombineOp as a matrix operation

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

source pixel

redsample

greensample

bluesample

alphasample

redNsample

greenNsample

blueNsample

alphaNsample

destination pixel

=*

This is the Title of the Book, eMatter Edition

168 | Chapter 6: Image Loading, Visual Effects, and Animation

If the source image has no alpha channel, then a 3 × 3 matrix is used.

BandCombineOp is different from the other operations I’ve discussed since it imple-
ments the RasterOp interface and not BufferedImageOp. This means that a little extra
work is required to access the Raster object inside the source BufferedImage, and that
the resulting changed Raster must be built up into a destination BufferedImage.

ImagesTests’s mixedImage() draws an image with its green and blue bands modified
in random ways, while keeping the red band and any alpha band unchanged. See the
balls and basn6a08 images for examples:

private void mixedImage(Graphics2D g2d, BufferedImage im, int x, int y)
{ if (counter%10 < 5) // mix it up
 imageSfx.drawMixedColouredImage(g2d, im, x, y);
 else // show the original
 drawImage(g2d, im, x, y);
}

drawMixedColouredImage() distinguishes if the source has an alpha channel and cre-
ates a 4 × 4 or 3 × 3 matrix accordingly. The source Raster is accessed, the operation
applied using filter(), and the result is packaged as a new BufferedImage that is
then drawn:

public void drawMixedColouredImage(Graphics2D g2d,
 BufferedImage im, int x, int y)
{
 // Mix up the colors in the green and blue bands
 { if (im == null) {
 System.out.println("drawMixedColouredImage: input is null");
 return;
 }
 BandCombineOp changecolorsOp;
 Random r = new Random();
 if (hasAlpha(im)) {
 float[][] colorMatrix = { // 4 by 4
 { 1.0f, 0.0f, 0.0f, 0.0f }, // new red band, unchanged
 { r.nextFloat(), r.nextFloat(), r.nextFloat(), 0.0f }, // new green band
 { r.nextFloat(), r.nextFloat(), r.nextFloat(), 0.0f }, // new blue band
 { 0.0f, 0.0f, 0.0f, 1.0f} }; // unchanged alpha

 changecolorsOp = new BandCombineOp(colorMatrix, null);
 }
 else { // not transparent
 float[][] colorMatrix = { // 3 by 3
 { 1.0f, 0.0f, 0.0f }, // new red band, unchanged
 { r.nextFloat(), r.nextFloat(), r.nextFloat() }, // new green band
 { r.nextFloat(), r.nextFloat(), r.nextFloat() }}; // new blue band

 changecolorsOp = new BandCombineOp(colorMatrix, null);
 }

This is the Title of the Book, eMatter Edition

Visual Effects for ‘o’ Images | 169

 Raster sourceRaster = im.getRaster(); // access source Raster
 WritableRaster destRaster = changecolorsOp.filter(sourceRaster, null);

 // make the destination Raster into a BufferedImage
 BufferedImage newIm = new BufferedImage(im.getColorModel(),
 destRaster, false, null);

 g2d.drawImage(newIm, x, y, null); // draw it
} // end of drawMixedColouredImage()

The matrices are filled with random numbers in the rows applied to the green and
blue components of the source pixel.

The matrix row for the red component is {1, 0, 0, 0}, which will send the red
source unchanged into the destination pixel. Similarly, the alpha component is {0, 0,

0, 1}, which leaves the alpha part unchanged.

It’s possible to treat a pixel as containing an additional unit element, which allows
the BandCombineOp matrix to contain an extra column. This permits a wider range of
equations to be defined. Figure 6-19 shows the resulting multiplication using a 4 × 5
matrix.

Here’s an example:

redNsample = m11*redsample + m12*greensample + m13*bluesample +
m14*alphasample + m15

The additional m15 element can be used to define equations that do not have to pass
through the origin. This means that a zero input sample doesn’t need to produce a
zero output.

If the source image has no alpha channel, then a 3 × 4 matrix is used.

Figure 6-19. BandCombineOp with an additional pixel element

m11 m12 m13 m14 m15

m21 m22 m23 m24 m25

m31 m32 m33 m34 m35

m41 m42 m43 m44 m45

source pixel

redsample

greensample

bluesample

alphasample

1

redNsample

greenNsample

blueNsample

alphaNsample

destination pixel

=*

This is the Title of the Book, eMatter Edition

170 | Chapter 6: Image Loading, Visual Effects, and Animation

Pixel Effects
The great advantage of BufferedImage is the ease with which its elements can be
accessed (e.g., pixel data, sample model, color space). However, a lot can be done
using only the BufferedImage methods, getRGB() and setRGB(), to manipulate a given
pixel (or array of pixels).

Here are the single pixel versions:

int getRGB(int x, int y);

void setRGB(int x, int y, int newValue);

The getRGB() method returns an integer representing the pixel at location (x, y),
formatted using sRGB. The red, green, blue, and alpha channels use 8 bits (1 byte)
each, so they can fit into a 32-bit integer result. The sRGB format is shown in
Figure 6-15.

The color components can be extracted from the integer using bit manipulation:

BufferedImage im = ...; // load the image
int pixel = im.getRGB(x,y);

int alphaVal = (pixel >> 24) & 255;
int redVal = (pixel >> 16) & 255;
int greenVal = (pixel >> 8) & 255;
int blueVal = pixel & 255;

alphaVal, redVal, greenVal, and blueVal will have values between 0 and 255.

The setRGB() method takes an integer argument, newValue, constructed using simi-
lar bit manipulation in reverse:

int newValue = blueVal | (greenVal << 8) | (redVal << 16) | (alphaVal << 24);
im.setRGB(x, y, newVal);

Care should be taken that alphaVal, redVal, greenVal, and blueVal have values
between 0 and 255, or the resulting integer will be incorrect. Error checking at runtime
may be a solution but will have an impact on performance.

Of more use are the versions of getRGB() and setRGB() that work with an array of
pixels. getRGB() is general enough to extract an arbitrary rectangle of data from the
image, returning it as a one-dimensional array. However, its most common use is to
extract all the pixel data. Then a loop can be employed to traverse over the data:

int imWidth = im.getWidth();
int imHeight = im.getHeight();

// make an array to hold the data
int[] pixels = new int[imWidth * imHeight];

// extract the data from the image into pixels[]
im.getRGB(0, 0, imWidth, imHeight, pixels, 0, imWidth);

This is the Title of the Book, eMatter Edition

Visual Effects for ‘o’ Images | 171

for(int i=0; i < pixels.length; i++) {
 // do something to pixels[i]
}
// update the image with pixels[]
im.setRGB(0, 0, imWidth, imHeight, pixels, 0, imWidth);

At the end of the loop, the updated pixels[] array can be placed back inside the
BufferedImage via a call to setRGB().

The prototypes for the array versions of getRGB() and setRGB() are:

int[] getRGB(int startX, int startY, int w, int h,
 int[] RGBArray, int offset, int scansize);
void setRGB(int startX, int startY, int w, int h,
 int[] RGBArray, int offset, int scansize);

The extraction rectangle is defined by startX, startY, w, and h. offset states where in
the pixel array the extracted data should start being written. scansize specifies the
number of elements in a row of the returned data and is normally the width of the
image.

Teleporting an image

The teleport effect causes an image to disappear, multiple pixels at a time, over the
course of seven frames (after which the effect repeats). Individual pixels are assigned
the value 0, which results in their becoming transparent. The bee image has this
effect applied to it.

This pixilated visual should be compared with the smoother fading
offered by fadingImage(), described in the section “Alpha Compositing.”

The changes are applied to a copy of the image (stored in the global teleImage). The
copy is assigned an alpha channel, if the original doesn’t have one, to ensure the
image becomes transparent (rather than black). A global is used so pixel erasing can
be repeatedly applied to the same image and be cumulative.

The relevant ImageSFXs method is eraseImageParts(). Its second argument specifies
that the affected pixels are located in the image’s pixel array at positions, which are a
multiple of the supplied number:

private BufferedImage teleportImage(Graphics2D g2d,
 BufferedImage im, BufferedImage teleIm, int x, int y)
{
 if (teleIm == null) { // start the effect
 if (imageSfx.hasAlpha(im))
 teleIm = imageSfx.copyImage(im);
 else // no alpha channel
 teleIm = imageSfx.makeTransImage(im); // give the copy an alpha channel
 }

This is the Title of the Book, eMatter Edition

172 | Chapter 6: Image Loading, Visual Effects, and Animation

 int eraseSteps = counter%7; // range is 0 to 6
 switch(eraseSteps) {
 case 0: // restart the effect
 if (imageSfx.hasAlpha(im))
 teleIm = imageSfx.copyImage(im);
 else // not transparent
 teleIm = imageSfx.makeTransImage(im);
 break;
 case 1:
 imageSfx.eraseImageParts(teleIm, 11); break; // every 11th pixel goes
 case 2:
 imageSfx.eraseImageParts(teleIm, 7); break; // every 7th pixel
 case 3:
 imageSfx.eraseImageParts(teleIm, 5); break; // 5th
 case 4:
 imageSfx.eraseImageParts(teleIm, 3); break; // 3rd
 case 5:
 imageSfx.eraseImageParts(teleIm, 2); break; // every 2nd pixel
 case 6:
 imageSfx.eraseImageParts(teleIm, 1); break;
 // every pixel goes, i.e., fully erased
 default:
 System.out.println("Unknown count for teleport");
 break;
 } // end switch

 drawImage(g2d, teleIm, x, y);
 return teleIm;
} // end of teleportImage()

The ImageSFXs support methods, copyImage() and makeTransImage(), make copies
of a BufferedImage, and are similar. copyImage() utilizes GraphicsConfiguration’s
createCompatibleImage() to make a BufferedImage object, and then the source
image is drawn into it. makeTransImage() creates a new BufferedImage object of type
TYPE_INT_ARGB to ensure it has an alpha channel. Then the source image is drawn
into it:

public BufferedImage makeTransImage(BufferedImage src)
{
 if (src == null) {
 System.out.println("makeTransImage: input image is null");
 return null;
 }
 BufferedImage dest = new BufferedImage(
 src.getWidth(), src.getHeight(),
 BufferedImage.TYPE_INT_ARGB); // alpha channel
 Graphics2D g2d = dest.createGraphics();

 // copy image
 g2d.drawImage(src, 0, 0, null);
 g2d.dispose();
 return dest;
}

This is the Title of the Book, eMatter Edition

Visual Effects for ‘o’ Images | 173

ImageSFXs’s eraseImageParts() has the same structure as the array-based getRGB()

and setRGB() code outlined above:

public void eraseImageParts(BufferedImage im, int spacing)
{
 if (im == null) {
 System.out.println("eraseImageParts: input image is null");
 return;
 }
 int imWidth = im.getWidth();
 int imHeight = im.getHeight();
 int [] pixels = new int[imWidth * imHeight];
 im.getRGB(0, 0, imWidth, imHeight, pixels, 0, imWidth);

 int i = 0;
 while (i < pixels.length) {
 pixels[i] = 0; // make transparent (or black if no alpha)
 i = i + spacing;
 }
 im.setRGB(0, 0, imWidth, imHeight, pixels, 0, imWidth);
}

The loop jumps over the array, setting every ith pixel to have the value 0. This causes
the red, green, blue, and alpha channels to be filled with 0 bits. Due to the alpha
channel, this causes the pixel to become transparent. If no alpha existed, then the 0
bits would signify that red, green, and blue are switched off, and the pixel would be
drawn in black.

Zapping an image

Zapping means the gradual changing of the image’s visible parts to a random mix of
red and yellow pixels. The number of changed pixels increases over the course of the
effect (11 frames). See pumpkin for an example of the effect in action. The changes
are applied to a copy of the image (stored in the global zapImage). After 11 frames,
the image is restored and the effect begins again.

View the pumpkin image to sample this effect.

As with the teleportation effect, a global is used so the color changes can be repeat-
edly applied to the same image and be cumulative. The amount of zapping is con-
trolled by the likelihood value which increases from 0 to 1.

The method used in ImageSFXs is zapImageParts():

private BufferedImage zapImage(Graphics2D g2d, BufferedImage im,
 BufferedImage zapIm, int x, int y)
{ if ((zapIm == null) || (counter%11 == 0))
 zapIm = imageSfx.copyImage(im); // restart the effect
 else {

This is the Title of the Book, eMatter Edition

174 | Chapter 6: Image Loading, Visual Effects, and Animation

 double likelihood = (counter%11)/10.0; // produces range 0 to 1
 imageSfx.zapImageParts(zapIm, likelihood);
 }
 drawImage(g2d, zapIm, x, y);
 return zapIm;
}

zapImageParts() uses the same approach as previously shown: the pixel array is
extracted, modified in a loop, and then written back into the BufferedImage object:

public void zapImageParts(BufferedImage im, double likelihood)
{
 if (im == null) {
 System.out.println("zapImageParts: input image is null");
 return;
 }
 if ((likelihood < 0) || (likelihood > 1)) {
 System.out.println("likelihood must be in the range 0 to 1");
 likelihood = 0.5;
 }

 int redCol = 0xf90000; // nearly full-on red
 int yellowCol = 0xf9fd00; // a mix of red and green

 int imWidth = im.getWidth();
 int imHeight = im.getHeight();
 int [] pixels = new int[imWidth * imHeight];
 im.getRGB(0, 0, imWidth, imHeight, pixels, 0, imWidth);

 double rnd;
 for(int i=0; i < pixels.length; i++) {
 rnd = Math.random();
 if (rnd <= likelihood) {
 if (rnd <= 15*likelihood/16) // red more likely
 pixels[i] = pixels[i] | redCol;
 else
 pixels[i] = pixels[i] | yellowCol;
 }
 }

 im.setRGB(0, 0, imWidth, imHeight, pixels, 0, imWidth);
} // end of eraseImageParts()

The random effect of changing pixels to red or yellow is achieved by the use of
Math.random().

The red color (redCol) is defined as the octal 0xf90000 and yellow (yellowCol) as
0xf9fd00. To understand these, remember that the sRGB format stores color compo-
nents in the order alpha, red, green, and blue, each in 8 bits. Eight bits can be repre-
sented by the octals 0x00 to 0xFF, as in Figure 6-20.

Consequently, the red field in the sRGB format will be the fifth and sixth octal digits
from the right, and the green field will be the third and fourth.

This is the Title of the Book, eMatter Edition

Packaging the Application as a JAR | 175

The octals are bitwise-ORed with a pixel, which causes the relevant color compo-
nents to be overwritten. redCol overwrites the red color component only, and
yellowCol replaces the red and yellow parts, which is a more drastic change. This is
balanced in the code by having the red change done more often.

Packaging the Application as a JAR
I’m converting the ImagesTests application into a JAR so all the resources (images, in
this case) are packaged with the code in a single file. This makes the application eas-
ier to transport, and I get the additional benefit of compression.

I won’t consider how to use applets and JAR together or advanced
topics, like signing and manipulating JARs from inside Java code. The
Java tutorial (trail) on JARs should be consulted on these matters.

Before JARing begins, it’s important to organize the resources in relation to the
application. The ImagesTests code is located in the directory ImagesTests/ (see
Figure 6-21), which acts as the top-level directory for the JAR. The images are placed
in an Images/ subdirectory within ImagesTests/. This makes their inclusion into the
JAR easy.

One issue with using Windows is that it displays filenames in a user-friendly lower-
case format. Unfortunately, Java is less forgiving, and will be unable to find a file
such as BASN6A08.PNG if told to load basn6a08.png. The application developer
should open a DOS window and check the filenames in Images/ directly.

The next step is to create a text file, which will become the basis of the manifest
inside the JAR file. The manifest holds a range of meta-information about the JAR,
related to matters like authentication, extensions, and sealing. However, I’ll only add
the name of the top-level class, ImagesTests, which contains the main() method. This
permits the application to be started by double-clicking.

The text file, mainClass.txt (any name will do), contains a single line:

Main-Class: ImagesTests

Figure 6-20. The sRGB format in octal

int

bit 32 bit 24 bit 16 bit 8 bit 0

alpha red green blue

0x00 - 0xFF 0x00 - 0xFF 0x00 - 0xFF 0x00 - 0xFF

This is the Title of the Book, eMatter Edition

176 | Chapter 6: Image Loading, Visual Effects, and Animation

The file should be stored in the same directory as the application. The JAR file can be
made using the command:

jar cvmf mainClass.txt ImagesTests.jar *.class Images

This command should be executed in the application directory. It has the following
format:

jar <options> <manifest info file> <name of JAR file>
 <list of input files/directories>

The options, cvmf, specify the following:

c Create a JAR file.

v Verbose output goes to stdout during the creation process, including a list of
everything added to the JAR.

m A manifest information file is included on the command line, and its informa-
tion should be incorporated into the JAR’s manifest.

f A filename for the resulting JAR is given on the command line.

The list of input files can use the wildcard symbol (*). All the .class files in the cur-
rent directory are added to the JAR (e.g., ImageSFXs.class, ImagesLoader.class,

Figure 6-21. The ImagesTests/ directory and Images/ subdirectory

REPLACE SCREENSHOTS

This is the Title of the Book, eMatter Edition

Packaging the Application as a JAR | 177

ImagesPlayer.class, ImagesPlayerWatcher.class, and ImagesTests.class). Also, the sub-
directory Images/ is added together with all its contents.

The ImagesTests.jar file will appear in ImagesTests/ and can be started by double-
clicking its icon. The JAR file’s size is about 130 KB, compressed by 13 percent from
the original collection of files.

The application can be started from the command line as well, by typing:

java –jar ImagesTests.jar

The advantage of this approach is that the output from the application will appear in
the DOS window, whereas it is lost if the program is started via its icon.

A simple way of checking the contents of the JAR file is to open it with
a zip utility, such as WinZip (http://www.winzip.com). Alternatively,
type this:

jar tf ImagesTests.jar

This is the Title of the Book, eMatter Edition

178

Chapter 7CHAPTER 7

Introducing Java Sound

This chapter talks about three different approaches to sound in Java: the basic Applet

play() method, the more sophisticated AudioClip class, and the Java Sound API,
which supports the recording, playback, and synthesis of sampled audio and Musi-
cal Instrument Digital Interface (MIDI) sequences.

Due to its great flexibility (and complexity), most of this chapter and the next three
focus on the Java Sound API. Its overview in this chapter is illustrated with small
examples showing the playback of clips, streamed audio, and MIDI sequences. I’ll
compare the Sound API with the Java Media Framework (JMF) and Java OpenAL
(JOAL), a Java binding to OpenGL’s audio API.

One large topic missing from my coverage is audio capture, which
seems less important for games. Good web resources on this topic
(and others related to the Java Sound API) are listed at the end of this
chapter.

Chapter 8 considers a single large application, LoadersTests, which demonstrates my
Java Sound API-based ClipsLoader and MidisLoader classes for loading, playing,
pausing, resuming, stopping, and looping clips and sequences. These loader classes
will be used in later chapters when audio is required.

Chapters 9 and 10 examine less commonly needed Sound API capabilities for pro-
ducing audio effects (e.g., echoes, dynamic volume changes) and runtime audio syn-
thesis/generation.

Applet Playing
The Applet play() method loads a sound (perhaps from across the network) and
plays it once. play() causes the applet’s drawing and event handling to freeze while
the audio data are retrieved and does nothing if the audio can’t be found (i.e., no
exception is raised). The sound is marked for garbage collection after being played,

This is the Title of the Book, eMatter Edition

The AudioClip Class | 179

so it may need to be downloaded again when play() is called again. Example 7-1 is a
typical 1990s example:

The MIDI file (containing the tune “Old McDonald”) is loaded and played as the
applet is loaded. getCodeBase() indicates that the file can be found in the same place
as the applet’s .class file. An alternative is getDocumentBase(), which specifies a loca-
tion relative to the enclosing web page.

The code for the OldMcDonald applet can be found in the SoundEx-
amps/McDonalds/ directory.

Early versions of Java only supported 8-bit mono Windows Wave files, but the vari-
ous formats were extended in JDK 1.2 to include Sun Audio (AU files), Mac AIFF
files, Musical Instrument Digital Interface (MIDI) files (type 0 and type 1), and Rich
Media Format (RMF). Data can be 8-bit or 16-bit, mono or stereo, with sample rates
between 8,000 and 48,000 Hz.

The AudioClip Class
Many of the shortcomings of Applet’s play() method are remedied by the AudioClip

class. AudioClip separates loading from playing and allows looping and termination
via the loop() and stop() methods. Example 7-2 is an updated McDonald applet using
AudioClip.

Example 7-1. Simple applet that uses the play() method

import java.applet.Applet;
import java.awt.*;

public class OldMcDonald extends Applet
{
 public void init()
 { play(getCodeBase(), "McDonald.mid"); }

 public void paint(Graphics g)
 { g.drawString("Older McDonald", 25, 25); }

} // end of OldMcDonald class

Example 7-2. Applet using the AudioClip class

import java.awt.*;
import javax.swing.*;
import java.applet.AudioClip;

This is the Title of the Book, eMatter Edition

180 | Chapter 7: Introducing Java Sound

The clip is loaded with getAudioClip() in init(), causing the applet to suspend until
the download is completed. The sound is played repeatedly due to the loop() call in
start(), continuing until the applet is removed from the browser (triggering a call to
stop()). If the page is displayed again, start()’s call to loop() will play the music
from the beginning.

An application employs AudioClips in just about the same way, except that the clip is
loaded with newAudioClip() from the Applet class, as shown in the PlaySound appli-
cation (see Example 7-3).

public class McDonald extends JApplet
{
 private AudioClip mcdClip;

 public void init()
 { mcdClip = getAudioClip(getCodeBase(), "mcdonald.mid"); }

 public void paint(Graphics g)
 { g.drawString("Old McDonald", 25, 25); }

 public void stop()
 { mcdClip.stop(); }

 public void start()
 /* A looping play (and a call to play()) always starts at
 the beginning of the clip. */
 { mcdClip.loop(); }

} // end of McDonald class

Example 7-3. Using newAudioClip() from an applet

import java.applet.Applet;
import java.applet.AudioClip;

public class PlaySound
{
 public PlaySound(String fnm)
 { try {
 AudioClip clip = Applet.newAudioClip(
 getClass().getResource(fnm));
 clip.play(); // play the sound once
 }
 catch (Exception e) {
 System.out.println("Problem with " + fnm);
 }
 }

 public static void main(String[] args)
 { if (args.length != 1) {
 System.out.println("Usage: java PlaySound <sound file>");

Example 7-2. Applet using the AudioClip class (continued)

This is the Title of the Book, eMatter Edition

The AudioClip Class | 181

Despite AudioClip’s simplicity, useful applications and applets can be written with it.
One of its great strengths is the large number of file formats that it supports. Another
is that multiple AudioClips can be played at the same time.

A drawback of this approach is the suspension caused by calls to getAudioClip() and
newAudioClip(). Sun’s Java Sound tutorial suggests threads as a solution: the tuto-
rial’s SoundApplet and SoundApplication examples fire off a separate thread to load
the audio, allowing the main program to continue. Another answer is to download
the sound resources with the code, wrapped together in a JAR file, making the subse-
quent loading a local, fast operation.

A stubborn problem with AudioClip is the lack of information about when a piece of
audio finishes. This knowledge can be useful in games since linking events to the end
of an audio commentary or music clip is common. A hacky workaround is to call
sleep() for a period based on the audio file’s byte size (which can be obtained via a
File object).

A third issue is the lack of low-level access to the sound data (or the audio device it is
playing on) to permit runtime effects like volume changing, panning between speak-
ers, and echoing. Related to this is the inability to generate new sounds during execu-
tion (i.e., sound and music synthesis) though many early Java texts proudly included
variants of the class shown in Example 7-4.

 System.exit(0);
 }
 new PlaySound(args[0]);
 }
} // end of PlaySound class

Example 7-4. Using the beep() method

public class Bells
{
 public static void main(String[] args)
 {
 // \u0007 is the ASCII bell
 System.out.println("BELL 1 \u0007");

 try {
 Thread.sleep(1000); // separate the bells
 }
 catch(InterruptedException e) {}

 // ring the bell again, using the Toolkit this time
 java.awt.Toolkit.getDefaultToolkit().beep();
 System.out.println("BELL 2");
 System.out.flush();
 } // end of main()

} // end of Bells class

Example 7-3. Using newAudioClip() from an applet (continued)

This is the Title of the Book, eMatter Edition

182 | Chapter 7: Introducing Java Sound

The ASCII character bell works on many platforms, but only Java
applications can employ the Toolkit beep() method.

What Bells illustrates is the poor low-level access offered by Java. The introduction
of the Java Sound API in J2SE 1.3 fixed this weakness.

The examples from this section (McDonald.java, PlaySound.java, and
Bells.java) can be found in the SoundExamps/McDonalds/ directory.

The Sound Player
SoundPlayer.java (located in SoundExamps/SoundPlayer/) shows off the capabilities
of the AudioClip class (see Figure 7-1) in a longer example.

A selection of sound files in different formats (all located in the Sounds/ subdirectory
below SoundPlayer/) are offered up. They can be played once, looped, or stopped.
It’s possible to have multiple clips playing and looping simultaneously, and the stop
button terminates all the currently playing clips. This example is somewhat similar to
the Java Sound tutorial example, SoundApplication.

Figure 7-2 gives the class diagram for SoundPlayer, showing all the public and pri-
vate methods and variables in the class.

Two important data structures are in play here:

private HashMap soundsMap;
private ArrayList playingClips;

soundsMap holds the loaded AudioClips, indexed by their filenames. playingClips

maintains a list of currently playing AudioClips (or, to be more precise, what I think
is playing).

Figure 7-1. The SoundPlayer application

This is the Title of the Book, eMatter Edition

The Sound Player | 183

loadSounds() loads the AudioClips and stores them in soundsMap for later use:

private void loadSounds()
{
 soundsMap = new HashMap();
 for (int i=0; i < soundFNms.length; i++) {
 AudioClip clip = Applet.newAudioClip(
 getClass().getResource(SOUND_DIR + soundFNms[i]));
 if (clip == null)
 System.out.println("Problem loading "+SOUND_DIR+soundFNms[i]);
 else
 soundsMap.put(soundFNms[i], clip);
 }
}

newAudioClip() is employed since SoundPlayer is an application, and the URL is speci-
fied using the assumption that the files are locally stored in the SOUND_DIR subdirec-
tory (Sounds/). The final version of SoundPlayer is a JAR file, created in this way:

jar cvmf mainClass.txt SoundPlayer.jar SoundPlayer.class Sounds

Figure 7-2. Class diagram for SoundPlayer

This is the Title of the Book, eMatter Edition

184 | Chapter 7: Introducing Java Sound

All the class files and everything in the Sounds/ subdirectory are packed together.
mainClass.txt contains a single line:

Main-Class: SoundPlayer

The JAR can be started by double-clicking its icon or from the command line:

java –jar SoundPlayer.jar

playMusic() in SoundPlayer retrieves the relevant AudioClip, and plays it once or
repeatedly. It stores a reference to the clip in the playingClips ArrayList to register
that the clip is playing:

private void playMusic(boolean toLoop)
{
 String chosenFile = (String) playListJcb.getSelectedItem();

 // try to get the AudioClip.
 AudioClip audioClip = (AudioClip) soundsMap.get(chosenFile);
 if (audioClip == null) {
 statusLabel.setText("Sound " + chosenFile + " not loaded");
 return;
 }

 if (toLoop)
 audioClip.loop();
 else
 audioClip.play(); // play it once

playingClips.add(audioClip); // store a ref to the playing clip
 String times = (toLoop) ? " repeatedly" : " once";
 statusLabel.setText("Playing sound " + chosenFile + times);
} // end of playMusic()

playMusic() is called from actionPerformed() when the user presses the Play or Loop
button and is passed a toLoop argument to distinguish between the two.

stopMusic() stops all the playing music by calling AudioClip.stop() on all the refer-
ences in playingClips. An issue is that some of the clips may have finished but
there’s no way to detect them. This isn’t really a problem since calling stop() on a
stopped AudioClip has no effect:

private void stopMusic()
{
 if (playingClips.isEmpty())
 statusLabel.setText("Nothing to stop");
 else {
 AudioClip audioClip;
 for(int i=0; i < playingClips.size(); i++) {
 audioClip = (AudioClip) playingClips.get(i);
 audioClip.stop(); // may already have stopped, but calling
 // stop() again does no harm
 }

This is the Title of the Book, eMatter Edition

Sampled Audio | 185

 playingClips.clear();
 statusLabel.setText("Stopped all music");
 }
}

The Java Sound API
So far, I’ve considered the Applet play() method and the more useful AudioClip

class. AudioClip is probably sufficient for the straightforward playing and looping of
audio, as illustrated by the SoundPlayer application of the last section.

The Java Sound API has more extensive playback capabilities than AudioClip because
it offers low-level access to, and manipulation of, audio data and the underlying
machine’s audio hardware and software. The API also supports audio capture and
synthesis, features not found in AudioClip.

The Sound API’s power makes it complex to use, so the rest of this chapter will be
given over to introducing its basic playback features for sampled audio (e.g., WAV
files) and MIDI sequences. Chapter 8 will develop Sound API-based classes for load-
ing and playing audio, which I’ll use frequently in later chapters to play music and
sound clips in my games. Chapter 9 is about applying audio effects to existing sam-
pled audio and sequences using the Sound API. Chapter 10 describes various ways of
synthesizing samples and sequences with the API.

The Java Sound API has two main parts: a javax.sound.sampled package for manipu-
lating sampled audio and javax.sound.midi for MIDI sequences. The rest of this
chapter will first discuss sampled audio, followed by MIDI.

The API has two service provider packages, javax.sound.sampled.spi and javax.

sound.midi.spi, to encourage extensibility. They can be utilized to add new audio
devices (e.g., new mixers, synthesizers) and formats (e.g., MP3). I won’t be looking
at them—this book is long enough without going off on tangents.

Sampled Audio
Sampled audio is a series of digital samples extracted from analog signals, as illus-
trated by Figure 7-3. Each sample represents the amplitude (loudness) of the signal at
a given moment.

The quality of the digital result depends on two factors: time resolution (the sampling
rate), measured in Hertz (Hz), and amplitude resolution (quantization), the number
of bits representing each sample. For example, a CD track is typically sampled at 44.1
kHz (44,100 samples per second), and each sample uses 16 bits to encode a possible
65,536 amplitudes.

Descriptions of sampled audio often talk about frames (e.g., frame size, frame rate).
For most audio formats, a frame is the number of bytes required to represent a single

This is the Title of the Book, eMatter Edition

186 | Chapter 7: Introducing Java Sound

sample. For example, a sample in 8-bit mono pulse code modulation (PCM) format
requires one frame (one byte) per sample. 16-bit mono PCM samples require two
frames, and 16-bit stereo PCM needs four frames: 2 bytes each for the left and right
16-bit samples in the stereo.

As the sample rate and quantization increase, so do the memory requirements. For
instance, a three-second stereo CD track, using 16-bit PCM, requires 44,100 × 4 × 3
bytes of space, or 517 KB. The “4” in the calculation reflects the need for four frames
to store each stereo 16-bit sample.

The higher the sample rate and quantization, the better the sound quality when the
digital stream is converted back to an analog signal suitable for speakers or head-
phones. Figure 7-4 shows that the smoothness and detail of the signal depends on
the number of samples and their amplitude accuracy.

Figure 7-5 shows the conversion of a digital stream for the same sine wave but encoded
at a higher sample rate. The resulting audio is closer to the original than the one shown
in Figure 7-4.

Sampled audio can be encoded with the Clip or SourceDataLine classes.

A Clip object holds sampled audio small enough to be loaded completely into mem-
ory during execution; therefore, a Clip is similar to AudioClip.

Figure 7-3. From analog to digital audio

Figure 7-4. From digital to analog audio

Am
pl

itu
de

Time

Am
pl

itu
de

Time

analog to digital
conversion

Am
pl

itu
de

Time

Am
pl

itu
de

Time

digital to analog
conversion

This is the Title of the Book, eMatter Edition

Sampled Audio | 187

“Small enough” usually means less than 2 MB.

A SourceDataLine is a buffered stream that permits chunks of the audio to be deliv-
ered to the mixer in stages over time without requiring the entire thing to be in mem-
ory at once. The buffered streaming in SourceDataLine shouldn’t be confused with
the video and audio streaming offered by JMF. The difference is that JMF supports
time-based protocols, such as RTP, which permits the audio software and hardware
to manage the network latency and bandwidth issues when data chunks are trans-
ferred to it over a network. I’ll say a little more about JMF at the end of this chapter.

Streaming in Java Sound does not have timing capabilities, making it difficult to
maintain a constant flow of data through a SourceDataLine if the data are coming
from the network; clicks and hisses can be heard as the system plays the sound.
However, if SourceDataLine obtains its data from a local file, such problems are
unlikely to occur.

The Mixer
Clip and SourceDataLine are subclasses of the Line class; lines are the piping that
allows digital audio to be moved around the audio system, for instance, from a
microphone to the mixer and from the mixer to the speakers (see Figure 7-6).

Figure 7-6 is a stylized view of a mixer, intended to help explain the various classes
and coding techniques for sampled audio.

Inputs to a mixer may include data read as a Clip object or streamed in from a device
or the network, or generated by a program. Output can include audio written to a
file, sent to a device, transmitted over the network, or sent as streamed output to a
program.

The mixer, represented by the Mixer class, may be a hardware audio device (e.g., the
sound card) or software interfaced to the sound card. A mixer can accept audio

Figure 7-5. Conversion of a digital stream with a higher sample rate

Am
pl

itu
de

Time

digital to analog
conversion

Am
pl

itu
de

Time

This is the Title of the Book, eMatter Edition

188 | Chapter 7: Introducing Java Sound

streams coming from several source lines and pass them onto target lines, perhaps
mixing the audio streams together in the process and applying audio effects like vol-
ume adjustment or panning.

The capabilities of Java Sound’s default mixer have changed in the transition from
J2SE 1.4.2 to J2SE 5.0. In J2SE 1.4.2 or earlier, the default mixer was the Java Sound
Audio Engine, which had playback capabilities but could not capture sound; that
was handled by another mixer. In J2SE 5.0, the Direct Audio Device is the default
and supports playback and recording.

Clip, SourceDataLine, and TargetDataLine are part of the Line class hierarchy shown
in Figure 7-7.

Figure 7-6. Audio I/O to/from the mixer

Figure 7-7. Part of the Line hierarchy

audio clip

network

program

Source DataLines

port

Mixer

Controls

audio file

program

Target DataLines

Clip

network

Line

DataLine

SourceDataLine TargetDataLine Clip

This is the Title of the Book, eMatter Edition

Sampled Audio | 189

DataLine adds media features to Line, including the ability to determine the current
read/write position, to start/stop/pause/resume the sound, and to retrieve status
details.

The SourceDataLine adds methods for buffering data for playback by the mixer. The
name of the class is a little confusing: “source” refers to a source of data for the
mixer. From the programmer’s point of view, data is written out to a SourceDataLine

to send it a mixer.

The TargetDataLine is a streaming line in the same way as SourceDataLine. “Target”
refers to the destination of the data sent out by the mixer. For instance, an applica-
tion might use a TargetDataLine to receive captured data gathered by the mixer from
a microphone or CD drive. A TargetDataLine is a source of audio for the application.

A Clip is preloaded rather than streamed, so its duration is known before playback.
This permits it to offer methods for adjusting the starting position and looping.

A LineListener can be attached to any line to monitor LineEvents, which are issued
when the audio is opened, closed, started, or stopped. The “stopped” event can be
utilized by application code to react to a sound’s termination.

Figure 7-6 shows that lines are linked to the mixer through ports. A Port object typi-
cally allows access to sound card features dealing with I/O. For example, an input
port may be able to access the analog-to-digital converter. An output port may per-
mit access to the digital-to-analog converter used by the speakers or headphones. A
change to a port will affect all the lines connected to it. The Port class was not imple-
mented prior to J2SE 5.0.

The box marked “Controls” inside the mixer in Figure 7-6 allows audio effects to be
applied to incoming clips or SourceDataLines. The effects may include volume con-
trol, panning between speakers, muting, and sample rate control, though the exact
selection depends on the mixer. Chapter 9 has an example where mixer controls are
applied to a clip.

Another form of audio manipulation is to modify the sample data before it is passed
through a SourceDataLine to the mixer. For example, volume control is a matter of
amplitude adjustment, coded by bit manipulation. Chapter 9 has a volume control
example.

Playing a Clip
PlayClip.java (in SoundExamps/SoundPlayer/) loads an audio file specified on the
command line as a clip and plays it once:

The main() method creates a PlayClip object and exits afterward.

public static void main(String[] args)
{ if (args.length != 1) {
 System.out.println("Usage: java PlayClip <clip file>");

This is the Title of the Book, eMatter Edition

190 | Chapter 7: Introducing Java Sound

 System.exit(0);
 }
 new PlayClip(args[0]);
System.exit(0); // required in J2SE 1.4.2. or earlier

}

The call to exit() must be present in J2SE 1.4.2 or earlier (it’s unnecessary if you’re
using J2SE 5.0). The problem is that the sound engine doesn’t terminate all of its
threads when it finishes, which prevents the JVM from terminating without an
exit() call.

The PlayClip class implements the LineListener interface to detect when the clip has
finished. The LineListener update() method is described below.

public class PlayClip implements LineListener
{ ... } // PlayClip must implement update()

The PlayClip() constructor loads and plays the clip.

public PlayClip(String fnm)
{
 df = new DecimalFormat("0.#"); // 1 dp
loadClip(SOUND_DIR + fnm);
play();

 // wait for the sound to finish playing; guess at 10 mins!
 System.out.println("Waiting");
 try {
 Thread.sleep(600000); // 10 mins in ms
 }
 catch(InterruptedException e)
 { System.out.println("Sleep Interrupted"); }
}

The PlayClip constructor has a problem: it shouldn’t return until the sound has fin-
ished playing. However, play() starts the sound playing and returns immediately, so
the code must wait in some way. I make it sleep for 10 minutes. This doesn’t mean
PlayClip hangs around for 10 minutes after it has finished playing a one-second clip.
The LineListener update() method will allow PlayClip to exit as soon as the clip has
ended.

loadClip() is the heart of PlayClip and illustrates the low-level nature of Java Sound.
The length of its code is due to AudioSystem’s lack of direct support for ULAW and
ALAW formatted data. ULAW and ALAW are compression-based codings that
affect the meaning of the bits in a sample. By default, only linear encodings (such as
PCM) are understood.

The playing of a ULAW or ALAW file is dealt with by converting its data into PCM
format as it’s read into the Clip object. If I ignore this conversion code and other
error-handling, then loadClip() carries out six tasks:

// 1. Access the audio file as a stream
AudioInputStream stream = AudioSystem.getAudioInputStream(
 getClass().getResource(fnm));

This is the Title of the Book, eMatter Edition

Sampled Audio | 191

// 2. Get the audio format for the data in the stream
AudioFormat format = stream.getFormat();

// 3. Gather information for line creation
DataLine.Info info = new DataLine.Info(Clip.class, format);

// 4. Create an empty clip using that line information
Clip clip = (Clip) AudioSystem.getLine(info);

// 5. Start monitoring the clip's line events
clip.addLineListener(this);

// 6. Open the audio stream as a clip; now it's ready to play
clip.open(stream);
stream.close(); // I've done with the input stream

The monitoring of the clip’s line events, which include when it is opened, started,
stopped, and closed, is usually necessary to react to the end of a clip.

In task 1, AudioInputStream can take its input from a file, input stream, or URL, so it
is a versatile way of obtaining audio input. The complete method is shown here:

private void loadClip(String fnm)
{
 try {
 AudioInputStream stream = AudioSystem.getAudioInputStream(
 getClass().getResource(fnm));

 AudioFormat format = stream.getFormat();

 // convert ULAW/ALAW formats to PCM format
 if ((format.getEncoding() == AudioFormat.Encoding.ULAW) ||
 (format.getEncoding() == AudioFormat.Encoding.ALAW)) {
 AudioFormat newFormat =
 new AudioFormat(AudioFormat.Encoding.PCM_SIGNED,
 format.getSampleRate(),
 format.getSampleSizeInBits()*2,
 format.getChannels(),
 format.getFrameSize()*2,
 format.getFrameRate(), true); // big endian
 // update stream and format details
 stream = AudioSystem.getAudioInputStream(newFormat, stream);
 System.out.println("Converted Audio format: " + newFormat);
 format = newFormat;
 }

 DataLine.Info info = new DataLine.Info(Clip.class, format);

 // make sure the sound system supports this data line
 if (!AudioSystem.isLineSupported(info)) {
 System.out.println("Unsupported Clip File: " + fnm);
 System.exit(0);
 }

This is the Title of the Book, eMatter Edition

192 | Chapter 7: Introducing Java Sound

 clip = (Clip) AudioSystem.getLine(info);
 clip.addLineListener(this);
 clip.open(stream);
 stream.close(); // I've done with the input stream

 // duration (in secs) of the clip
 double duration = clip.getMicrosecondLength()/1000000.0;
 System.out.println("Duration: " + df.format(duration)+" secs");
 } // end of try block

 catch (UnsupportedAudioFileException audioException) {
 System.out.println("Unsupported audio file: " + fnm);
 System.exit(0);
 }
 catch (LineUnavailableException noLineException) {
 System.out.println("No audio line available for : " + fnm);
 System.exit(0);
 }
 catch (IOException ioException) {
 System.out.println("Could not read: " + fnm);
 System.exit(0);
 }
 catch (Exception e) {
 System.out.println("Problem with " + fnm);
 System.exit(0);
 }
} // end of loadClip()

PCM creation uses the AudioFormat constructor:

public AudioFormat(AudioFormat.Encoding encoding,
 float sampleRate, int sampleSizeInBits,
 int channels, int frameSize,
 float frameRate, boolean bigEndian);

loadClip() uses the constructor:

AudioFormat newFormat =
 new AudioFormat(AudioFormat.Encoding.PCM_SIGNED,
 format.getSampleRate(), format.getSampleSizeInBits()*2,
 format.getChannels(), format.getFrameSize()*2,
 format.getFrameRate(), true); // big endian

ALAW and ULAW use an 8-bit byte to represent each sample, but after this has been
decompressed the data requires 14 bits. Consequently, the PCM encoding must use
16 bits (2 bytes) per sample. This explains why the sampleSizeInBits and frameSize

arguments are double the values obtained from the file’s original audio format
details.

Once the sample size goes beyond a single byte, the ordering of the multiple bytes must
be considered. Big endian specifies a high-to-low byte ordering, while little endian is
low-to-high. This is relevant if later I want to extract the sample’s amplitude as a short
or integer since the multiple bytes must be combined together correctly. The channels
arguments refer to the use of mono (one channel) or stereo (two channels).

This is the Title of the Book, eMatter Edition

Sampled Audio | 193

The audio encoding is PCM_SIGNED, which allows a range of amplitudes that include
negatives. For 16-bit data, the range will be –215 to 215 – 1 (–32768 to 32767). The
alternative is PCM_UNSIGNED, which only offers positive values, 0 to 216 (65536).

PlayClip’s play() method is trivial:

private void play()
{ if (clip != null)
 clip.start(); // start playing
}

This starts the clip playing without waiting. PlayClip sleeps, for as much as 10 min-
utes, while the clip plays. However, most clips will finish after a few seconds. Due to
the LineListener interface, this will trigger a call to update():

public void update(LineEvent lineEvent)
// called when the clip's line detects open,close,start,stop events
{
 // has the clip reached its end?
 if (lineEvent.getType() == LineEvent.Type.STOP) {
 System.out.println("Exiting...");
 clip.stop();
 lineEvent.getLine().close();
 System.exit(0);
 }
}

The calls to stop() and close() aren’t unnecessary but they ensure that
the audio system resources are in the correct state before termination.

Short Sound Bug in J2SE 5.0
PlayClip.java works perfectly in J2SE 1.4.2 but fails when given short sound files in
J2SE 5.0. For example, dog.wav is 0.5 seconds long, and PlayClip is silent for 0.5 sec-
onds when asked to play it:

java PlayClip dog.wav

However, if the requested sound clip is longer than 1 second, PlayClip will work as
expected.

I have registered this bug with Sun at http://bugs.sun.com/bugdatabase/
view_bug.do?bug_id=5085008. I encourage you to vote for its fixing.

There’s a similar bug reported at http://bugs.sun.com/bugdatabase/
view_bug.do?bug_id=5070730. Vote for that one, too.

A rather hacky solution is to force the sound to loop several times until its total play-
ing time exceeds one second. An outline of that solution can be found on the previ-
ous bug report web page and is implemented in PlayClipBF.java in SoundExamps/

This is the Title of the Book, eMatter Edition

194 | Chapter 7: Introducing Java Sound

SoundPlayer/ (BF for “bug fix”), which is almost identical to PlayClip.java, except in
two places.

A loop counter is calculated, based on the clip’s duration:

double duration = clip.getMicrosecondLength()/1000000.0;
loopCount = (int) (1.0 / duration);

This code is added to loadClip(), and loopCount is defined as a global integer. In
play(), the clip is not started with a call to start() but made to loop loopCount

times:

// clip.start(); // start looping not playing (in play())
clip.loop(loopCount);

In my future code, I’ll assume that any sound files are longer than one second in
length, so it won’t fix things through looping. However, I will add a duration test
and a warning message. For example, loadClip() in PlayClip is modified to call
checkDuration():

void checkDuration()
{
 double duration = clip.getMicrosecondLength()/1000000.0;
 if (duration <= 1.0) {
 System.out.println("WARNING. Duration <= 1 sec : " + df.format(duration) + " secs");
 System.out.println(" The clip may not play in J2SE 1.5 -- make it longer");
 }
 else
 System.out.println("Duration: " + df.format(duration) + " secs");
}

Playing a Buffered Sample
As Figure 7-5 suggests, a program can pass audio data to the mixer by sending dis-
crete packets (stored in byte arrays) along the SourceDataLine. The main reason for
using this approach is to handle large audio files that cannot be loaded into a Clip.

BufferedPlayer.java does the same task as PlayClip.java, which is to play an audio file
supplied on the command line. The differences are only apparent inside the code.
One cosmetic change is that the program is written as a series of static methods
called from main(). This is just a matter of taste; the code could be “objectified” to
look similar to PlayClip.java; it’s shown using the static approach here:

// globals
private static AudioInputStream stream;
private static AudioFormat format = null;
private static SourceDataLine line = null;

public static void main(String[] args)
{ if (args.length != 1) {
 System.out.println("Usage: java BufferedPlayer <clip file>");
 System.exit(0);
 }

This is the Title of the Book, eMatter Edition

Sampled Audio | 195

createInput("Sounds/" + args[0]);
createOutput();

 int numBytes = (int)(stream.getFrameLength() *
 format.getFrameSize());
 // use getFrameLength() from the stream, since the format
 // version may return -1 (WAV file formats always return -1)
 System.out.println("Size in bytes: " + numBytes);

 checkDuration();
play();

 System.exit(0); // necessary in J2SE 1.4.2 and earlier
}

BufferedPlayer.java can be found in the SoundExamps/SoundPlayer/
directory.

createInput() is similar to PlayClip’s loadClip() method but a little simpler. If I
ignore the PCM conversion code for ULAW and ALAW formatted data, and other
error handling, it does two tasks:

// access the audio file as a stream
stream = AudioSystem.getAudioInputStream(new File(fnm));

// get the audio format for the data in the stream
format = stream.getFormat();

createOutput() creates the SourceDataLine going to the mixer:

private static void createOutput()
{
 try {
 // gather information for line creation
 DataLine.Info info =
 new DataLine.Info(SourceDataLine.class, format);
 if (!AudioSystem.isLineSupported(info)) {
 System.out.println("Line does not support: " + format);
 System.exit(0);
 }
 // get a line of the required format
 line = (SourceDataLine) AudioSystem.getLine(info);
 line.open(format);
 }
 catch (Exception e)
 { System.out.println(e.getMessage());
 System.exit(0);
 }
} // end of createOutput()

createOutput() collects line information and then creates a SourceDataLine based on
that information.

This is the Title of the Book, eMatter Edition

196 | Chapter 7: Introducing Java Sound

checkDuration() calculates a duration using the audio stream’s attributes and prints
a warning if the sound file is one second long or less. This warning is the same as the
one issued by checkDuration() in PlayClip. However, PlayClip’s code obtains the
duration using:

double duration = clip.getMicrosecondLength()/1000000.0;

getMicrosecondLength() isn’t available to an AudioInputStream object, so the time in
BufferedPlayer is calculated with:

double duration = ((stream.getFrameLength()*1000)/
 stream.getFormat().getFrameRate())/1000.0;

play() repeatedly reads a chunk of bytes from the AudioInputStream and writes them
to the SourceDataLine until the stream is empty. As a result, BufferedPlayer only
requires memory large enough for the byte array buffer, not the entire audio file:

private static void play()
{
 int numRead = 0;
 byte[] buffer = new byte[line.getBufferSize()];

 line.start();
 // read and play chunks of the audio
 try {
 int offset;
 while ((numRead = stream.read(buffer,0,buffer.length)) >= 0) {
 offset = 0;
 while (offset < numRead)
 offset += line.write(buffer, offset, numRead-offset);
 }
 }
 catch (IOException e)
 { System.out.println(e.getMessage()); }

 // wait until all data is played, then close the line
 line.drain();
 line.stop();
 line.close();
}

The size of the buffer is determined by asking the SourceDataLine via getBufferSize().
Alternatively, I could calculate a size myself.

After the loop finishes, drain() causes the program to wait until all the data in the
line has been passed to the mixer. Then it’s safe for the line to be stopped and closed
and for the program to terminate.

This is the Title of the Book, eMatter Edition

MIDI | 197

MIDI
The previous section looked at the basic support in the Java Sound API for playing
sampled audio. Now, I’ll consider the other major part of the API, which is its sup-
port for playing MIDI sequences.

A key benefit of the MIDI is that it represents musical data in an efficient way, lead-
ing to drastic reductions in file sizes compared to sampled audio. For instance, files
containing high-quality stereo sampled audio require about 10 MB per minute of
sound, while a typical MIDI sequence may need less than 10 KB.

The secret to this phenomenal size reduction is that a MIDI sequence stores “instruc-
tions” for playing the music rather than the music itself. A simple analogy is that a
sequence is the written score for a piece of music rather than a recording of it.

The drawback is that the sequence must be converted to audio output at runtime.
This is achieved using a sequencer and synthesizer. Their configuration is shown in
greatly simplified form in Figure 7-8.

A MIDI sequencer allows MIDI data sequences to be captured, stored, edited, com-
bined, and performed, while the MIDI data’s transformation into audio is being car-
ried out by the synthesizer.

Continuing my analogy, the sequencer is the orchestral conductor who receives the
score to play, perhaps making changes to it in the process. The synthesizer is the
orchestra, made up of musicians playing different parts of the score. The musicians

Figure 7-8. A MIDI sequencer and synthesizer

Midi file

1

synthesizer

audio file

program

Sequence

network

receiver

sequencer

program

transmitter

capture

audio

other Midi devices

Midi
Channels

16

2receiver

Midi Events / Messages

sound
banks

This is the Title of the Book, eMatter Edition

198 | Chapter 7: Introducing Java Sound

correspond to the MidiChannel objects in the synthesizer. They are allocated instru-
ments from the sound banks, and play concurrently. Usually, a complete sequence (a
complete score) is passed to the sequencer, but it’s possible to send it a stream of
MIDI events.

In J2SE 1.4.2 and earlier, the sequencer and synthesizer were represented by a single
Sequencer object. This has changed in J2SE 5.0, and it’s now necessary to obtain dis-
tinct Sequencer and Synthesizer objects and link them together using Receiver and
Transmitter objects.

A MIDI Sequence
A Sequence object represents a multitrack data structure, each track containing time-
ordered MIDIEvent objects. These events are time-ordered, based on an internal
“tick” value (a timestamp). Each event contains musical data in a MidiMessage object.
The sequence structure is illustrated in Figure 7-9.

Tracks are employed as an optional organizational layer to place “related” MIDI data
together, and the synthesizer makes no use of the information. Java Sound supports
Type 0 and Type 1 MIDI sequences, the main difference between them being that
Type 0 files only have a single track.

MIDI messages are encoded using three subclasses of MidiMessage: ShortMessage,
SysexMessage, and MetaMessage. SysexMessage deals with system-exclusive messages,
such as patch parameters or sample data sent between MIDI devices, which are usu-
ally specific to the MIDI device. MetaMessages are used to transmit meta-information
about the sequence, such as tempo settings, and instrument information.

ShortMessage is the most important class since it includes the NOTE_ON and NOTE_OFF

messages for starting and terminating note playing on a given MidiChannel. Typi-
cally, one MidiEvent contains a NOTE_ON for beginning the playing, and a later

Figure 7-9. The internals of a MIDI sequence

track 0

track 1

track 2

MidiEvents

MidiEvent

MidiMessage

tick

This is the Title of the Book, eMatter Edition

MIDI | 199

MidiEvent holds a NOTE_OFF for switching it off. The duration of the note corresponds
to the time difference between the tick values in the two events.

As shown in Figure 7-8, a program can directly communicate with the synthesizer,
sending it a stream of MidiEvents or MidiMessages. The difference between the
approaches is the timing mechanism; a stream of MidiEvents contains tick values,
which the synthesizer can use to space out note playing and other activities. A stream
of MidiMessages contains no timing data, so it’s up to the program to send the mes-
sages at the required time intervals.

Examples of these techniques are given in the “MIDI Synthesis” sec-
tion in Chapter 10.

The internal format of a MidiMessage is simple: there’s an 8-bit status byte, which
identifies the message type followed by two data bytes. Depending on the message,
one or both of these bytes may be utilized. The byte size means that values usually
range between 0 and 127.

One source of confusion for a programmer familiar with MIDI is that the
MidiMessage class and its subclasses do not correspond to the names used in the
MIDI specification (online at http://www.midi.org). ShortMessage includes the MIDI
channel voice, channel mode, system common, and system real-time messages—in
other words, everything except system exclusive and meta-events. In the rest of this
chapter, I’ll use the Java Sound MIDI class names as opposed to those names used in
the specification.

Playing a MIDI Sequence
PlayMidi.java (stored in SoundExamps/SoundPlayer/) loads a MIDI sequence and
plays it once:

public static void main(String[] args)
{ if (args.length != 1) {
 System.out.println("Usage: java PlayMidi <midi file>");
 System.exit(0);
 }
 new PlayMidi(args[0]);
 System.exit(0); // required in J2SE 1.4.2. or earlier
}

As with PlayClip, the call to exit() must be present in J2SE 1.4.2 or
earlier, but is unnecessary in J2SE 5.0.

This is the Title of the Book, eMatter Edition

200 | Chapter 7: Introducing Java Sound

The PlayMidi class implements the MetaEventListener interface to detect when the
sequence has reached the end of its tracks:

public class PlayMidi implements MetaEventListener
{
 // midi meta-event constant used to signal the end of a track
 private static final int END_OF_TRACK = 47;

 private final static String SOUND_DIR = "Sounds/";

 private Sequencer sequencer; // globals
 private Synthesizer synthesizer;
 private Sequence seq = null;
 private String filename;

 private DecimalFormat df;
 : // the rest of the class
}

The PlayMidi constructor initializes the sequencer and synthesizer, loads the
sequence, and starts it playing:

public PlayMidi(String fnm)
{
 df = new DecimalFormat("0.#"); // 1 dp

 filename = SOUND_DIR + fnm;
initSequencer();
loadMidi(filename);
play();

 // wait for the sound to finish playing; guess at 10 mins!
 System.out.println("Waiting");
 try {
 Thread.sleep(600000); // 10 mins in ms
 }
 catch(InterruptedException e)
 { System.out.println("Sleep Interrupted"); }
}

As with PlayClip, PlayMidi waits to give the sequence time to play. When the
sequence finishes, the call to meta() allows PlayMidi to exit from its slumbers ahead
of time.

initSequence() obtains a sequencer and synthesizer from the MIDI system and links
them together. It also sets up the meta-event listener:

private void initSequencer()
{
 try {
 sequencer = MidiSystem.getSequencer();

 if (sequencer == null) {
 System.out.println("Cannot get a sequencer");

This is the Title of the Book, eMatter Edition

MIDI | 201

 System.exit(0);
 }

 sequencer.open();
 sequencer.addMetaEventListener(this);

 // maybe the sequencer is not the same as the synthesizer
 // so link sequencer --> synth (this is required in J2SE 5.0)
 if (!(sequencer instanceof Synthesizer)) {
 System.out.println("Linking the sequencer to a synthesizer");
 synthesizer = MidiSystem.getSynthesizer();
 synthesizer.open();
 Receiver synthReceiver = synthesizer.getReceiver();
 Transmitter seqTransmitter = sequencer.getTransmitter();
 seqTransmitter.setReceiver(synthReceiver);
 }
 else
 synthesizer = (Synthesizer) sequencer;
 // I don't use the synthesizer in this simple code,
 // so storing it as a global isn't really necessary
 }
 catch (MidiUnavailableException e){
 System.out.println("No sequencer available");
 System.exit(0);
 }
} // end of initSequencer()

loadMidi() loads the sequence by calling MidiSystem.getSequence() inside a large
try-catch block to catch the many possible kinds of errors that can occur:

private void loadMidi(String fnm)
{
 try {
 seq = MidiSystem.getSequence(getClass().getResource(fnm));
 double duration = ((double) seq.getMicrosecondLength()) / 1000000;
 System.out.println("Duration: " + df.format(duration)+" secs");
 }
 // several catch blocks go here; see the code for details
}

play() loads the sequence into the sequencer and starts it playing:

private void play()
{ if ((sequencer != null) && (seq != null)) {
 try {
 sequencer.setSequence(seq); // load MIDI into sequencer
 sequencer.start(); // start playing it
 }
 catch (InvalidMidiDataException e) {
 System.out.println("Corrupted/invalid midi file: " + filename);
 System.exit(0);
 }
 }
}

This is the Title of the Book, eMatter Edition

202 | Chapter 7: Introducing Java Sound

start() will return immediately, and PlayMidi will go to sleep back in the constructor.

meta() is called frequently as the sequence begins playing, but I’m only interested in
responding to the end-of-track event:

public void meta(MetaMessage event)
{ if (event.getType() == END_OF_TRACK) {
 System.out.println("Exiting...");
 close();
 System.exit(0);
 }
}

Java Sound API Compared
with JMF and JOAL
The Java Media Framework, or JMF, (http://java.sun.com/products/java-media/jmf/)
supports streaming multimedia, such as video and audio, with an emphasis on
streaming over a network where bandwidth and latency are issues. This means sup-
port for time-based protocols, such as RTP, and services such as compression and
media streams synchronization.

The Performance Pack versions of JMF (for Windows, Solaris, and Linux) use the
Java Sound API to play and capture sound data, so Sound API techniques can be uti-
lized. However, the Cross Platform version of JMF uses sun.audio classes to play
sound rather than the API (and audio capture isn’t available).

JMF supports more sound formats than the Sound API, including MPEG-1 (see http://
java.sun.com/products/java-media/jmf/2.1.1/formats.html for an extensive list). Even
better, it’s possible to plug additional codecs into Java Sound via the service provider
interface. For example, MP3 (MPEG 1/2/2.5 Layer 1/2/3) and Ogg Vorbis formatted
files can be read through an AudioInputStream by utilizing plug-ins from JavaZoom
(http://www.javazoom.net/projects.html).

JMF can be used with JDK 1.1 or later, so is suitable for applets running inside JVMs
on older browsers; the Java Sound API requires J2RE 1.3 or higher.

JOAL (https://joal.dev.java.net/) is a set of Java bindings for OpenAL, a 3D sound API
for OpenGL. JOAL’s area of strength is 3D positional audio and offers little support
for audio mixing or synthesis; consequently, it doesn’t “compete” with Java Sound.
A combination of JOAL and Java Sound may replace the buggy audio elements of
Java 3D in its next major release (the latter half of 2005).

Java Sound API Resources
The lengthy Java Sound API programmer’s guide comes with the J2SE documentation,
and can be found at http://java.sun.com/j2se/1.5.0/docs/guide/sound/programmer_guide/.

This is the Title of the Book, eMatter Edition

Java Sound API Resources | 203

It’s a little bit old now (it dates from October 2001) but still informative. The best place
for examples, links, and a great FAQ is the Java Sound resources site (http://www.
jsresources.org/).

Lots of specialized information can be extracted from the javasound-interest mailing
list at http://archives.java.sun.com/archives/javasound-interest.html. The Java Games
Forum on Java Sound help searchable; visit http://www.javagaming.org/cgi-bin/
JGNetForums/YaBB.cgi?board=Sound.

Sun’s Java Sound site at http://java.sun.com/products/java-media/sound/ contains links to
articles, a FAQ, a large demo, instruments soundbanks, and service provider plug-ins
for nonstandard audio formats. The Java Almanac offers code fragments illustrating var-
ious techniques (http://javaalmanac.com/egs/?). Look under the javax.sound.sampled

and javax.sound.midi package headings.

An excellent set of Java Sound examples can be found in Java Examples in a Nutshell by
David Flanagan (O’Reilly). He includes a MIDI synthesizer based around the process-
ing of musical notes, covering similar ground to my SeqSynth application in Chapter 10,
but with additional features. All the examples can be downloaded from O’Reilly’s web
site at http://www.oreilly.com/catalog/jenut3/index.html?CMP=ILC-0PY480989785, and
two excerpts from the Java Sound chapter (Chapter 17) are at http://www.onjava.com/
pub/a/onjava/excerpt/jenut3_ch17/index.html and http://www.onjava.com/pub/a/onjava/
excerpt/jenut3_ch17/index1.html.

Extended coverage of Java Sound appears in Chapter 22 of Java: How to Program,
Fourth Edition by Harvey and Paul Deitel (Deitel Int.). The MIDI example combines
synthesis, playback, recording, and saving. The code can be downloaded from http://
www.deitel.com/books/downloads.html.

Unfortunately, the Java Sound material has been cut from later edi-
tions of this book.

Sing Li has written an article using some of the new J2SE 5.0 features in Java Sound
(e.g., the Direct Audio Device and the Port class implementation), called “Making
Sense of Java Sound with JDK 1.5” (http://www.vsj.co.uk/articles/display.asp?id=370).
It cumulates in a karaoke recording application. Dick Baldwin has written several
Java Sound tutorials, found at http://dickbaldwin.com/tocadv.htm; topics include
“Capturing microphone data into an audio file” and “Creating, playing, and saving
synthetic sounds.”

A good starting point for Java Sound software, including tools and libraries, is the Goo-
gle directory: http://directory.google.com/Top/Computers/Multimedia/Music_and_Audio/
Software/Java/?il=1.

This is the Title of the Book, eMatter Edition

204 | Chapter 7: Introducing Java Sound

Audio Resources
Two Windows-based audio editing tools that I’ve used are WavePad (http://nch.com.au/
wavepad/) and Anvil Studio (http://www.anvilstudio.com/).

The source for all things MIDI is http://www.midi.com, with articles, the official spec-
ification, a search engine, and links to other sites. Harmony Central has a good MIDI
resource section, including a useful tutorial:, http://www.harmony-central.com/MIDI/.

FindSounds (http://www.findSounds.com) offers a versatile search engine for sampled
audio (AIFF, AU, WAV). MusicRobot (http://www.musicrobot.com) has a MIDI search
engine and a WAV search engine (http://www.musicrobot.com/cgi-bin/windex.pl).
Audio clip web sites with plenty of sound effects, such as gunshots, sirens, and explo-
sions, include http://www.freeaudioclips.com, http://www.wavsource.com, and http://
www.a1freesoundeffects.com/.

This is the Title of the Book, eMatter Edition

205

Chapter 8 CHAPTER 8

Loading and Playing Sounds

Chapter 7 introduced the Java Sound API, with small examples showing the play-
back of clips, streamed audio, and MIDI sequences. This chapter is given over to a
single application, LoadersTests, which demonstrates my ClipsLoader and
MidisLoader classes for loading, playing, pausing, resuming, stopping, and looping
clips and sequences. These loader classes will be used in later chapters for games
requiring sounds or music. Figure 8-1 shows the LoadersTests GUI.

The left side of the control panel offers a choice between four MIDI sequences (all
with a farming theme). The selection can be played once or repeatedly. Once play-
ing, the Pause and Stop buttons are enabled. If the Pause button is pressed, the music
pauses until resumed with the Resume button (which is the Pause button renamed).
Only a single sequence can be played at a time.

Figure 8-1. The LoadersTests application

This is the Title of the Book, eMatter Edition

206 | Chapter 8: Loading and Playing Sounds

The right side of the control panel is a series of check boxes for turning looping on
and off for the “dog,” “cat,” “sheep,” and “chicken” clips. A clip is started by the
user clicking on the relevant image in the top half of the GUI. Multiple clips can be
played at once, complementing an already playing MIDI sequence. My personal
favorite is a looping “Old McDonald” with all the clips playing repeatedly. The joys
of silence soon become apparent.

The LoadersTests application is located in SoundExamps/LoadersTests/.

Figure 8-2 shows the class diagrams for LoadersTests, with only the public methods
visible.

Figure 8-2. Class diagrams for LoadersTests

This is the Title of the Book, eMatter Edition

Loader Design and Implementation Issues | 207

LoadersTests creates the GUI, initializes the loaders, and deals with user input. The
images panel is coded in the SoundsPanel class.

The largest class is ImagesLoaders, previously described in Chapter 6. It’s used here
to load the four animal GIFs, arguably an example of coding overkill for such simple
tasks. MidisLoader loads and manages multiple MIDI sequences, with each sequence
stored in its own MidiInfo object. ClipsLoader does the same for clips, which are
stored in ClipInfo objects.

The MIDI sequence and clips can be configured to call atSequenceEnd() in
SoundsWatcher when they finish playing. In this example, LoadersTests implements
the SoundsWatcher interface.

Loader Design and Implementation Issues
Before embarking on a detailed examination of LoadersTests, I’d like to explain some
of the design and implementation decisions that underpin ClipsLoader, MidisLoader,
and their support classes, ClipsInfo and MidisInfo:

Background music
I’m assuming that a MIDI sequence will be utilized for background music (an
action-packed, adrenaline-fueled technobeat or, perhaps, “I’m just a little black
rain cloud”). The use of a sequence makes sense because MIDI files are consider-
ably smaller than sampled audio recordings of the same music. As I mentioned
in the previous chapter, high-quality stereo sampled audio may require about 10
MB per minute of sound, but a typical MIDI sequence may need less than 10 KB.
A long piece of music should be encoded as a MIDI sequence to save disk space
and load time. Since a game needs one background tune at a time, I’ve restricted
MidisLoader to play only one sequence at a time. As a consequence, only one
Sequencer object needs to be created at runtime, which reduces the loader’s pro-
cessing overheads.

Audio effects
Sound clips will be employed for audio effects, such as explosions, laser
swooshes, and anguished cries—short-lived sounds for the most part. Several
sound effects may need to be played at the same time, or overlap in time, so
ClipsLoader supports concurrent playing of several clips. However, a proviso is
built into the Java Sound API: one instance of a Clip object can be executing at a
time. This means that an explosion clip, for example, cannot be played three
times at once (you might want to do this to create an overlapping effect of multi-
ple blasts). The solution is to load the explosion three times into ClipsLoader,
with different names, creating three distinct Clip objects that can be played
together.

This is the Title of the Book, eMatter Edition

208 | Chapter 8: Loading and Playing Sounds

This coding strategy is used for the fireball sounds in the JumpingJack
example in Chapter 12.

Though I’ve assumed that clips will be short pieces of audio, longer sounds can
be loaded and played; ClipsLoader’s pause and resume features are useful for
these longer files.

Preloading
Multiple clips and sequences can be loaded at startup based on filename lists
supplied in text files or loaded via method calls during execution.

Most programmers will want to preload their audio so the sounds are
ready to play during the game. I haven’t included any methods for
unloading clips or sequences, but they would be easy to add.

Sound formats
ClipsLoader supports more sound formats than WAV. The playing of ULAW or
ALAW files is dealt with by converting them into PCM format as they’re read in.
This is achieved using the conversion code I wrote for the PlayClip class in
Chapter 7.

The WAV bug
I’ve chosen not to code around the WAV file bug in Java Sound in J2SE 5.0,
described in the last chapter. Instead, ClipsLoader issues a warning message if a
clip is one second long or less. It’s up to the programmer to lengthen short
sounds, perhaps with a quiet hiss, to get their length up to at least 1.1 seconds.

Callbacks
Java Sound’s Clip and Sequencer classes support looping, but they’re inadequate
for my purposes. I want the program to be notified when a loop iteration fin-
ishes, so the program has the option of carrying out some activity, such as stop-
ping the sound or changing a visual element in the game. Therefore, when
iteration ends in ClipsLoader and MidisLoader, a callback method named
atSequenceEnd() will automatically be invoked.

The callback reports when a clip or sequence has finished. This occurs during
the end of a loop iteration and the end of the audio and is distinguished by con-
stants passed to the atSequenceEnd() call.

Similar APIs
Some effort has been made to make the APIs offered by ClipsLoader and
MidisLoader as similar as possible, which is why, for example, they offer the
atSequenceEnd() callback.

This is the Title of the Book, eMatter Edition

Testing the Loaders | 209

Copyright
One serious issue to consider before releasing a game with numerous sounds is
copyright.

In Windows, a sound’s copyright can be viewed as a side effect of playing it in
the Windows Media Player: the details appear in the GUI. For example, the
“Bach Sheep” and “Farmer in the Dell” sequences used in LoadersTests are
copyrighted by David E Lovell and Diversified Software, respectively.

In general, I advise a do-it-yourself (DIY) policy on audio elements. Many sound
effects can be generated by recording noises through a PC’s microphone, then
distorting them in a package such as WavePad. MIDI sequences should be cre-
ated from scratch, perhaps with the help of a musician.

Testing the Loaders
The constructor for LoadersTests creates the images canvas (a SoundsPanel object)
and the rest of the GUI, and it initializes the loaders:

// the clip and midi sound information files, located in Sounds/
private final static String SNDS_FILE = "clipsInfo.txt";
private final static String MIDIS_FILE = "midisInfo.txt";

// global variables
private ClipsLoader clipsLoader;
private MidisLoader midisLoader;

public LoadersTests()
{ super("Sounds Tests");
 Container c = getContentPane();
 c.setLayout(new BorderLayout());

SoundsPanel sp = new SoundsPanel(this); // the images canvas
 c.add(sp, BorderLayout.CENTER);
initGUI(c); // the rest of the controls

 // initialise the loaders
 clipsLoader = new ClipsLoader(SNDS_FILE);
 clipsLoader.setWatcher("dog", this); // watch the dog clip

 midisLoader = new MidisLoader(MIDIS_FILE);
 midisLoader.setWatcher(this); // watch the midi sequence

 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent ev) {
 midisLoader.close(); // shut down the sequencer
 System.exit(0);
 }
 });

This is the Title of the Book, eMatter Edition

210 | Chapter 8: Loading and Playing Sounds

 pack();
 setResizable(false); // fixed size display
 centerFrame(); // placed in the center of the screen
 setVisible(true);
}

Watching the Loaders
As part of the loaders setup, setWatcher() is called in the ClipsLoader and
MidisLoader objects:

clipsLoader.setWatcher("dog", this); // watch the dog clip

midisLoader.setWatcher(this); // watch midi playing

A call to setWatcher() tells the loader that this object (LoadersTest) should be noti-
fied whenever the specified sound reaches the end of an iteration when looping or
when finished.

This notification is achieved by having the loader call atSequenceEnd() in the object,
which requires that LoadersTest implements the SoundsWatcher interface. LoadersTest
has, therefore, become a watcher.

A watcher can be assigned to multiple clips and to the currently play-
ing MIDI sequence. MidisLoader can play one sequence at a time, so
there’s no need to specify the sequence’s name when setWatcher() is
called.

atSequenceEnd() is defined by LoadersTests this way:

public void atSequenceEnd(String name, int status)
// can be called by the ClipsLoader or MidisLoader
{
 if (status == SoundsWatcher.STOPPED)
 System.out.println(name + " stopped");
 else if (status == SoundsWatcher.REPLAYED)
 System.out.println(name + " replayed");
 else
 System.out.println(name + " status code: " + status);
}

The two possible meanings of “sequence end” are represented by the SoundsWatcher

constants STOPPED and REPLAYED. The name argument of atSequenceEnd() is a string
assigned to the clip or sequence by the loader.

Termination
When LoadersTests is terminated, windowClosing() calls close() in the MidisLoader

to terminate its sequencer. This is preferable to relying on the audio system to release

This is the Title of the Book, eMatter Edition

Testing the Loaders | 211

the resources. windowClosing() calls exit() to force the JVM to terminate even
though some audio threads are still running.

This call to exit() isn’t necessary in J2SE 5.0.

The Listener Methods
In initGUI(), ActionListeners are attached to the buttons and ItemListeners to the
check boxes.

A simplified version of actionPerformed() is shown below, with the many calls to
Component.setEnable() edited out. setEnable() manages the user’s behavior by
restricting the available buttons, which is a useful GUI trick. When nothing is play-
ing, Play and Loop are enabled. When a sequence is executing, only Pause and Stop
are available. When a piece of music is paused, only the Resume button is active (this
is the renamed Pause button):

public void actionPerformed(ActionEvent e)
/* Triggered by a "Play", "Loop", "Pause/Resume", "Stop" button
 press. The relevant method in MidisLoader is called.

 A lot of effort is spent on disabling/enabling buttons,
 which I've edited out from the code here.
*/
{ // which song is currently selected?
 String songName = shortSongNames[namesJcb.getSelectedIndex()];

 if (e.getSource() == playJbut) // "Play" pressed
 midisLoader.play(songName, false); // play sequence, no looping
 else if (e.getSource() == loopJbut) // "Loop" pressed
 midisLoader.play(songName, true); // play with looping
 else if (e.getSource() == pauseJbut) { // "Pause/Resume" pressed
 if (isPauseButton) {
 midisLoader.pause(); // pause the sequence
 pauseJbut.setText("Resume"); // Pause --> Resume
 }
 else {
 midisLoader.resume(); // resume the sequence
 pauseJbut.setText("Pause"); // Resume --> Pause
 }
 isPauseButton = !isPauseButton;
 }
 else if (e.getSource() == stopJbut) // "Stop" pressed
 midisLoader.stop(); // stop the sequence
 else
 System.out.println("Action unknown");
} // end of actionPerformed()

This is the Title of the Book, eMatter Edition

212 | Chapter 8: Loading and Playing Sounds

The correspondence between button presses and calls to the MidisLoader is fairly
clear. A once-only play, as well as repeated playing of a clip, are handled by play()

with a Boolean argument to distinguish the two modes.

itemStateChanged() handles the four checkboxes on the right side of the GUI, which
specifies if clips should be looped when played. However, a clip only starts to play
when the user clicks on its image in the SoundsPanel.

The looping settings for all the clips are maintained in an array of Booleans called
clipLoops[]. The relevant Boolean passes to ClipsLoader’s play() method when the
clip is played:

// global clip image names (used to label the checkboxes)
private final static String[] names =
 {"dog", "cat", "sheep", "chicken"};

// global clip loop flags, stored in names[] order
private boolean[] clipLoops = {false, false, false, false};

public void itemStateChanged(ItemEvent e)
// Triggered by selecting/deselecting a clip looping checkbox
{
 // get the name of the selected checkbox
 String name = ((JCheckBox)e.getItem()).getText();
 boolean isSelected = (e.getStateChange() == e.SELECTED) ? true : false;

 boolean switched = false;
 for (int i=0; i < names.length; i++)
 if (names[i].equals(name)) {

clipLoops[i] = !clipLoops[i]; // update the clip loop flags
 switched = true;
 break;
 }
 if (!switched)
 System.out.println("Item unknown");
 else {
 if (!isSelected) // user just switched off looping for name
 clipsLoader.stop(name); // so stop playing name's clip
 }
}

The checkbox’s name is found in the names[] array, and the corresponding index is
used to choose the Boolean in clipsLoops[] to be modified.

A quirk of LoadersTests’s GUI is the lack of a button to stop a repeat-
ing clip. Instead, the deselection of its looping checkbox causes it to
stop. This is perhaps counter-intuitive. Design decisions such as this
one should be tested on users who are not involved in the applica-
tion’s design or implementation.

This is the Title of the Book, eMatter Edition

The Sounds Panel | 213

LoadersTests has no interface for allowing a clip to be paused and resumed, although
this functionality is present in ClipsLoader.

The Sounds Panel
SoundsPanel implements a JPanel that draws a white background and four images.
The interesting part of the code is the setting up and use of the images’ hot spots
(rectangular areas the same size as each image). If a mouse press is inside one of the
hot spots, then LoadersTests’ playClip() plays the associated clip.

The SoundsPanel constructor stores a reference to LoadersTests, calls initImages(),
and sets up the MouseListener to call selectImage():

// globals
private static final int PWIDTH = 350; // size of this panel
private static final int PHEIGHT = 350;

private LoadersTests topLevel;

public SoundsPanel(LoadersTests sts)
{ topLevel = sts;
 setPreferredSize(new Dimension(PWIDTH, PHEIGHT));
initImages();

 addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e)
 { selectImage(e.getX(), e.getY()); }
 });
}

initImages() uses ImagesLoader to load the four GIFs, whose names are hard-wired
into the code in the names[] array. The width and height of each image is used to
build the array of Rectangle objects that represent the hot spots:

// globals
// clip image names
private final static String[] names = {"dog", "cat", "sheep", "chicken"};

// on-screen top-left coords for the images
private final static int[] xCoords = {20, 210, 20, 210};
private final static int[] yCoords = {25, 25, 170, 170};

// location of image and sound info
private final static String IMS_FILE = "imagesInfo.txt";

private int numImages;
private BufferedImage[] images;
private Rectangle[] hotSpots;
// a click inside these triggers the playing of a clip

This is the Title of the Book, eMatter Edition

214 | Chapter 8: Loading and Playing Sounds

private void initImages()
// load and initialise the images, and build their "hot spots"
{
 numImages = names.length;
 hotSpots = new Rectangle[numImages];
 images = new BufferedImage[numImages];

 ImagesLoader imsLoader = new ImagesLoader(IMS_FILE);

 for (int i=0; i < numImages; i++) {
 images[i] = imsLoader.getImage(names[i]);
 hotSpots[i] = new Rectangle(xCoords[i], yCoords[i],
 mages[i].getWidth(), images[i].getHeight());
 // use images' dimensions for the size of the rectangles
 }
}

Each hot-spot rectangle is defined by a top-left coordinate, taken from the xCoords[]

and yCoords[] arrays and from a width and height obtained from the loaded image.
paintComponent() draws the images in the panel using the same xCoords[] and
yCoords[] data as the hot-spot rectangles, thereby ensuring that they occupy the
same spaces.

selectImage() tries to find the hot spot containing the mouse press coordinates. A
matching hot spot’s index position in hotSpots[] is used to retrieve a clip name from
names[]. playClip() is passed the name and the index:

private void selectImage(int x, int y)
/* Work out which image was clicked on (perhaps none),
 and request that its corresponding clip be played. */
{
 for (int i=0; i < numImages; i++)
 if (hotSpots[i].contains(x,y)) { // (x,y) inside hot spot?
 topLevel.playClip(names[i], i); // play that name's clip
 break;
 }
}

Back in LoadersTests, playClip() is defined as:

public void playClip(String name, int i)
// called from SoundsPanel to play a given clip (looping or not)
{ clipsLoader.play(name, clipLoops[i]); }

The index parameter is employed to look inside clipLoops[] to get the playing mode.
This coding approach works because I’ve ensured that the clipLoops[] array refers to
the clips in the same order as the arrays in SoundsPanel.

The Clips Loader
ClipsLoader stores a collection of ClipInfo objects in a HashMap, keyed by their
names. The name and filename for a clip are obtained from a sounds information

This is the Title of the Book, eMatter Edition

The Clips Loader | 215

file, which is loaded when ClipsLoader is created. The information file is assumed to
be in the subdirectory Sounds/.

ClipsLoader allows a specified clip to be played, paused, resumed, looped, and
stopped. A SoundsWatcher can be attached to a clip. All this functionality is handled
in the ClipInfo object for the clip.

It’s possible for many clips to play simultaneously, since each ClipInfo
object is responsible for playing its own clip.

The first ClipsLoader constructor loads a sounds information file, and the second ini-
tializes the HashMap of clips:

// globals
private HashMap clipsMap;
 /* The key is the clip 'name', the object (value)
 is a ClipInfo object /

public ClipsLoader(String soundsFnm)
{ this();
loadSoundsFile(soundsFnm);

}

public ClipsLoader()
{ clipsMap = new HashMap(); }

loadSoundsFile() parses the information file, assuming each line contains a name
and filename. For example, clipsInfo.txt used by LoadersTests is:

// sounds
cat cat.wav
chicken chicken.wav
dog dog.wav
sheep sheep.wav

The name can be any string. The file may contain blank lines and com-
ment lines beginning with //.

After a line’s name and filename have been extracted, load() is called:

public void load(String name, String fnm)
// create a ClipInfo object for name and store it
{
 if (clipsMap.containsKey(name))
 System.out.println("Error: " + name + "already stored");
 else {

This is the Title of the Book, eMatter Edition

216 | Chapter 8: Loading and Playing Sounds

 clipsMap.put(name, new ClipInfo(name, fnm));
 System.out.println("-- " + name + "/" + fnm);
 }
}

A ClipInfo object is created, and added to the HashMap.

load() is public so a user can directly add clips to the loader.

Playing Clips
play() illustrates the coding style used by the other public methods in ClipsLoader.
In each method (play(), close(), stop(), pause(), resume(), and setWatcher()), the
name of the clip is provided, along with if it should be looped. The ClipInfo object is
retrieved using that name, errors are handled, and then the requested operation is
delegated to the object:

public void play(String name, boolean toLoop)
// play (perhaps loop) the specified clip
{ ClipInfo ci = (ClipInfo) clipsMap.get(name);
 if (ci == null)
 System.out.println("Error: " + name + "not stored");
 else
 ci.play(toLoop); // delegate operation to ClipInfo obj
}

Audio manipulation is delegated to the ClipInfo object associated with the specified
clip name.

Storing Clip Information
A ClipInfo object is responsible for loading a clip and plays, pauses, resumes, stops,
and loops that clip when requested by ClipsLoader. Additionally, an object imple-
menting the SoundsWatcher interface (a watcher) can be notified when the clip loops
or stops.

Much of the manipulation carried out by ClipInfo, such as clip loading, is almost
identical to that found in PlayClip.java in Chapter 7. Perhaps the largest difference is
that PlayClip exits when it encounters a problem, and ClipInfo prints an error mes-
sage and soldiers on.

loadClip() is similar to PlayClip’s loadClip(), so certain parts have been com-
mented away in the code below to simplify matters:

// global
private Clip clip = null;

This is the Title of the Book, eMatter Edition

Storing Clip Information | 217

private void loadClip(String fnm)
{
 try {
 // 1. access the audio file as a stream
 AudioInputStream stream = AudioSystem.getAudioInputStream(
 getClass().getResource(fnm));

 // 2. Get the audio format for the data in the stream
 AudioFormat format = stream.getFormat();

 // convert ULAW/ALAW formats to PCM format...
 // several lines, which update stream and format

 // 3. Gather information for line creation
 DataLine.Info info = new DataLine.Info(Clip.class, format);

 // make sure the sound system supports the data line
 if (!AudioSystem.isLineSupported(info)) {
 System.out.println("Unsupported Clip File: " + fnm);
 return;
 }

 // 4. create an empty clip using the line information
 clip = (Clip) AudioSystem.getLine(info);

 // 5. Start monitoring the clip's line events
 clip.addLineListener(this);

 // 6. Open the audio stream as a clip; now it's ready to play
 clip.open(stream);
 stream.close(); // I'm done with the input stream

 checkDuration();
 } // end of try block

 // several catch blocks go here ...
} // end of loadClip()

checkDuration() checks the length of this clip and issues a warning if it’s one second
or less. This warning is due to the WAV file bug in Java Sound in J2SE 5.0, first men-
tioned in Chapter 7 when I coded PlayClip.java.

If a clip is too short, it’ll fail to play and often affects the playing of
other clips in LoadersTests, even those longer than one second.

play() starts the loop playing:

public void play(boolean toLoop)
{ if (clip != null) {

This is the Title of the Book, eMatter Edition

218 | Chapter 8: Loading and Playing Sounds

 isLooping = toLoop; // store playing mode
clip.start(); // start playing from where stopped

 }
}

The Clip class has a loop() method, which is not used by my play() method when
toLoop is true. Instead, the looping mode is stored in the isLooping global and is uti-
lized later in update(). This allows the loader to execute a callback method in a
watcher at the end of each iteration.

Clip’s start() method is asynchronous, so the play() method will not suspend.
This makes it possible for a user to start multiple clips playing at the same time.

If play() is called again for a playing clip, start() will have no effect.

Stopping Clips
The stop() method stops the clip and resets it to the beginning, ready for future
playing:

public void stop()
{ if (clip != null) {
 isLooping = false;
 clip.stop();
 clip.setFramePosition(0);
 }
}

Clip.setFramePosition() can set the playing position anywhere inside the clip.

Pausing and Resuming Clips
The pause() and resume() methods are similar to stop() and play():

public void pause()
// stop the clip at its current playing position
{ if (clip != null)
 clip.stop();
}

public void resume()
{ if (clip != null)
 clip.start();
}

The big difference between pause() and stop() is that pause() doesn’t reset the
clip’s playing position. Consequently, resume() will start playing the clip from the
point where the sound was suspended.

This is the Title of the Book, eMatter Edition

The Midi Sequences Loader | 219

Handing Line Events
ClipInfo implements the LineListener interface, so it is notified when the clip gener-
ates line events. Audio lines, such as clips, fire events when they’re opened, started,
stopped, or closed. update() only deals with STOP line events:

public void update(LineEvent lineEvent)
{
 // when clip is stopped / reaches its end
 if (lineEvent.getType() == LineEvent.Type.STOP) {
 clip.stop();
 clip.setFramePosition(0);
 if (!isLooping) { // it isn't looping
 if (watcher != null)
 watcher.atSequenceEnd(name, SoundsWatcher.STOPPED);
 }
 else { // else play it again
 clip.start();
 if (watcher != null)
 watcher.atSequenceEnd(name, SoundsWatcher.REPLAYED);
 }
 }
}

A STOP event is triggered in two different situations: when the clip reaches its end and
when the clip is stopped with Clip.stop().

When the clip reaches its end, it may have been set to loop. This isn’t implemented
by using Clip’s loop() method but by examining the value of the global isLooping
Boolean. If isLooping is false, then the watcher (if one exists) is told the clip has
stopped. If isLooping is true then the clip will start again, and the watcher is told
that the clip is playing again. This explicit restarting of a looping clip, instead of call-
ing loop(), allows me to insert additional processing (e.g., watcher notification)
between the clip’s finishing and restarting.

The Midi Sequences Loader
MidisLoader stores sequences as a collection of MidiInfo objects in a HashMap, keyed by
their names. The name and filename for a sequence are obtained from an information
file loaded when MidisLoader is created. The file is assumed to be in the subdirectory
Sounds/.

MidisLoader allows a specified sequence to be played, stopped, resumed, and looped.
A SoundsWatcher can be attached to the sequencer and not to a sequence. MidisLoader
deliberately offers almost the same interface as ClipsLoader (see Figure 8-2), though
it has some internal differences.

MidisLoader was designed to have one Sequencer object for playing all the sequences,
which avoids the overhead of supporting multiple sequencers. Consequently, one

This is the Title of the Book, eMatter Edition

220 | Chapter 8: Loading and Playing Sounds

sequence will play at a time. This contrasts with ClipsLoader, where multiple clips
can be playing concurrently since multiple Clip objects are created by ClipsLoader. A
reference to the sequencer is passed to each MidiInfo object, thereby giving them the
responsibility for playing, stopping, resuming and looping their sequences.

The MidisLoader initializes the sequencer using initSequencer() and loads the infor-
mation file:

// globals
private Sequencer sequencer;
private HashMap midisMap;
private MidiInfo currentMidi = null;
 // reference to currently playing MidiInfo object

public MidisLoader()
{ midisMap = new HashMap();
 initSequencer();
}

public MidisLoader(String soundsFnm)
{ midisMap = new HashMap();
initSequencer();
loadSoundsFile(soundsFnm);

}

The simpler versions of the constructor allow the loader to be created
without an information file.

initSequencer() is similar to the version in PlayMidi.java in Chapter 7.
loadSoundsFile() is similar to the same named method in ClipsLoader since it parses
the information file, assuming each line contains a name and filename. For example,
midisInfo.txt used by LoadersTests is

// midis
baa bsheep.mid
farmer farmerinthedell.mid
mary maryhadalittlelamb.mid
mcdonald mcdonald.mid

The name can be any string. The file may contain blank lines and com-
ment lines beginning with //.

After a line’s name and filename have been extracted, load() is called:

public void load(String name, String fnm)
// create a MidiInfo object, and store it under name
{

This is the Title of the Book, eMatter Edition

The Midi Sequences Loader | 221

 if (midisMap.containsKey(name))
 System.out.println("Error: " + name + "already stored");
 else if (sequencer == null)
 System.out.println("No sequencer for: " + name);
 else {
 midisMap.put(name, new MidiInfo(name, fnm, sequencer));
 System.out.println("-- " + name + "/" + fnm);
 }
}

This creates a MidiInfo object for the sequence and stores it in the midisMap HashMap.
The last MidiInfo constructor argument is the sequencer.

Playing Sequences
Playing a sequence is a matter of looking up the specified name in midisMap and call-
ing its play() method. A slight complication is that one sequence will play at a time,
a restriction included in the loader design to reduce processing overheads. play()

only plays the requested tune if no sequence is playing; a reference to that sequence
is stored in the currentMidi global:

public void play(String name, boolean toLoop)
// play (perhaps loop) the sequence
{
 MidiInfo mi = (MidiInfo) midisMap.get(name);
 if (mi == null)
 System.out.println("Error: " + name + "not stored");
 else {
 if (currentMidi != null)
 System.out.println("Sorry, " + currentMidi.getName() + " already playing");
 else {

currentMidi = mi; // store a reference to playing midi
 mi.play(toLoop); // pass play request to MidiInfo object
 }
 }
}

Playing is prohibited if currentMidi is not null, which means that a sequence is
playing.

Pausing and Resuming Sequences
Pausing and resuming is handled by passing the tasks to the playing MidiInfo object:

public void pause()
{ if (currentMidi != null)
 currentMidi.pause();
 else
 System.out.println("No music to pause");
}

This is the Title of the Book, eMatter Edition

222 | Chapter 8: Loading and Playing Sounds

public void resume()
{ if (currentMidi != null)
 currentMidi.resume();
 else
 System.out.println("No music to resume");
}

Stopping Sequences
Stopping a sequence uses the same delegation strategy as pausing and resuming. The
stop() method in MidisInfo will trigger an end-of-track metaevent in the sequencer,
which is handled by MidisLoader’s meta() method:

public void stop()
{ if (currentMidi != null)
 currentMidi.stop(); // this will cause an end-of-track event
 System.out.println("No music playing");
}

public void meta(MetaMessage meta)
{
 if (meta.getType() == END_OF_TRACK) {
 String name = currentMidi.getName();
 boolean hasLooped = currentMidi.tryLooping(); // music still looping?
 if (!hasLooped) // no it's finished
 currentMidi = null;

 if (watcher != null) { // tell the watcher
 if (hasLooped) // the music is playing again
 watcher.atSequenceEnd(name, SoundsWatcher.REPLAYED);
 else // the music has finished
 watcher.atSequenceEnd(name, SoundsWatcher.STOPPED);
 }
 }
} // end of meta()

The code in meta() only deals with an end-of-track metaevent. These end-of-track
events are triggered by a MidiInfo object when its sequence reaches its end or is
stopped. However, a sequence at its end may be looping, which is checked by call-
ing tryLooping() in MidiInfo. If there is a watcher, that watcher is notified of the sta-
tus of the sequence.

Closing Sequences
As LoadersTests terminates, it calls close() in MidisLoader to release the sequencer:

public void close()
{
 stop(); // stop the playing sequence
 if (sequencer != null) {

This is the Title of the Book, eMatter Edition

Storing Midi Information | 223

 if (sequencer.isRunning())
 sequencer.stop();

 sequencer.removeMetaEventListener(this);
 sequencer.close();
 sequencer = null;
 }
}

Storing Midi Information
A MidiInfo object holds a single MIDI sequence and a reference to the sequencer cre-
ated in MidisLoader. This allows it to play, stop, pause, and resume a clip, and make
it loop.

The constructor is passed the sequence’s name, filename, and the sequencer refer-
ence, and then it loads the sequence using MidiSystem.getSequence(). A sequence is
played by loading it into the sequencer and starting the sequence:

public void play(boolean toLoop)
{
 if ((sequencer != null) && (seq != null)) {
 try {
 sequencer.setSequence(seq); // load sequence into sequencer
 sequencer.setTickPosition(0); // reset to the start
 isLooping = toLoop;
 sequencer.start(); // play it
 }
 catch (InvalidMidiDataException e) {
 System.out.println("Invalid midi file: " + filename);
 }
 }
}

The Sequencer class has several loop() methods, but they aren’t used here. A similar
coding technique is employed as in ClipInfo: A global isLooping Boolean is set to
true and employed later by tryLooping(). This permits us to trigger a callback in a
watcher at the end of each iteration.

Stopping Sequences
Stopping a sequence with Sequencer.stop() causes it to stop at its current position.
More importantly, no metaevent is generated unless the stopping coincides with the
end of the track. In order to generate an event, my stop() method “winds” the
sequence to its end:

public void stop()
{
 if ((sequencer != null) && (seq != null)) {
 isLooping = false;
 if (!sequencer.isRunning()) // the sequence may be paused

This is the Title of the Book, eMatter Edition

224 | Chapter 8: Loading and Playing Sounds

 sequencer.start();
 sequencer.setTickPosition(sequencer.getTickLength());
 // move to end of sequence to trigger end-of-track event
 }
}

This behavior means that meta() in MidisLoader is called in two situations: when the
sequence reaches its end and when the sequence is stopped. This corresponds to the
ways that a LineListener STOP event can be generated for clips.

MidisLoader’s meta() method calls trylooping() in MidiInfo to determine if the
sequence is looping. tryLooping() is responsible for restarting the sequence if its
isLooping Boolean is true:

public boolean tryLooping()
{
 if ((sequencer != null) && (seq != null)) {
 if (sequencer.isRunning())
 sequencer.stop();
 sequencer.setTickPosition(0);
 if (isLooping) { // play it again
 sequencer.start();
 return true;
 }
 }
 return false;
}

Admittedly, this is rather convoluted coding: stop() triggers meta(), which calls
tryLooping(), and then tryLooping() restarts a looping sequence.

Part of the problem is that looping isn’t implemented with Sequencer.loop().
Instead, a sequence comes to its end and is started again by tryLooping() calling
start(). This allows additional processing in meta() (e.g., watcher communication)
between the end of the sequence and its restart.

Another aspect is that the sequence control code is located in MidiInfo (stop() and
tryLooping()), but the metaevent processing is inside meta() in MidisLoader.

Pausing and Resuming Sequences
MidiInfo’s pause() and resume() methods are implemented using the Sequencer

class’s start() and stop() methods. These Sequencer methods don’t adjust the
sequence’s playing position:

public void pause()
{ if ((sequencer != null) && (seq != null)) {
 if (sequencer.isRunning())
 sequencer.stop();
 }
}

This is the Title of the Book, eMatter Edition

LoadersTests as a JAR File | 225

public void resume()
{ if ((sequencer != null) && (seq != null))
 sequencer.start();
}

LoadersTests as a JAR File
It’s straightforward to package the LoadersTests code, its images, and sounds into a
JAR file:

jar cvmf mainClass.txt LoadersTests.jar *.class Sounds Images

jar i LoadersTests.jar

All the class files and everything in the Sounds/ and Images/ subdirectories are packed
together.

The i argument adds indexing information to the JAR file, which will
accelerate its execution if it contains many files.

mainClass.txt contains a single line:

Main-Class: LoadersTests

The JAR file can be started by double-clicking its icon or from the command line:

java –jar LoadersTests.jar

This is the Title of the Book, eMatter Edition

226

Chapter 9CHAPTER 9

Audio Effects

This chapter presents different ways of applying effects to existing audio. All of these
techniques share one of the key advantages of the Sound API: the ability for a pro-
grammer to delve into the low-level details of audio files and affect (to some degree)
the audio devices (e.g., the mixer, sequencer, or synthesizer).

You’ll see how audio effects can be manipulated with clip and MIDI channel control-
lers, via sample byte array manipulation and modification of MIDI messages. The
discussion is split into two main parts: audio effects for sampled audio and effects for
MIDI sequences.

All the examples can be found in the directory SoundExamps/
SoundPlayer/.

Audio Effects on Sampled Audio
There are three approaches for affecting sampled audio:

Precalculation
Using this approach, you create the audio effect at development time and play
the resulting sound clip at execution time.

Byte array manipulation
Here, you store the sound in a byte array at runtime, permitting it to be modi-
fied using array-based operations.

Mixer controls
A mixer control, such as gain or panning, affects the sound signal passing
through the mixer’s audio line.

This is the Title of the Book, eMatter Edition

Audio Effects on Sampled Audio | 227

Precalculation
Manipulating audio inside Java can be time-consuming and complicated. If a sound
effect is going to be used regularly (e.g., a fading scream, an echoing explosion), then
it will probably be better to create it when the game is being developed and save the
finished audio to a file for playing at runtime. This moves the overheads associated
with sound effect generation out of the application. I’ve found WavePad useful for
various editing, format conversion, and effects tasks (http://nch.com.au/wavepad/). Its
supported effects include amplification, reverberation, echoing, noise reduction, fad-
ing, and sample rate conversion. It offers recording and CD track ripping. It’s small
(320 KB), free, and has a decent manual.

Many tools are out there: Do a search for “audio editor” at Google or visit a soft-
ware site such as tucows (http://www.tucows.com/search).

Byte Array Manipulation
The most versatile manipulation approach in Java (but potentially tricky to get right)
is to load the audio file as a byte array. Audio effects then become a matter of chang-
ing byte values, rearranging blocks of data, or perhaps adding new data. Once com-
pleted, the resulting array can be passed through a SourceDataLine into the mixer.
The EchoSamplesPlayer.java application that follows shows how this can be done.

A variant of this approach is to employ streaming. Instead of reading
in the entire file as a large byte array, the audio file can be incremen-
tally read, changed, and sent to the mixer. However, this coding style
is restricted to effects that only have to examine the sound fragment
currently in memory. For example, amplification of the array’s con-
tents doesn’t require a consideration of the other parts of the sound.

Making a sound clip echo

EchoSamplesPlayer.java completely loads a sound clip into a byte array via an
AudioInputStream. Then an echoing effect is applied by creating a new byte array and
adding five copies of the original sound to it; each copy is softer than the one before
it. The resulting array is passed in small chunks to the SourceDataLine and to the mixer.

EchoSamplesPlayer is an extended version of the BufferedPlayer appli-
cation described in Chapter 7. The main addition is a getSamples()
method: This method applies the effect implemented in echoSamples().
An isRequiredFormat() method exists for checking the input is suit-
able for modification. The program is stored in SoundExamps/Sound-
Player/.

This is the Title of the Book, eMatter Edition

228 | Chapter 9: Audio Effects

To simplify the implementation, the echo effect is only applied to 8-bit PCM signed
or unsigned audio. The choice of PCM means that the amplitude information is
stored unchanged in the byte and isn’t compressed as in the ULAW or ALAW for-
mats. The 8-bit requirement means a single byte is used per sample, so I don’t have
to deal with big- or little-endian issues. PCM unsigned data stores values between 0

and 28 – 1 (255), and the signed range is –27 to 27 – 1 (–128 to 127). This becomes a
concern when I cast a byte into a short prior to changing it.

The main() method in EchoSamplesPlayer is similar to the one in BufferedPlayer:

public static void main(String[] args)
{ if (args.length != 1) {
 System.out.println("Usage: java EchoSamplesPlayer <clip>");
 System.exit(0);
 }

 createInput("Sounds/" + args[0]);

 if (!isRequiredFormat()) { // not in SamplesPlayer
 System.out.println("Format unsuitable for echoing");
 System.exit(0);
 }

 createOutput();

 int numBytes=(int)(stream.getFrameLength()*format.getFrameSize());
 System.out.println("Size in bytes: " + numBytes);

 byte[] samples = getSamples(numBytes);
 play(samples);

 System.exit(0); // necessary in J2SE 1.4.2 and earlier
}

The createInput() and createOutput() methods are unchanged from
BufferedPlayer.

isRequiredFormat() tests the AudioFormat object that was created in createInput():

private static boolean isRequiredFormat()
// Only 8-bit PCM signed or unsigned audio can be echoed
{
 if (((format.getEncoding()==AudioFormat.Encoding.PCM_UNSIGNED) ||
 (format.getEncoding() == AudioFormat.Encoding.PCM_SIGNED))&&
 (format.getSampleSizeInBits() == 8))
 return true;
 else
 return false;
}

This is the Title of the Book, eMatter Edition

Audio Effects on Sampled Audio | 229

AudioFormat has a selection of get() methods for examining different aspects of the
audio data. For example, AudioFormat.getChannels() returns the number of chan-
nels used (1 for mono, 2 for stereo). The echoing effect doesn’t need this informa-
tion; all the frames, independent of the number of channels, will be amplified.
Typically, channel information is required if an effect will differentiate between the
stereo outputs, as when a sound is panned between speakers.

getSamples() adds the echoes after it has extracted the complete samples[] array
from the AudioInputStream:

private static byte[] getSamples(int numBytes)
{
 // read the entire stream into samples[]
 byte[] samples = new byte[numBytes];
 DataInputStream dis = new DataInputStream(stream);
 try {
 dis.readFully(samples);
 }
 catch (IOException e)
 { System.out.println(e.getMessage());
 System.exit(0);
 }
 return echoSamples(samples, numBytes);
}

echoSamples() returns a modified byte array, which becomes the result of getSamples().

Different audio effects could replace the call to echoSamples() at this
point in the code.

echoSamples() creates a new byte array, newSamples(), big enough to hold the origi-
nal sound and ECHO_NUMBER (4) copies. The volume of each one is reduced (decayed)
(which is set to by DECAY (0.5) over its predecessor:

private static byte[] echoSamples(byte[] samples, int numBytes)
{
 int numTimes = ECHO_NUMBER + 1;
 double currDecay = 1.0;
 short sample, newSample;
 byte[] newSamples = new byte[numBytes*numTimes];

 for (int j=0; j < numTimes; j++) {
 for (int i=0; i < numBytes; i++) // copy the sound's bytes
 newSamples[i + (numBytes*j)] = echoSample(samples[i], currDecay);
 currDecay *= DECAY;
 }
 return newSamples;
}

This is the Title of the Book, eMatter Edition

230 | Chapter 9: Audio Effects

The nested for loop makes the required copies one byte at a time. echoSample() uti-
lizes a byte in the original data to create an “echoed” byte for newSamples[]. The
amount of echoing is determined by the currDecay double, which shrinks for each
successive copy of the original sound.

echoSample() does different tasks depending on if the input data are unsigned or
signed PCM. In both cases, the supplied byte is translated into a short so it can be
manipulated easily; then, the result is converted back to a byte:

private static byte echoSample(byte sampleByte, double currDecay)
{
 short sample, newSample;
 if (format.getEncoding() == AudioFormat.Encoding.PCM_UNSIGNED) {

sample = (short)(sampleByte & 0xff); // unsigned 8 bit -> short
 newSample = (short)(sample * currDecay);
 return (byte) newSample;
 }
 else if (format.getEncoding()==AudioFormat.Encoding.PCM_SIGNED){

sample = (short)sampleByte; // signed 8 bit -> short
 newSample = (short)(sample * currDecay);
 return (byte) newSample;
 }
 else
 return sampleByte; //no change; this branch should be unused
}

This byte-to-short conversion must be done carefully. An unsigned byte needs mask-
ing as it’s converted since Java stores shorts in signed form. A short is two bytes
long, so the masking ensures that the bits in the high-order byte are all set to 0s.
Without the mask, the conversion would add in 1s when it saw a byte value above 127.

No masking is required for the signed byte to signed short conversion
since the translation is correct by default.

Playing

play() is similar to the one in BufferedPlayer.java in Chapter 7. The difference is that
the byte array must be passed through an input stream before it can be sent to the
SourceDataLine:

private static void play(byte[] samples)
{
 // byte array --> stream
 InputStream source = new ByteArrayInputStream(samples);

 int numRead = 0;
 byte[] buf = new byte[line.getBufferSize()];

 line.start();
 // read and play chunks of the audio

This is the Title of the Book, eMatter Edition

Audio Effects on Sampled Audio | 231

 try {
 while ((numRead = source.read(buf, 0, buf.length)) >= 0) {
 int offset = 0;
 while (offset < numRead)
 offset += line.write(buf, offset, numRead-offset);
 }
 }
 catch (IOException e)
 { System.out.println(e.getMessage()); }

 // wait until all data is played, then close the line
 line.drain();
 line.stop();
 line.close();
} // end of play()

Utilizing Mixer Controls
The mixer diagram in Figure 9-1 includes a grayish box labeled “Controls.” Con-
trols, such as gain and panning, affect the sound signal passing through an audio
line. They can be accessed through Clip or SourceDataLine via a getControls()

method that returns an array of available Control objects. Each object, suitably sub-
classed, allows its associated audio control to be manipulated.

The bad news is that the default mixer in J2SE 5.0 offers fewer controls than were
present in J2SE 1.4.2 since controls tend to have an adverse effect on speed even

Figure 9-1. Audio I/O to/from the mixer

audio clip

network

program

Source DataLines

port

Mixer

Controls

audio file

program

Target DataLines

Clip

network

This is the Title of the Book, eMatter Edition

232 | Chapter 9: Audio Effects

when they’re not being used. However, if a control is present, then it’s much easier
to apply than the byte array technique.

Adjusting a clip’s volume and pan values

PlaceClip plays a clip, allowing its volume and pan settings to be adjusted via
command-line parameters. It’s called with the following format:

java PlaceClip <clip file> [<volume value> [<pan value>]]

The volume and pan values are optional; if they are both left out, then the clip will
play normally.

The volume setting should be between 0.0f (the quietest) and 1.0f (the loudest); –1.0f
means that the volume is left unchanged. The pan value should be between –1.0f and
1.0f; –1.0f causes all the sound to be set to the left speaker, 1.0f focuses only on the
right speaker, and values in between will send the sound to both speakers with varying
weights, as in this example:

java PlaceClip dog.wav 0.8f -1.0f

This will make the left speaker bark loudly. This mixing of volume and speaker
placement is a rudimentary way of placing sounds at different locations in a game.

PlaceClip is an extended version of PlayClip, which was described in Chapter 7. The
changes in PlaceClip are in the extra methods for reading the volume and pan set-
tings from the command line and in the setVolume() and setPan() methods for
adjusting the clip controls. The program is stored in SoundExamps/SoundPlayer/.
PlaceClip’s main() method is similar to the one in PlayClip.java:

// globals
private float volume, pan; // settings from the command line

public PlaceClip(String[] args)
{
 df = new DecimalFormat("0.#"); // 1 dp

getSettings(args); // get the volume and pan settings
 // from the command line
 loadClip(SOUND_DIR + args[0]);

 // clip control methods
 showControls();
 setVolume(volume);
 setPan(pan);

 play();
 try {
 Thread.sleep(600000); // 10 mins in ms
 }
 catch(InterruptedException e)
 { System.out.println("Sleep Interrupted"); }
}

This is the Title of the Book, eMatter Edition

Audio Effects on Sampled Audio | 233

loadClip() and play() are almost unchanged from PlayClip. (loadClip() uses a glo-
bally defined AudioFormat variable and has some extra println()’s.) loadClip()

includes a call to checkDuration(), which issues a warning if the clip is one second or
less in length. In that case, the clip won’t be heard in J2SE 5.0 due to a Java Sound
bug.

What controls are available?

showControls() displays all the controls available for the clip, which will vary
depending on the clip’s audio format and the mixer:

private void showControls()
{ if (clip != null) {
 Control cntls[] = clip.getControls();
 for(int i=0; i<cntls.length; i++)
 System.out.println(i + ". " + cntls[i].toString());
 }
}

getControls() returns information once the clip the class represents
has been opened.

For the dog.wav example, executed using the J2SE 1.4.2 default mixer,
showControls()’s output is given in Example 9-1.

In this case, four controls are available: gain (volume), mute, panning, and sample
rate.

Reverberation and balance controls may be available for some types of clips and mix-
ers. In J2SE 5.0, panning, sample rate, and reverberation are no longer supported,
and the balance control is only available for audio files using stereo.

In real-world audio gadgets, a pan control distributes mono input (input on a single
channel) between stereo output lines (e.g., the lines going to the speakers). So, the
same signal is sent to both output lines. A balance control does a similar job but for
stereo input, sending two channels of input to two output lines.

In J2SE 1.4.2 and before, the pan and balance controls could be used with mono or
stereo input, i.e., there was no distinction between them. Output lines were always
opened in stereo mode. The default J2SE 1.4.2 mixer is the Java Sound Audio
Engine.

Example 9-1. showControls()’s output

0. Master Gain with current calue: 0.0 dB (range: -80.0 – 13.9794)
1. Mute Control with current value: Not Mute
2. Pan with current value: 0.0 (range: -1.0 – 1.0)
3. Sample Rate with current value: 22000.0 FPS (range: 0.0 – 48000.0)

This is the Title of the Book, eMatter Edition

234 | Chapter 9: Audio Effects

The default mixer in J2SE 5.0 is the Direct Audio Device, with resulting changes to
the controls. If the mixer receives mono input it will open a mono output line and
not a stereo one. This means there’s no pan control since there’s no way to map
mono to stereo. There is a balance control, but that’s for mapping stereo input to ste-
reo output.

In J2SE 5.0, the example will report that panning is unavailable since dog.wav was
recorded in mono. The simplest solution is to convert it to stereo using WavePad
(http://nch.com.au/wavepad/) or similar software. The balance controls will then be
available, and setPan() can carry out panning by adjusting the balance.

Java audio controls

The various controls are represented by subclasses of the Control class:
BooleanControl, FloatControl, EnumControl, and CompoundControl.

BooleanControl is used to adjust binary settings, such as mute on/off. FloatControl is
employed for controls that range over floating point values, such as volume, pan-
ning, and balance. EnumControl permits a choice between several settings, as in rever-
beration. CompoundControl groups controls.

All these controls will function only if the clip is open.

As an example, here’s a code fragment that turns mute on and off with a
BooleanControl:

BooleanControl muteControl =
 (BooleanControl) clip.getControl(BooleanControl.Type.MUTE);
muteControl.setValue(true); // mute on; sound is switched off
 : // later on
muteControl.setValue(false); // mute off; sound is audible again

Here’s another that plays a clip at 1.5 times its normal speed via a FloatControl:

FloatControl rateControl =
 (FloatControl) clip.getControl(FloatControl.Type.SAMPLE_RATE);
rateControl.setValue(1.5f * format.getSampleRate());
 // format is the AudioFormat object for the audio file

Setting the volume in PlaceClip

PlaceClip offers a volume parameter, ranging from 0.0f (off) to 1.0f (on). Addition-
ally, no change to the volume is represented internally by the NO_VOL_CHANGE con-
stant (the float –1.0f).

Unfortunately, the mixer’s gain controls use the logarithmic decibel scale (related to the
square of the distance from the sound source). Rather than grappling with a realistic

This is the Title of the Book, eMatter Edition

Audio Effects on Sampled Audio | 235

mapping from my linear scale (0–1) to the decibel range, I use a linear equation to calcu-
late the new gain:

gain = ((range_max - range_min) * input_volume) + range_min

range_min and range_max are the minimum and maximum possible gain values;
input_volume is the float obtained from the command line.

The drawback to this approach is that the logarithmic gain scale is
being treated like a linear one. In practice, this means that the sound
becomes inaudible when the supplied volume setting is 0.5f or less.
On balance, this is a small price to pay for greatly simplified code.

setVolume() uses isControlSupported() to check for the volume control’s presence
before attempting to access/change its setting:

private void setVolume(float volume)
{
 if ((clip != null) && (volume != NO_VOL_CHANGE)) {
 if (clip.isControlSupported(FloatControl.Type.MASTER_GAIN)) {
 FloatControl gainControl = (FloatControl)
 clip.getControl(FloatControl.Type.MASTER_GAIN);

 float range = gainControl.getMaximum() - gainControl.getMinimum();
 float gain = (range * volume) + gainControl.getMinimum();
 System.out.println("Volume: " + volume + "; New gain: " + gain);
 gainControl.setValue(gain);
 }
 else
 System.out.println("No Volume controls available");
 }
}

FloatControl has several potentially useful methods, like shift(),
which is meant to change the control value gradually over a specified
time period and returns without waiting for the shift to finish. Unfor-
tunately, this particular method has never been fully implemented and
currently modifies the control value in one step without any incremen-
tal changes in between.

Panning between the speakers in PlaceClip

setPan() is supplied with a pan value between –1.0f and 1.0f—which will position
the output somewhere between the left and right speakers—or with NO_PAN_CHANGE

(0.0f). The method pans first, looks for the balance control if panning is unavail-
able, and finally gives up if both are unsupported:

private void setPan(float pan)
{

This is the Title of the Book, eMatter Edition

236 | Chapter 9: Audio Effects

 if ((clip == null) || (pan == NO_PAN_CHANGE))
 return; // do nothing

 if (clip.isControlSupported(FloatControl.Type.PAN)) {
 FloatControl panControl =
 (FloatControl) clip.getControl(FloatControl.Type.PAN);
 panControl.setValue(pan);
 }
 else if (clip.isControlSupported(FloatControl.Type.BALANCE)) {
 FloatControl balControl =
 (FloatControl) clip.getControl(FloatControl.Type.BALANCE);
 balControl.setValue(pan);
 }
 else {
 System.out.println("No Pan or Balance controls available");
 if (format.getChannels() == 1) // mono input
 System.out.println("Your audio file is mono;
 try converting it to stereo");
 }
}

Audio Effects on MIDI Sequences
There are four ways of applying audio effects to MIDI sequences:

Precalculation
Similar to what you’ve seen, this involves creating the audio effect at develop-
ment time and playing the resulting MIDI sequence at execution time.

Sequence manipulation
Here, the MIDI sequence data structure can be manipulated at runtime using a
range of methods from MIDI-related classes.

MIDI channel controllers
In this approach, a channel plays a particular instrument and has multiple con-
trollers associated with it, which manage such things as volume and panning.

Sequencer methods
The Sequencer class offers several methods for controlling a sequence, including
changing the tempo (speed) of the playback and muting or soloing individual
tracks in the sequence.

Precalculation
As with sampled audio, using Java at execution time to modify a sequence can be
time-consuming and difficult to implement. Several tools allow you to create or edit

This is the Title of the Book, eMatter Edition

Audio Effects on MIDI Sequences | 237

MIDI sequences, though you do need an understanding of music and MIDI to use
them. Here are some of packages I’ve tinkered with:

The free version of Anvil Studio (http://www.anvilstudio.com/)
Supports the capture, editing, and direct composing of MIDI. It handles WAV
files.

BRELS MIDI Editor (http://www.tucows.com/search)
A free, small MIDI editor. It’s easiest to obtain from a software site, such as
tucows.

Midi Maker (http://www.necrocosm.com/midimaker/)
Emulates a standard keyboard synthesizer. Available for a free 14-day trial.

Sequence Manipulation
Figure 9-2 shows the internals of a sequence.

The regularity of the data structure means that it can be easy to modify at runtime,
but you’re going to need to understand the MIDI specification.

Doubling the sequence volume

Here is the basic code for playing a sequence:

Sequence seq = MidiSystem.getSequence(getClass().getResource(fnm));

// change the sequence: double its volume in this case
doubleVolumeSeq(seq);

sequencer.setSequence(seq); // load changed sequence
sequencer.start(); // start playing it

Figure 9-2. The internals of a MIDI sequence

track 0

track 1

track 2

MidiEvents

MidiEvent

MidiMessage

tick

This is the Title of the Book, eMatter Edition

238 | Chapter 9: Audio Effects

This snippet omits the try/catch blocks you need in an actual code
block. Look at PlayMidi.java in Chapter 7 for a complete version.

The sequence is modified after being loaded with getSequence() and before being
assigned to the sequencer with setSequence().

Volume doubling is applied to every track in the sequence:

private void doubleVolumeSeq(Sequence seq)
{ Track tracks[] = seq.getTracks(); // get all the tracks
 for(int i=0; i < tracks.length; i++) // iterate through them

doubleVolume(tracks[i], tracks[i].size());
}

doubleVolume() examines every MidiEvent in the supplied track, extracting its com-
ponent tick and MIDI message. If the message is a NOTE_ON, then its volume will dou-
ble (up to a maximum of 127):

private void doubleVolume(Track track, int size)
{
 MidiEvent event;
 MidiMessage message;
 ShortMessage sMessage, newShort;

 for (int i=0; i < size; i++) {
 event = track.get(i); // get the event
 message = event.getMessage(); // get its MIDI message
 long tick = event.getTick(); // get its tick
 if (message instanceof ShortMessage) {
 sMessage = (ShortMessage) message;

 // check if the message is a NOTE_ON
 if (sMessage.getCommand() == ShortMessage.NOTE_ON) {
 int doubleVol = sMessage.getData2() * 2;
 int newVol = (doubleVol > 127) ? 127 : doubleVol;
 newShort = new ShortMessage();
 try {
 newShort.setMessage(ShortMessage.NOTE_ON,
 sMessage.getChannel(),
 sMessage.getData1(), newVol);
 track.remove(event);
 track.add(new MidiEvent(newShort,tick));
 }
 catch (InvalidMidiDataException e)
 { System.out.println("Invalid data"); }
 }
 }
 }
} // end of doubleVolume()

This is the Title of the Book, eMatter Edition

Audio Effects on MIDI Sequences | 239

Each MIDI message is composed from three bytes: a command name and two data
bytes. ShortMessage.getCommand() is employed to check the name. If the command
name is NOTE_ON, then the first byte will be the note number, and the second its veloc-
ity (similar to a volume level).

MIDI messages are encoded using three subclasses of MidiMessage:
ShortMessage, SysexMessage, and MetaMessage. Each class lists con-
stants representing various commands. The NOTE_ON and NOTE_OFF mes-
sages are ShortMessage objects, used to start and terminating note
playing.

The volume is obtained with a call to ShortMessage.getData2() and then doubled
with a ceiling of 127 since the number must fit back into a single byte. A new
ShortMessage object is constructed and filled with relevant details (command name,
destination channel ID, note number, new volume):

newShort.setMessage(ShortMessage.NOTE_ON,
 sMessage.getChannel(), sMessage.getData1(), newVol);

The old MIDI event (containing the original message) must be replaced by an
event holding the new message: a two-step process involving Track.remove() and
Track.add(). The new event is built from the new message and the old tick value:

track.add(new MidiEvent(newShort,tick));

The tick specifies where the event will be placed in the track.

MIDI Channel Controllers
Figure 9-3 shows the presence of 16 MIDI channels inside the synthesizer; each one
acts as a “musician,” playing a particular instrument. As the stream of MIDI mes-
sages arrive (individually or as part of a sequence), each message is routed to a chan-
nel based on its channel setting.

Each channel has a set of controllers associated with it. The set depends on the par-
ticular synthesizer; controllers defined in the General MIDI specification should be
present, but there may be others. For example, controllers offering the Roland GS
enhancements are found on many devices. General MIDI controllers include con-
trols for volume level, stereo balancing, and panning. Popular Roland GS enhance-
ments include reverberation and chorus effects. Each controller is identified by a
unique ID, between 0 and 127.

A list of channel controllers, complete with a short description of each
one, can be found at http://improv.sapp.org/doc/class/MidiOutput/
controllers/. Another site with similar information is http://www.
musicmarkup.info/midi/control.html.

This is the Title of the Book, eMatter Edition

240 | Chapter 9: Audio Effects

The FadeMidi and PanMidi examples illustrate how to use channel controllers to affect
the playback of an existing sequence. They both reuse several methods from Play-
Midi.java, shown in Chapter 7.

Making a sequence fade away

FadeMidi.java (located in SoundExamps/SoundPlayer/) plays a sequence, gradually
reducing its volume level to 0 by the end of the clip. The volume settings for all 16
channels are manipulated by accessing each channel’s main volume controller (the
ID for that controller is the number 7).

There’s a fine-grain volume controller (ID number 39) that’s intended
to allow smaller change graduations, but many synthesizers don’t sup-
port it.

The incremental volume reduction is managed by a VolChanger thread, which repeat-
edly lowers the volume reduction until the sequence has been played to its end.

Figure 9-4 gives the class diagrams for FadeMidi and VolChanger, showing only the
public methods.

The main() method initializes FadeMidi and starts VolChanger:

public static void main(String[] args)
{ if (args.length != 1) {
 System.out.println("Usage: java FadeMidi <midi file>");
 System.exit(0);
 }

Figure 9-3. A MIDI sequencer and synthesizer

Midi file

1

synthesizer

audio file

program

Sequence

network

receiver

sequencer

program

transmitter

capture

audio

other Midi devices

Midi
Channels

16

2receiver

Midi Events / Messages

sound
banks

This is the Title of the Book, eMatter Edition

Audio Effects on MIDI Sequences | 241

 // set up the player and the volume changer
 FadeMidi player = new FadeMidi(args[0]);
 VolChanger vc = new VolChanger(player);

 player.startVolChanger(vc); // start volume manipulation
}

VolChanger is passed a reference to FadeMidi so it can affect the synthesizer’s volume
settings.

startVolChanger() starts the VolChanger thread running and supplies the sequence
duration in milliseconds. The thread needs it to calculate how often to change the
volume:

public void startVolChanger(VolChanger vc)
{ vc.startChanging((int)(seq.getMicrosecondLength()/1000)); }

The FadeMidi constructor looks similar to the one in PlayMidi:

public FadeMidi(String fnm)
{
 df = new DecimalFormat("0.#"); // 1 dp
 filename = SOUND_DIR + fnm;
 initSequencer();
 loadMidi(filename);
play();

 /* No need for sleeping to keep the object alive, since
 the VolChanger thread refers to it. */
}

initSequencer() and loadMidi() are identical to the methods of the same name in
PlayClip, and play() is slightly different. The most significant change is the absence
of a call to sleep(), which keeps PlayMidi alive until its sequence has finished. Sleep-
ing is unnecessary in FadeMidi because the object is referred to by the VolChanger

thread, which keeps calling its setVolume() method.

Figure 9-4. Class diagrams for FadeMidi and VolChanger

This is the Title of the Book, eMatter Edition

242 | Chapter 9: Audio Effects

play() initializes a global array of MIDI channels:

private static final int VOLUME_CONTROLLER = 7;

// global holding the synthesizer's channels
private MidiChannel[] channels;

private void play()
{ if ((sequencer != null) && (seq != null)) {
 try {
 sequencer.setSequence(seq); // load MIDI into sequencer
 sequencer.start(); // play it
 channels = synthesizer.getChannels();
 // showChannelVolumes();
 }
 catch (InvalidMidiDataException e) {
 System.out.println("Invalid midi file: " + filename);
 System.exit(0);
 }
 }
}

private void showChannelVolumes()
// show the volume levels for all the synthesizer channels
{
 System.out.println("Syntheziser Channels: " + channels.length);
 System.out.print("Volumes: {");
 for (int i=0; i < channels.length; i++)
 System.out.print(channels[i].getController(VOLUME_CONTROLLER) + " ");
 System.out.println("}");
}

The references to the channels shouldn’t be obtained until the
sequence is playing (i.e., after calling sequencer.start()) or their con-
trollers will not respond to changes. This seems to be a bug in the Java
Sound implementation.

Channels in the array are accessed using the indices 0 to 15 though the MIDI specifi-
cation numbers them 1 to 16. For instance, the special percussion channel is MIDI
number 10, but it is represented by channels[9] in Java.

In showChannelVolumes(), MidiChannel.getController() obtains the current value of
the specified controller. Supplying it with the ID for the volume controller (7) will
cause it to return the current volume setting. A controller stores the data in a single
byte, so the returned value will be in the range 0 to 127.

This is the Title of the Book, eMatter Edition

Audio Effects on MIDI Sequences | 243

Getting and setting the volume

FadeMidi contains two public methods for getting and setting the volume, both used
by VolChanger:

public int getMaxVolume()
// return the max level for all the volume controllers
{ int maxVol = 0;
 int channelVol;
 for (int i=0; i < channels.length; i++) {
 channelVol = channels[i].getController(VOLUME_CONTROLLER);
 if (maxVol < channelVol)
 maxVol = channelVol;
 }
 return maxVol;
 }

public void setVolume(int vol)
// set all the controller's volume levels to vol
{ for (int i=0; i < channels.length; i++)
 channels[i].controlChange(VOLUME_CONTROLLER, vol);
}

getMaxVolume() returns a single volume, rather than all 16; this keeps the code sim-
ple. setVolume() shows how MidiChannel.controlChange() is used to change a speci-
fied controller’s value. The data should be an integer between 0 and 127.

Changing the volume

VolChanger gets started when its startChanging() method is called. At this point, the
sequence will be playing, and the MIDI channel controllers are available for
manipulation:

// globals
// the amount of time between changes to the volume, in ms
private static int PERIOD = 500;

private FadeMidi player;
private int numChanges = 0;

public void startChanging(int duration)
/* FadeMidi calls this method, supplying the duration of
 its sequence in ms. */
{
 // calculate how many times the volume should be adjusted
 numChanges = (int) duration/PERIOD;
start();

} // end of startChanging()

VolChanger adjusts the volume every PERIOD (500 ms), but how many times? The
duration of the sequence is passed in as an argument to startChanging() and is used
to calculate the number of volume changes.

This is the Title of the Book, eMatter Edition

244 | Chapter 9: Audio Effects

run() implements a volume reduction/sleep cycle:

public void run()
{
 /* calculate stepVolume, the amount to decrease the volume
 each time that the volume is changed. */
 int volume = player.getMaxVolume();
 int stepVolume = (int) volume / numChanges;
 if (stepVolume == 0)
 stepVolume = 1;
 System.out.println("Max Volume: " + volume + ", step: " + stepVolume);
 int counter = 0;
 System.out.print("Fading");
 while(counter < numChanges){
 try {
 volume -= stepVolume; // reduce the required volume level
 if ((volume >= 0) && (player != null))

player.setVolume(volume); // change the volume
 Thread.sleep(PERIOD); // delay a while
 }
 catch(InterruptedException e) {}
 System.out.print(".");
 counter++;
 }
 System.out.println();
}

The MIDI volume bug

FadeMid.java doesn’t work with J2SE 5.0 due to a bug associated with the volume
adjustment of a sequencer. The offending line is in initSequencer():

sequencer = MidiSystem.getSequencer();

The sequencer is retrieved, but subsequent volume changes have no effect. The solu-
tion is to explicitly request the sequencer by finding it in on the list of available MIDI
devices for the machine. This is packaged inside obtainSequencer():

private Sequencer obtainSequencer()
{
 MidiDevice.Info[] mdi = MidiSystem.getMidiDeviceInfo();
 int seqPosn = -1;
 for(int i=0; i < mdi.length; i++) {
 System.out.println(mdi[i].getName());
 if (mdi[i].getName().indexOf("Sequencer") != -1) {
 seqPosn = i; // found the Sequencer
 System.out.println(" Found Sequencer");
 }
 }

 try {
 if (seqPosn != -1)
 return (Sequencer) MidiSystem.getMidiDevice(mdi[seqPosn]);
 else

This is the Title of the Book, eMatter Edition

Audio Effects on MIDI Sequences | 245

 return null;
 }
 catch(MidiUnavailableException e)
 { return null; }
} // end of obtainSequencer()

The position of the sequencer in the MIDI device information array, mdi[], will vary
depending on the audio devices attached to a given machine and the J2SE version, so
some searching is required. The list printed on a test machine running J2SE 5.0 is
shown in Example 9-2.

The list generated on a different machine, using J2SE 1.4.2, is shown in Example 9-3.

The sequencer is obtained in initSequencer() by calling obtainSequencer():

sequencer = obtainSequencer();

The problem, which has been reported by several users in the Java Sound forums (e.g.,
at http://archives.java.sun.com/cgi-bin/wa?A0=javasound-interest), only seems to occur
when the volume needs to be changed. For example, this extra work isn’t required in
PanMidi (the next example): the sequencer it obtains with MidiSystem.getSequencer()

does respond to panning changes.

I’m at a loss as to why my workaround works since the sequencer
object returned by MidiSystem.getSequencer() and the one obtained
with my obtainSequencer() method appear to be the same.

Panning the sequence

PanMidi repeatedly switches its sequence from the left to the right speaker and back
again. A PanChanger thread switches the pan settings in all the channel controllers at
periodic intervals during the playing of the sequence.

Example 9-2. MIDI device information in J2SE 5.0

Roland MPU-401
MIDI Mapper
Microsoft GS Wavetable SW Synth
Roland MPU-401
Real Time Sequencer
 Found Sequencer
Java Sound Synthesizer

Example 9-3. MIDI device information in J2SE 1.4.2

Java Sound Synthesizer
Java Sound Sequencer
 Found Sequencer
MIDI Mapper
Microsoft GS Wavetable SW Synth

This is the Title of the Book, eMatter Edition

246 | Chapter 9: Audio Effects

PanMidi and PanChanger can be found in SoundExamps/SoundPlayer/.

The class diagrams for PanMidi and PanChanger are given in Figure 9-5.

The main() method initializes the player and the thread, and then it calls PanMidi’s
startPanChanger() to start the thread running. startPanChanger() passes the dura-
tion of the sequence to the thread, so it can calculate the number of changes it will
make.

The PanMidi pan methods used by PanChanger are getMaxPan() and setPan():

// global constants
// private static final int BALANCE_CONTROLLER = 8; //not working?
private static final int PAN_CONTROLLER = 10;

public int getMaxPan()
// return the max value for all the pan controllers
{ int maxPan = 0;
 int channelPan;
 for (int i=0; i < channels.length; i++) {
 channelPan = channels[i].getController(PAN_CONTROLLER);
 if (maxPan < channelPan)
 maxPan = channelPan;
 }
 return maxPan;
}

public void setPan(int panVal)
// set all the controller's pan levels to panVal
{ for (int i=0; i < channels.length; i++)
 channels[i].controlChange(PAN_CONTROLLER, panVal);
}

The only real difference in PanMidi from FadeMidi is the use of the PAN_CONTROLLER

controller number.

Figure 9-5. Class diagrams for PanMidi and PanChanger

This is the Title of the Book, eMatter Edition

Audio Effects on MIDI Sequences | 247

The balance controller should work in this situation, but it didn’t on
my test machines. This bug has been reported by several people, so we
may see a fix soon.

Changing the pan value

Unlike VolChanger, PanChanger carries out a cyclic series of changes to the pan value.
However, the core of run() is still a loop repeatedly calling setPan() and sleeping for
an interval.

The series of pan values that make up a single cycle are defined in a panVals[] array:

// time to move left to right and back again
private static int CYCLE_PERIOD = 4000; // in ms

// pan values used in a single cycle
// (make the array's length integer divisible into CYCLE_PERIOD)
private int[] panVals = {0, 127};

// or try
// private int[] panVals = {0, 16, 32, 48, 64, 80, 96, 112, 127,
// 112, 96, 80, 64, 48, 32, 16};

The run() method cycles through the panVals[] array until it has executed for a time
equal to the sequence’s duration:

public void run()
{ /* Get the original pan setting, just for information. It
 is not used any further. */
 int pan = player.getMaxPan();
 System.out.println("Max Pan: " + pan);

 int panValsIdx = 0;
 int timeCount = 0;
 int delayPeriod = (int) (CYCLE_PERIOD / panVals.length);

 System.out.print("Panning");
 while(timeCount < duration){
 try {
 if (player != null)
 player.setPan(panVals[panValsIdx]);
 Thread.sleep(delayPeriod); // delay
 }
 catch(InterruptedException e) {}
 System.out.print(".");
 panValsIdx = (panValsIdx+1) % panVals.length;
 // cycle through the array
 timeCount += delayPeriod;
 }
 System.out.println();
}

This is the Title of the Book, eMatter Edition

248 | Chapter 9: Audio Effects

Sequencer Methods
The Sequencer has methods that can change the tempo (speed) of playback. The easi-
est to use is probably setTempoFactor(), which scales the existing tempo by the sup-
plied float:

sequencer.setTempoFactor(2.0f); // double the tempo

Tempo adjustments only work if the sequence’s event ticks are defined in the PPQ (ticks
per beat) format since tempo affects the number of beats per minute. Sequencer.

getTempoFactor() can be employed after calling Sequencer.setTempoFactor() to check
whether the requested change has occurred. The Sequence class offers getDivisionType(),
which returns a float representing the sequence’s division type. Sequence.PPQ for PPQ, or
one of the many Society of Motion Picture and Television Engineers (SMPTE) types, use
ticks per frame. This information can be used to determine if setTempoFactor() would
work on the sequence.

Sequencer has two methods that act upon the sequence’s tracks: setTrackMute(), and
setTrackSolo(). Here’s a fragment of code that sets and tests the mute value:

sequencer.setTrackMute(4, true);
boolean muted = sequencer.getTrackMute(4);
if (!muted)
 // muting failed

This is the Title of the Book, eMatter Edition

249

Chapter 10 CHAPTER 10

Audio Synthesis

The synthesis of new audio during a game’s execution can be useful, especially in
response to unforeseen or rare events. In this chapter, I look at how to generate tone
sequences for sampled audio and how to create MIDI sequences at runtime. The dis-
cussion is split into two main parts: synthesis of sampled audio and synthesis of
sequences. I finish by describing additional libraries and APIs that can help with
audio generation.

Sampled Audio Synthesis
Sampled audio is encoded as a series of samples in a byte array, which is sent
through a SourceDataLine to the mixer. In previous examples, the contents of the
byte array came from an audio file though you saw that audio effects can manipulate
and even add to the array. In sampled audio synthesis, the application generates the
byte array data without requiring any audio input. Potentially, any sound can be gen-
erated at runtime.

Audio is a mix of sine waves, each one representing a tone or a note. A pure note is a
single sine wave with a fixed amplitude and frequency (or pitch). Frequency can be
defined as the number of sine waves that pass a given point in a second. The higher
the frequency, the higher the note’s pitch; the higher the amplitude, the louder the
note.

Before I go further, it helps to introduce the usual naming scheme for notes; it’s eas-
ier to talk about note names than note frequencies.

Note Names
Notes names are derived from the piano keyboard, which has a mix of black and
white keys, shown in Figure 10-1.

Keys are grouped into octaves, each octave consisting of 12 consecutive white and
black keys. The white keys are labeled with the letters A to G and an octave number.

This is the Title of the Book, eMatter Edition

250 | Chapter 10: Audio Synthesis

For example, the note named C4 is the white key closest to the center of the key-
board, often referred to as middle C. The 4 means that the key is in the fourth
octave, counting from the left of the keyboard.

A black key is labeled with the letter of the preceding white key and a sharp (#). For
instance, the black key following C4 is known as C#4.

A note to musicians: for simplicity’s sake, I’ll be ignoring flats in this
discussion.

Figure 10-2 shows the keyboard fragment of Figure 10-1 again but labeled with note
names. I’ve assumed that the first white key is C4.

Figure 10-2 utilizes the C Major scale, where the letters appear in the order C, D, E,
F, G, A, and B.

There’s a harmonic minor scale that starts at A, but I won’t be using it
in these examples.

Figure 10-1. Part of the piano keyboard

Figure 10-2. Piano keyboard with note names

C4 D4 E4 F4 G4 A4 B4

C#4 D#4 F#4 G#4 A#4

This is the Title of the Book, eMatter Edition

Sampled Audio Synthesis | 251

After B4, the fifth octave begins, starting with C5 and repeating the same sequence as
in the fourth octave. Before C4 is the third octave, which ends with B3.

Having introduced the names of these notes, it’s possible to start talking about their
associated frequencies or pitches. Table 10-1 gives the approximate frequencies for
the C4 Major scale (the notes from C4 to B4).

When I move to the next octave, the frequencies double for all the notes; for
instance, C5 will be 523.26 Hz. The preceding octave contains frequencies that are
halved, so C3 will be 130.82 Hz.

A table showing all piano note names and their frequencies can be found at http://
www.phys.unsw.edu.au/~jw/notes.html. It includes the corresponding MIDI num-
bers, which I consider later in this chapter.

Playing a Note
A note can be played by generating its associated frequency and providing an ampli-
tude for loudness. But how can this approach be implemented in terms of a byte
array suitable for a SourceDataLine?

A pure note is a single sine wave, with a specified amplitude and frequency, and this
sine wave can be represented by a series of samples stored in a byte array. The idea is
shown in Figure 10-3.

This is a simple form of analog-to-digital conversion. So, how is the frequency con-
verted into a given number of samples, i.e., how many lines should the sample contain?

Table 10-1. Frequencies for the C4 major scale

Note name Frequency (in Hz)

C4 261.63

C#4 277.18

D4 293.66

D#4 311.13

E4 329.63

F4 349.23

F#4 369.99

G4 392.00

G#4 415.30

A4 440.00

A#4 466.16

B4 493.88

This is the Title of the Book, eMatter Edition

252 | Chapter 10: Audio Synthesis

A SourceDataLine is set up to accept a specified audio format, which includes a sam-
ple rate. For example, a sample rate of 21,000 causes 21,000 samples to reach the
mixer every second. The frequency of a note, e.g., 300 Hz, means that 300 copies of
that note will reach the mixer per second.

The number of samples required to represent a single note is one of the following

samples/note = (samples/second) / (notes/sec)
samples/note = sample rate / frequency

For the previous example, a single note would need 21,000/300 = 70 samples. In
other words, the sine wave must consist of 70 samples. This approach is imple-
mented in sendNote() in the NotesSynth.java application, which is explained next.

Synthesizing Notes
NotesSynth generates simple sounds at runtime without playing a clip. The current
version outputs an increasing pitch sequence, repeated nine times, each time increas-
ing a bit faster and with decreasing volume.

NotesSynth.java is stored in SoundExamps/SynthSound/.

Here is the main() method:

public static void main(String[] args)
{ createOutput();
play();

 System.exit(0); // necessary for J2SE 1.4.2 or earlier
}

createOutput() opens a SourceDataLine that accepts stereo, signed PCM audio, uti-
lizing 16 bits per sample in little-endian format. Consequently, 4 bytes must be used
for each sample:

// globals
private static int SAMPLE_RATE = 22050; // no. of samples/sec

Figure 10-3. From single note to samples

Am
pl

itu
de

Time

Am
pl

itu
de

Time

analog to digital
conversion

Sine wave for a single pure note samples for the pure note

This is the Title of the Book, eMatter Edition

Sampled Audio Synthesis | 253

private static AudioFormat format = null;
private static SourceDataLine line = null;

private static void createOutput()
{
 format = new AudioFormat(AudioFormat.Encoding.PCM_SIGNED,
 SAMPLE_RATE, 16, 2, 4, SAMPLE_RATE, false);
 /* SAMPLE_RATE // samples/sec
 16 // sample size in bits, values can be -2^15 - 2^15-1
 2 // no. of channels, stereo here
 4 // frame size in bytes (2 bytes/sample * 2 channels)
 SAMPLE_RATE // same as frames/sec
 false // little endian */

 System.out.println("Audio format: " + format);

 try {
 DataLine.Info info = new DataLine.Info(SourceDataLine.class, format);
 if (!AudioSystem.isLineSupported(info)) {
 System.out.println("Line does not support: " + format);
 System.exit(0);
 }
 line = (SourceDataLine) AudioSystem.getLine(info);
 line.open(format);
 }
 catch (Exception e)
 { System.out.println(e.getMessage());
 System.exit(0);
 }
} // end of createOutput()

play() creates a buffer large enough for the samples, plays the pitch sequence using
sendNote(), and then closes the line:

private static void play()
{
 // calculate a size for the byte buffer holding a note
 int maxSize = (int) Math.round((SAMPLE_RATE * format.getFrameSize())/MIN_FREQ);
 // the frame size is 4 bytes
 byte[] samples = new byte[maxSize];

 line.start();

 /* Generate an increasing pitch sequence, repeated 9 times, each
 time increasing a bit faster, and the volume decreasing */
 double volume;
 for (int step = 1; step < 10; step++)
 for (int freq = MIN_FREQ; freq < MAX_FREQ; freq += step) {
 volume = 1.0 - (step/10.0);

sendNote(freq, volume, samples);
 }

This is the Title of the Book, eMatter Edition

254 | Chapter 10: Audio Synthesis

 // wait until all data is played, then close the line
 line.drain();
 line.stop();
 line.close();
} // end of play()

maxSize must be big enough to store the largest number of samples for a generated
note, which occurs when the note frequency is the smallest. Therefore, the MIN_FREQ

value (250 Hz) is divided into SAMPLE_RATE.

Creating samples

sendNote() translates a frequency and amplitude into a series of samples represent-
ing that note’s sine wave. The samples are stored in a byte array and sent along the
SourceDataLine to the mixer:

// globals
private static double MAX_AMPLITUDE = 32760; // max loudness
 // actual max is 2^15-1, 32767, since I'm using
 // PCM signed 16 bit

// frequence (pitch) range for the notes
private static int MIN_FREQ = 250;
private static int MAX_FREQ = 2000;

// Middle C (C4) has a frequency of 261.63 Hz; see Table 10-1

private static void sendNote(int freq, double volLevel, byte[] samples)
{
 if ((volLevel < 0.0) || (volLevel > 1.0)) {
 System.out.println("Volume level should be between 0 and 1, using 0.9");
 volLevel = 0.9;
 }
 double amplitude = volLevel * MAX_AMPLITUDE;

 int numSamplesInWave = (int) Math.round(((double) SAMPLE_RATE)/freq);
 int idx = 0;
 for (int i = 0; i < numSamplesInWave; i++) {
 double sine = Math.sin(((double) i/numSamplesInWave) *
 2.0 * Math.PI);
 int sample = (int) (sine * amplitude);
 // left sample of stereo
 samples[idx + 0] = (byte) (sample & 0xFF); // low byte
 samples[idx + 1] = (byte) ((sample >> 8) & 0xFF); // high byte
 // right sample of stereo (identical to left)
 samples[idx + 2] = (byte) (sample & 0xFF);
 samples[idx + 3] = (byte) ((sample >> 8) & 0xFF);
 idx += 4;
 }

 // send out the samples (the single note)
 int offset = 0;

This is the Title of the Book, eMatter Edition

MIDI Synthesis | 255

 while (offset < idx)
 offset += line.write(samples, offset, idx-offset);
}

numSamplesInWave is obtained by using the calculation described above, which is to
divide the note frequency into the sample rate.

A sine wave value is obtained with Math.sin() and split into two bytes since 16-bit
samples are being used. The little-endian format determines that the low-order byte
is stored first, followed by the high-order one. Stereo means that I must supply two
bytes for the left speaker, and two for the right; in my case, the data are the same for
both.

Extending NotesSynth

A nice addition to NotesSynth would be to allow the user to specify notes with note
names (e.g., C4, F#6), and translate them into frequencies before calling sendNote().
Additionally, play() is hardwired to output the same tones every time it’s executed.
It would be easy to have it read a notes files, perhaps written using note names, to
play different tunes.

Another important missing element is timing. Each note is played immediately after
the previous note. It would be better to permit periods of silence as well.

Consider these challenges more than deficiencies. It’s easy to imple-
ment this functionality in NotesSynth.

MIDI Synthesis
I’ll consider three approaches to synthesizing MIDI sound at runtime:

• Send note-playing messages to a MIDI channel. The MidiChannel class offers
noteOn() and noteOff() methods that transmit NOTE_ON and NOTE_OFF MIDI
messages.

• Send MIDI messages to the synthesizer’s receiver port. This is a generalization of
the first approach. The advantages include the ability to deliver messages to dif-
ferent channels, and the ability to send a wider variety of messages.

• Create a sequence, which is passed to the sequencer. This is a generalization of
the second approach. Rather than send individual notes to the synthesizer, I
build a complete sequence.

These approaches are labeled in the MIDI devices diagram in Figure 10-4.

This is the Title of the Book, eMatter Edition

256 | Chapter 10: Audio Synthesis

There is a good Java Tech Tip on these topics at http://java.sun.com/
jdc/JDCTechTips/2003/tt0805.html.

Sending Note-Playing Message to a MIDI Channel
The MidiChannel class offers noteOn() and noteOff() methods that correspond to the
NOTE_ON and NOTE_OFF MIDI messages:

void noteOn(int noteNumber, int velocity);
void noteOff(int noteNumber, int velocity);
void noteOff(int noteNumber);

The note number is the MIDI number assigned to a musical note, and velocity is
equivalent to the loudness. A note will keep playing after a noteOn() call until it’s ter-
minated with noteOff(). The two-argument form of noteOff() can affect how
quickly the note fades away.

MIDI notes can range between 0 and 127, extending well beyond the piano’s scope,
which includes 88 standard keys. This means that the note-naming scheme gets a lit-
tle strange below note 12 (C0) since we have to start talking about octave –1 (e.g.,
(see the table at http://www.harmony-central.com/MIDI/Doc/table2.html). Addition-
ally, a maximum value of 127 means that note names only go up to G9; there is no
G#9. Table 10-2 shows the mapping of MIDI numbers to notes for the fourth
octave.

Figure 10-4. Different MIDI synthesis approaches

1

synthesizer

Sequence receiver

sequencer

program

transmitter
audio

other Midi devices

Midi
Channels

16

2receiver

Midi Events / Messages

sound
banks

3

program

2

1

This is the Title of the Book, eMatter Edition

MIDI Synthesis | 257

A table showing the correspondence between MIDI numbers and note
names can be found at http://www.phys.unsw.edu.au/~jw/notes.html.

A channel is obtained in the following way:

Synthesizer synthesizer = MidiSystem.getSynthesizer();
synthesizer.open();
MidiChannel drumChannel = synthesizer.getChannels()[9];

Channel 9 plays different percussion and audio effect sounds depending on the note
numbers sent to it.

Playing a note corresponds to sending a NOTE_ON message, letting it play, and then
killing it with a NOTE_OFF message. This can be wrapped up in a playNote() method:

public void playNote(int note, int duration)
{
 drumChannel.noteOn(note, 70); // 70 is the volume level
 try {
 Thread.sleep(duration*1000); // secs --> ms
 }
 catch (InterruptedException e) {}
 drumChannel.noteOff(note);
}

The following will trigger applause:

for (int i=0; i < 10; i++)
 playNote(39, 1); // 1 sec duration for note 39

Table 10-2. MIDI numbers and note names

MIDI number Note name

60 C4

61 C#4

62 D4

63 D#4

64 E4

65 F4

66 F#4

67 G4

68 G#4

69 A4

70 A#4

71 B4

This is the Title of the Book, eMatter Edition

258 | Chapter 10: Audio Synthesis

Note 39, used here as an example, corresponds to a hand clap sound. A list of the
mappings from MIDI numbers to drum sounds can be found at http://www.midi.org/
about-midi/gm/gm1sound.shtml.

MidiChannel supports a range of useful methods aside from noteOn() and noteOff(),
including setMute(), setSolo(), setOmni(), and setPitchBend(). The two
MidiChannel.programChange() methods allow the channel’s instrument to be
changed, based on its bank and program numbers:

synthesizer.getChannels()[0].programChange(0, 15);
 /* change the instrument used by channel 0 to
 a dulcimer – located at bank 0, program 15 */

Instruments and soundbanks are explained in more detail later in this
chapter.

Sending MIDI Messages to the Synthesizer’s Receiver Port
This approach is functionally similar to the channel technique in the last section,
except that I use MIDI messages directly. The advantages include the ability to direct
messages to different channels and send more kinds of messages than just NOTE_ON

and NOTE_OFF.

Lists of MIDI messages can be found at http://www.borg.com/~jglatt/
tech/midispec.htm and http://users.chariot.net.au/~gmarts/midi.htm.

The receiver port for the synthesizer is obtained first:

Synthesizer synthesizer = MidiSystem.getSynthesizer();
synthesizer.open();
Receiver receiver = synthesizer.getReceiver();

As before, sending a note is two messages, separated by a delay to give the note time
to play. You can conclude this logic in another version of the playNote(|) method:

public void playNote(int note, int duration, int channel)
{
 ShortMessage msg = new ShortMessage();
 try {
 msg.setMessage(ShortMessage.NOTE_ON, channel, note, 70);
 // 70 is the volume level
 receiver.send(msg, -1); // -1 means play immediately

 try {
 Thread.sleep(duration*1000);
 } catch (InterruptedException e) {}

This is the Title of the Book, eMatter Edition

MIDI Synthesis | 259

 // reuse the ShortMessage object
 msg.setMessage(ShortMessage.NOTE_OFF, channel, note, 70);
 receiver.send(msg, -1);
 }
 catch (InvalidMidiDataException e)
 { System.out.println(e.getMessage()); }
}

The receiver expects MIDI events, so the MIDI message must be sent with a time-
stamp. –1, used here, means that the message should be processed immediately.

The following sets up more applause:

for (int i=0; i < 10; i++)
 playNote(39, 1, 9); // note 39 sent to the drum channel, 9

A drawback with this technique, and the previous one, is the timing mechanism,
which depends on the program sleeping. It would be better if the synthesizer man-
aged the time spacing of MIDI messages by working with MIDI events that use real
timestamps (called tick values). This approach is explained later in the chapter.

Control change messages

The FadeMidi and PanMidi examples in Chapter 9 show how to access channel con-
trollers via the synthesizer and MIDI channels, such as in this example:

MidiChannel[] channels = synthesizer.getChannels();

// Set the volume controller for channel 4 to be full on (127)
int channelVol = channels[4].getController(VOLUME_CONTROLLER);
channels[4].controlChange(VOLUME_CONTROLLER, 127);

Another approach is to construct a MIDI message aimed at a particular channel and
controller and to send it to the synthesizer’s receiver.

// Set the volume controller for channel 4 to be full on (127)
ShortMessage volMsg = new ShortMessage();
volMsg.setMessage(ShortMessage.CONTROL_CHANGE, 4, VOLUME_CONTROLLER, 127);
receiver.send(volMsg, -1);

The second argument of the ShortMessage.setMessage() is the channel ID (an index
between 0 and 15, not 1 and 16), the third argument is the channel controller ID,
and the fourth is the message value itself.

Creating a Sequence
Rather than send individual notes to the synthesizer, the SeqSynth application cre-
ates a complete sequence that is passed to the sequencer and then to the synthesizer.

The generation of a complete sequence is preferable if the music is going to be longer
than just a few notes. However, this technique requires the programmer to under-
stand the internals of a sequence. A graphical representation of a sequence’s struc-
ture is given in Figure 10-5.

This is the Title of the Book, eMatter Edition

260 | Chapter 10: Audio Synthesis

SeqSynth plays the first few notes of “As Time Goes By” from the movie Casablanca.
The application can be found in the directory SoundExamps/SynthSound/.

The original MIDI note sequence was written by Heinz M. Kabutz (see
http://www.javaspecialists.co.za/archive/Issue076.html).

The application constructs a sequence of MidiEvents containing NOTE_ON and NOTE_OFF

messages for playing notes, and PROGRAM_CHANGE and CONTROL_CHANGE messages for
changing instruments. The speed of playing is specified in terms of the ticks per beat
(also called pulses per quarter [PPQ] note) and beats/minute (the tempo setting).
The sequence only communicates with channel 0 (i.e., it only uses one musician),
but this could be made more flexible.

Notes can be expressed as MIDI numbers or as note names (e.g., F4#). See http://
www.phys.unsw.edu.au/~jw/notes.html for a chart linking the two. This support for
note names by SeqSynth is the beginning of an application that could translate a text-
based score into music.

Here’s SeqSynth’s constructor:

public SeqSynth()
{
 createSequencer();
 // listInstruments();
 createTrack(4); // 4 is the PPQ resolution

 makeSong();
 // makeScale(21); // the key is "A0"

 startSequencer(60); // tempo: 60 beats/min

 // wait for the sound sequence to finish playing
 try {

Figure 10-5. The internals of a MIDI sequence

track 0

track 1

track 2

MidiEvents

MidiEvent

MidiMessage

tick

This is the Title of the Book, eMatter Edition

MIDI Synthesis | 261

 Thread.sleep(600000); // 10 mins in ms
 }
 catch(InterruptedException e)
 { System.out.println("Sleep Interrupted"); }
 System.exit(0);
} // end of SeqSynth()

createSequencer() is nothing new: It initializes the sequencer and synthesizer
objects, which are assigned to global variables.

Instruments and soundbanks

listInstruments() is a utility for listing all the instruments currently available to the
synthesizer. The range of instruments depends on the currently loaded soundbank.
The default soundbank is soundbank.gm, located in $J2SE_HOME/jre/lib/audio and
$J2RE_HOME/lib/audio. It’s possible to change soundbanks, for example, to
improve the quality of the instruments. This is explained in the Java Tech Tip at http://
java.sun.com/developer/JDCTechTips/2004/tt0309.html.

A soundbank, which is shown as a gray rectangle in Figure 10-4, can be viewed as a
2D-array, as in Figure 10-6.

Each box in the soundbank is an instrument (represented by an Instrument object),
with its array location stored in a Patch object. To utilize an instrument at runtime, it
must be referred to using its Patch details. A patch holds two values: a bank number
and a program number.

The General MIDI specification defines a set of instrument names that must be sup-
ported in bank 0, for program numbers 0 to 127 (e.g., see http://www.midi.org/about-
midi/gm/gm1sound.shtml). These will be available on all MIDI synthesizers. The con-
tents of banks 1, 2, etc., can vary.

Figure 10-6. A soundbank in more detail

0

1

2

banks

progams

21 127

SoundBank

an instrument at a patch location

This is the Title of the Book, eMatter Edition

262 | Chapter 10: Audio Synthesis

Even within bank 0, only the names are prescribed, not the actual
sound, so the output can differ from one synthesizer to another.

The General MIDI specification actually talks about banks 1–128 and programs 1–128,
while Java uses 0–127 for bank and program numbers. For example, the dulcimer is in
bank 1, program 16 in the specification, but it is accessed using <0,15> in Java.

Listing instruments

listInstruments() prints out the names and patch details for the extensive set of
instruments in the default soundbank:

private void listInstruments()
{
 Instrument[] instrument = synthesizer.getAvailableInstruments();
 System.out.println("No. of Instruments: " + instrument.length);
 for (int i=0; i < instrument.length; i++) {
 Patch p = instrument[i].getPatch();
 System.out.print("(" + instrument[i].getName() +
 " <" + p.getBank() + "," + p.getProgram() + ">) ");
 if (i%3 ==0)
 System.out.println();
 }
 System.out.println();
} // end of listInstruments()

The output on my machine reports on four banks (0 to 3), holding a total of 411
instruments.

Making a sequence

createTrack() creates a sequence with a single empty track and specifies its MIDI
event timing to be in ticks per beat (PPQ). This allows its tempo to be set in
startSequencer() using Sequencer.setTempoInBPM(). (BPM stands for beats per
minute.) It permits the tempo to be changed during execution with methods such as
Sequencer.setTempoFactor():

private void createTrack(int resolution)
{ try {
 sequence = new Sequence(Sequence.PPQ, resolution);
 }
 catch (InvalidMidiDataException e) {
 e.printStackTrace();
 }
 track = sequence.createTrack(); // track is global
}

This is the Title of the Book, eMatter Edition

MIDI Synthesis | 263

The other common timestamp format is based on ticks per frame and FPS.

makeSong() fills the sequence’s single track with MIDI events. In this case, the code is
concerned with reproducing the first few notes of “As Time Goes By”:

private void makeSong()
{ changeInstrument(0,33); // set bank and program; bass
 addRest(7);

 add("F4"); add("F4#"); add("F4"); add("D4#");
 add("C4#"); add("D4#", 3); add("F4"); add("G4#");
 add("F4#"); add("F4"); add("D4#"); add("F4#", 3);
 add("G4#"); add("C5#"); add("C5"); add("A4#");
 add("G4#"); add("A4#", 4); add("G4", 4); add("G4#", 2);

 changeInstrument(0,15); // dulcimer
 addRest(1);

 add("C5"); add("D5#"); add("C5#"); add("C5"); add("A4#");
 add("C5", 2); add("C5#", 2); add("G4#", 2); add("G4#", 2);
 add("C4#", 2); add("D4#", 2); add("C4#", 2);

 addRest(1);
}

changeInstrument() is supplied with bank and program numbers to switch the
instrument. addRest() inserts a period of quiet into the sequence, equal to the sup-
plied number of ticks. add() adds a note, with an optional tick duration parameter.

Commented out in SeqSynth.java is a simpler example; makeScale() plays a rising
scale followed by a falling one:

private void makeScale(int baseNote)
{
 for (int i=0; i < 13; i++) { // one octave up
 add(baseNote);
 baseNote++;
 }
 for (int i=0; i < 13; i++) { // one octave down
 add(baseNote);
 baseNote--;
 }
}

makeScale() is called with the MIDI number 21 (note A0), and subsequent notes are
calculated using addition and subtraction. This version of add() takes an integer
argument rather than a string.

This is the Title of the Book, eMatter Edition

264 | Chapter 10: Audio Synthesis

For the musically adept out there, this is a useful feature. In any key,
you can calculate the notes of the scale numerically and not worry
about note names. For example, a major scale is whole step (+2 from
the root of the scale), whole step (+2), half step (+1), whole step (+2),
whole step (+2), whole step (+2), half step (+1). Using those numeri-
cal values is a lot easier than remembering if E# is part of the C#
major scale.

Playing the sequence

startSequencer() is the final method called from the constructor. It plays the
sequence built in the preceding call to makeSong() (or makeScale()):

private void startSequencer(int tempo)
/* Start the sequence playing.
 The tempo setting is in BPM (beats per minute),
 which is combined with the PPQ (ticks / beat)
 resolution to determine the speed of playing. */
{
 try {
 sequencer.setSequence(sequence);
 }
 catch (InvalidMidiDataException e) {
 e.printStackTrace();
 }
 sequencer.addMetaEventListener(this);
 sequencer.start();
 sequencer.setTempoInBPM(tempo);
} // end of startSequencer()

public void meta(MetaMessage meta)
// called when a meta event occurs during sequence playing
{
 if (meta.getType() == END_OF_TRACK) {
 System.out.println("End of the track");
 System.exit(0); // not required in J2SE 5.0
 }
}

startSequence() sets the tempo and adds a meta-event listener. The listener calls
meta() when the track finishes playing, allowing the application to exit immediately
instead of waiting for the full 10 minutes allocated by the constructor.

The add() methods

The add() methods must deal with note name or MIDI number input and with an
optional note-playing period:

// global used to timestamp the MidiEvent messages
private int tickPos = 0;

This is the Title of the Book, eMatter Edition

MIDI Synthesis | 265

private void add(String noteStr)
{ add(noteStr, 1); }

private void add(int note)
{ add(note, 1); }

private void add(String noteStr, int period)
// convert the note string to a numerical note, then add it
{ int note = getKey(noteStr);
 add(note, period);
}

private void add(int note, int period)
{ setMessage(ShortMessage.NOTE_ON, note, tickPos);
 tickPos += period;
setMessage(ShortMessage.NOTE_OFF, note, tickPos);

}

private void addRest(int period)
// this will leave a period of no notes (i.e., silence) in the track
{ tickPos += period; }

The note name is converted into a MIDI number with getKey(). The core add()

method takes a MIDI number and tick period, and it creates two MIDI events with
setMessage()—one a NOTE_ON message and the other a NOTE_OFF. These events are
timestamped, so they are separated by the required interval.

setMessage() builds a MIDI message, places it inside a MIDI event, and adds it to
the track:

// globals
private static final int CHANNEL = 0; // always use channel 0
private static final int VOLUME = 90; // fixed volume for notes

private void setMessage(int onOrOff, int note, int tickPos)
{
 if ((note < 0) || (note > 127)) {
 System.out.println("Note outside MIDI range (0-127): " + note);
 return;
 }

 ShortMessage message = new ShortMessage();
 try {
 message.setMessage(onOrOff, CHANNEL, note, VOLUME);
 MidiEvent event = new MidiEvent(message, tickPos);
 track.add(event);
 }
 catch (InvalidMidiDataException e) {
 e.printStackTrace();
 }
} // end of setMessage()

This is the Title of the Book, eMatter Edition

266 | Chapter 10: Audio Synthesis

Changing an instrument

changeInstrument() is supplied with the bank and program numbers of the instru-
ment that should be used by the channel from this point on:

private void changeInstrument(int bank, int program)
{
 Instrument[] instrument = synthesizer.getAvailableInstruments();

 for (int i=0; i < instrument.length; i++) {
 Patch p = instrument[i].getPatch();
 if ((bank == p.getBank()) && (program == p.getProgram())) {

programChange(program);
bankChange(bank);

 return;
 }
 }
 System.out.println("No instrument of type <" + bank +
 "," + program + ">");
}

The validity of these two numbers are checked before they’re processed.

Program and bank change

programChange() places a PROGRAM_CHANGE MIDI message onto the track:

private void programChange(int program)
{
 ShortMessage message = new ShortMessage();
 try {
 message.setMessage(ShortMessage.PROGRAM_CHANGE, CHANNEL, program, 0);
 // the second data byte (0) is unused
 MidiEvent event = new MidiEvent(message, tickPos);
 track.add(event);
 }
 catch (InvalidMidiDataException e) {
 e.printStackTrace();
 }
}

bankChange() is similar but uses the bank selection channel controller (number 0), so
a CONTROL_CHANGE message is placed on the track:

// global
// channel controller name for changing an instrument bank
private static final int BANK_CONTROLLER = 0;

private void bankChange(int bank)
{
 ShortMessage message = new ShortMessage();
 try {

This is the Title of the Book, eMatter Edition

MIDI Synthesis | 267

 message.setMessage(ShortMessage.CONTROL_CHANGE,
 CHANNEL, BANK_CONTROLLER, bank);
 MidiEvent event = new MidiEvent(message, tickPos);
 track.add(event);
 }
 catch (InvalidMidiDataException e) {
 e.printStackTrace();
 }
}

From note name to MIDI number

The note name syntax used by SeqSynth is simple, albeit nonstandard. Only one letter-
single octave combination is allowed (e.g., “C4,” “A0”), so it’s not possible to refer to
the –1 octave. A sharp can be included, but only after the octave number (e.g.,
“G4#”); the normal convention is that a sharp follows the note letter. No notation for
flats is included here though you can represent any flatted note with the “sharped” ver-
sion of the note below it; for example, D flat is equivalent to C sharp.

The calculations done by getKey() use several constants:

private static final int[] cOffsets = {9, 11, 0, 2, 4, 5, 7};
 // A B C D E F G

private static final int C4_KEY = 60;
 // C4 is the "C" in the 4th octave on a piano

private static final int OCTAVE = 12; // note size of an octave

The note offsets in cOffsets[] use the C Major scale, which is ordered C D E F G A B,
but the offsets are stored in an A B C D E F G order to simplify their lookup by
getKey().

getKey() calculates a MIDI note number by examining the note letter, octave num-
ber, and optional sharp character in the supplied string:

private int getKey(String noteStr)
/* Convert a note string (e.g., "C4", "B5#" into a key. */
{
 char[] letters = noteStr.toCharArray();

 if (letters.length < 2) {
 System.out.println("Incorrect note syntax; using C4");
 return C4_KEY;
 }

 // look at note letter in letters[0]
 int c_offset = 0;
 if ((letters[0] >= 'A') && (letters[0] <= 'G'))
 c_offset = cOffsets[letters[0] - 'A'];
 else
 System.out.println("Incorrect: " + letters[0] + ", using C");

This is the Title of the Book, eMatter Edition

268 | Chapter 10: Audio Synthesis

 // look at octave number in letters[1]
 int range = C4_KEY;
 if ((letters[1] >= '0') && (letters[1] <= '9'))
 range = OCTAVE * (letters[1] - '0' + 1);
 else
 System.out.println("Incorrect: " + letters[1] + ", using 4");

 // look at optional sharp in letters[2]
 int sharp = 0;
 if ((letters.length > 2) && (letters[2] == '#'))
 sharp = 1; // a sharp is 1 note higher
 int key = range + c_offset + sharp;

 return key;
} // end of getKey()

Extending SeqSynth

SeqSynth would be more flexible if it could read song operations (i.e., a score) from a
text file instead of having those operations hard-coded and passed into methods such
as makeSong().

The range of musical notation understood by SeqSynth could be enlarged. For exam-
ple, David Flanagan’s PlayerPiano application from Java Examples in a Nutshell
(O’Reilly) covers similar ground to SeqSynth and supports flats, chords (combined
notes), volume control, and the damper pedal (http://www.onjava.com/pub/a/onjava/
excerpt/jenut3_ch17/index1.html). The resulting sequence can be played or saved to a
file.

Several ASCII notations represent scores, such as the abc language (http://www.gre.
ac.uk/~c.walshaw/abc/). abc is widely used for notating and distributing music. Many
tools exist for playing abc notated music, converting it into MIDI sequences or sheet
music, and so on. Wil Macaulay has written Skink, a Java application, which sup-
ports the abc 1.6 standard with some extensions. It can open, edit, save, play, and
display abc files (http://www.geocities.com/w_macaulay/skink.html). Skink generates a
MIDI sequence using similar techniques as in SeqSynth.

Audio Synthesis Libraries
The sampled audio synthesis carried out by NotesSynth and the MIDI sequence gen-
eration in SeqSynth could be expanded to turn the applications into general-purpose
synthesis tools, classes, or libraries. However, Java audio synthesis libraries exist but
not as part of J2SE.

This is the Title of the Book, eMatter Edition

Audio Synthesis Libraries | 269

JSyn (http://www.softsynth.com/jsyn/) generates sound effects by employing inter-
connected unit generators. It includes an extensive library of generators, including
oscillators, filters, envelopes, and noise generators. For example, a wind sound can
be built by connecting a white noise generator to a low pass filter modulated by a
random contour generator. JSyn comes with a graphical editor, called Wire, for con-
necting unit generators together. The result can be exported as Java source code.

jMusic (http://jmusic.ci.qut.edu.au/) is aimed at musicians rather than engineers. Its
libraries provide a music data structure based around note and sound events, with
associated methods. jMusic can read and write MIDI and audio files.

This is the Title of the Book, eMatter Edition

270

Chapter 11CHAPTER 11

Sprites

A game’s active entities are often encoded as sprites. A sprite is a moving graphical
object, which may represent the player (and so respond to key presses and mouse
actions) or may be driven by “intelligent” code in the game. The Sprite class devel-
oped in this chapter holds a sprite’s position, its speed (coded as incremental steps in
the x and y directions), and it uses the image classes (ImagesLoader, ImagesPlayer)
from Chapter 6 to manage its graphical presence. Sprite’s subclasses add user and
environmental interactions and audio effects. The coding of these classes is helped by
specifying them first with UML statecharts.

Many elements are utilized from earlier chapters: the animation frame-
work from Chapters 2 and 3, the image loader classes from Chapter 6,
and the audio loaders from Chapter 8.

Bats, Balls, and Sprites
The BugRunner example allows the user to control a sprite in the shape of an ant. The
objective is to move the sprite left and right across the base of the gaming pane to
stop falling ball sprites from hitting the floor. Figure 11-1 shows BugRunner in action.

The screenshot is a little misleading because the futuristic cityscape
and the flying car are part of the game’s background image and aren’t
active elements in the game. The gameplay components are the ant at
the bottom of the screen and the falling yellow and red ball near the
center of the panel.

The ant is controlled with the arrow keys or by clicking with the mouse. The left
arrow key makes the ant move to the left, the right arrow key makes it go right, and
the down key stops it. If the mouse is clicked when the cursor is to the left of the ant,
it makes the ant walk to the left; when the cursor is to the ant’s right, then the ant
will go right. The ant’s legs even move as it walks.

This is the Title of the Book, eMatter Edition

Bats, Balls, and Sprites | 271

Once the ant is set in motion, it continues moving until its direction is changed or it
is stopped. When the ant reaches the left or right walls, it continues walking off
screen until it has disappeared and then appears again at the other edge.

To make things more interesting, a ball is dropped at varying speeds and trajectories
from the top of the panel. If the ball touches a wall, it rebounds. If the ball reaches
the floor, it continues off screen, and the number of returns is decremented. This
number is displayed in the top-left corner of the screen as a total out of 16. When it
drops to 0, the game is over.

If the player manages to position the ant under the ball, it will rebound, and the
number of returns will be incremented as the ball disappears off the top. When the
number of returns reaches 16, the game finishes. The ant sprite is being used as a bat
(in the sense of a tennis bat) to prevent the ball from reaching the floor.

One ball is sent falling at a time, and the ball graphic varies each time,
cycling through several possibilities.

A MIDI sequence (the BladeRunner theme by Vangelis) is continuously played in the
background, and various thumps, bangs, and boings are heard when the ball hits the
walls or the ant. The game finishes with applause (no matter what the score).

Figure 11-1. The BugRunner application

This is the Title of the Book, eMatter Edition

272 | Chapter 11: Sprites

The ant images come from the SpriteLib sprite library by Ari Feldman
at http://www.arifeldman.com/games/spritelib.html.

Class Diagrams for BugRunner
Figure 11-2 shows the class diagrams for BugRunner application. The class names and
public methods are given for the new classes, but only class names are supplied for
the imaging and audio classes, which are unchanged from earlier chapters.

Figure 11-2. Class diagrams for BugRunner

Windowed
Animation
Framework
(chapters 2 and 3)

Audio Loader Classes
(chapter 8)

Image Loader Classes
(chapter 6)

This is the Title of the Book, eMatter Edition

The Bug Starts Running | 273

The image and audio loader classes won’t be explained again in any
detail, so if you’ve skipped ahead to this chapter, you may want to go
back and review Chapters 6 and 8.

The top-level JFrame (BugRunner) and the games panel (BugPanel) use the windowed
animation framework developed in Chapters 2 and 3. In particular, the complicated
run() method in BugPanel is almost identical to the one in WormPanel in Chapter 3. If
you’re unfamiliar with it, then you should look at Chapter 3 before continuing.

The new material is mostly concentrated in the Sprite class and its subclasses,
BallSprite and BatSprite. BallSprite manages each ball, and BatSprite handles the ant.

The choice of the name BatSprite may seem a tad strange since the sprite
image is an ant. Bat refers to the ant’s role in the game,, i.e., to bat away
balls and stop them from reaching the floor. In truth, the accompanying
image could be anything: a mockingbird, Guadalupe bass, armadillo, or
longhorn.

The code for the BugRunner game can be found in the BugRunner/ directory.

The Bug Starts Running
BugRunner fixes the frame rate to be 40 FPS; anything faster makes it almost impossi-
ble to move the ant quickly enough to intercept a dropping ball.

The application’s constructor loads and starts the BladeRunner sequence:

// load the background MIDI sequence
midisLoader = new MidisLoader();
midisLoader.load("br", "blade_runner.mid");
midisLoader.play("br", true); // repeatedly play it

Since BugRunner plays one sequence at a time, it’s loaded directly via a call to load()

rather than being specified in a MIDI information file. MidisLoader assumes the
sequence is in the Sounds/ subdirectory.

Using a well-known piece of music, like the BladeRunner theme, is a bad
idea for a game intended for widespread distribution. The thorny issue
of copyright is bound to come up. I’ve thrown caution to the wind since
BladeRunner is one of my favorite sci-fi movies, and the music is great.

This is the Title of the Book, eMatter Edition

274 | Chapter 11: Sprites

BugRunner sets up window listener methods for pausing and resuming the game in a
similar manner to the WormChase application in Chapter 3. windowClosing() is different:

public void windowClosing(WindowEvent e)
{ bp.stopGame();
 midisLoader.close();
}

The call to close() in MidisLoader ensures the sequence is stopped at termination time.

The Animation Framework
BugPanel is a subclass of JPanel that implements the animation framework described
in Chapters 2 and 3; BugPanel closely resembles the WormPanel class. The constructor
sets up keyboard and mouse listeners, prepares the ImagesLoader and ClipsLoader

objects, and creates the bat and ball sprites:

public BugPanel(BugRunner br, long period)
{
 bugTop = br;
 this.period = period;

 setDoubleBuffered(false);
 setBackground(Color.black);
 setPreferredSize(new Dimension(PWIDTH, PHEIGHT));

 setFocusable(true);
 requestFocus(); // now has focus, so receives key events

 addKeyListener(new KeyAdapter() {
 public void keyPressed(KeyEvent e)
 { processKey(e); } // handle key presses
 });

 // load the background image
 ImagesLoader imsLoader = new ImagesLoader(IMS_INFO);
 bgImage = imsLoader.getImage("bladerunner");

 // initialise the clips loader
 clipsLoader = new ClipsLoader(SNDS_FILE);

 // create game sprites
bat = new BatSprite(PWIDTH, PHEIGHT, imsLoader,

 (int)(period/1000000L)); // in ms
ball = new BallSprite(PWIDTH, PHEIGHT, imsLoader,

 clipsLoader, this, bat);

 addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e)
 { testPress(e.getX()); } // handle mouse presses
 });

This is the Title of the Book, eMatter Edition

The Animation Framework | 275

 // set up message font
 msgsFont = new Font("SansSerif", Font.BOLD, 24);
 metrics = this.getFontMetrics(msgsFont);

} // end of BugPanel()

The image loaded by ImagesLoader is stored in the global bgImage and later used as
the game’s background image (see Figure 11-1).

BladeRunner fans will recognize the background image as a still from
the movie, so would be another source of copyright problems in a
commercial game.

The ClipsLoader object is stored in BugPanel and passes as an argument to the ball
sprite, which plays various clips when its ball hits the walls or bat. The clips informa-
tion file SNDS_FILE (clipsInfo.txt) is assumed to be in the Sounds/ subdirectory. It
contains:

hitBat jump.au
hitLeft clack.au
hitRight outch.au
gameOver clap.wav

The gameOver clip is used by BugPanel when the game finishes; the others are utilized
by BallSprite.

User Interaction
The game panel supports user input via the keyboard and mouse, which is dealt with
by processKey() and testPress(). They are attached to the listeners in the BugPanel()

constructor.

processKey() handles two kinds of key operations: those related to termination (e.g.,
Ctrl-C) and those affecting the ant (the arrow keys):

private void processKey(KeyEvent e)
{
 int keyCode = e.getKeyCode();

 // termination keys
 if ((keyCode==KeyEvent.VK_ESCAPE) || (keyCode==KeyEvent.VK_Q) ||
 (keyCode == KeyEvent.VK_END) ||
 ((keyCode == KeyEvent.VK_C) && e.isControlDown()))
 running = false;

 // game-play keys
 if (!isPaused && !gameOver) {
 if (keyCode == KeyEvent.VK_LEFT)
 bat.moveLeft();
 else if (keyCode == KeyEvent.VK_RIGHT)
 bat.moveRight();

This is the Title of the Book, eMatter Edition

276 | Chapter 11: Sprites

 else if (keyCode == KeyEvent.VK_DOWN)
 bat.stayStill();
 }
} // end of processKey()

The game-related keys are normally mapped to calls to BatSprite methods but are
ignored if the game has been paused or finished. These extra tests aren’t applied to
the termination keys since it should be possible to exit the game, whatever its cur-
rent state.

testPress() passes the cursor’s x-coordinate to BatSprite to determine which way to
move the ant:

private void testPress(int x)
{ if (!isPaused && !gameOver)
 bat.mouseMove(x);
}

The Animation Loop
BugPanel implements the Runnable interface, allowing its animation loop to be placed in
the run() method. run() is almost the same as the one in the WormPanel class without
the overheads of FPS statistics gathering:

public void run()
/* The frames of the animation are drawn inside the while loop. */
{
 long beforeTime, afterTime, timeDiff, sleepTime;
 long overSleepTime = 0L;
 int noDelays = 0;
 long excess = 0L;

 gameStartTime = J3DTimer.getValue();
 beforeTime = gameStartTime;

 running = true;

 while(running) {
 gameUpdate();
 gameRender();
 paintScreen();

 afterTime = J3DTimer.getValue();
 timeDiff = afterTime - beforeTime;
 sleepTime = (period - timeDiff) - overSleepTime;

 if (sleepTime > 0) { // some time left in this cycle
 try {
 Thread.sleep(sleepTime/1000000L); // nano -> ms
 }
 catch(InterruptedException ex){}
 overSleepTime = (J3DTimer.getValue() - afterTime) - sleepTime;
 }

This is the Title of the Book, eMatter Edition

The Animation Framework | 277

 else { // sleepTime <= 0; frame took longer than period
 excess -= sleepTime; // store excess time value
 overSleepTime = 0L;

 if (++noDelays >= NO_DELAYS_PER_YIELD) {
 Thread.yield(); // give another thread a chance to run
 noDelays = 0;
 }
 }

 beforeTime = J3DTimer.getValue();

 /* If frame animation is taking too long, update the game state
 without rendering it, to get the updates/sec nearer to
 the required FPS. */
 int skips = 0;
 while((excess > period) && (skips < MAX_FRAME_SKIPS)) {
 excess -= period;

gameUpdate(); // update state but don't render
 skips++;
 }
 }
 System.exit(0); // so window disappears
} // end of run()

The Java 3D timer is used mainly because it’s an excellent timer for J2SE
1.4.2 across a range of platforms. However, as J2SE 5.0 gains popular-
ity, a better choice may be System.nanoTime(). Porting the code is a mat-
ter of replacing calls to J3DTimer.getValue() with System.nanoTime().

The application-specific elements of the animation are located in gameUpdate() and
gameRender(). A new gameStartTime variable is initialized at the start of run(); it’s
used later to calculate the elapsed time displayed in the game panel.

gameUpdate() updates the active game entities—the ball and bat sprites:

private void gameUpdate()
{ if (!isPaused && !gameOver) {
 ball.updateSprite();
 bat.updateSprite();
 }
}

gameRender() draws the background, the sprites, and the game statistics (the num-
ber of rebounds and the elapsed time):

private void gameRender()
{
 if (dbImage == null){
 dbImage = createImage(PWIDTH, PHEIGHT);
 if (dbImage == null) {
 System.out.println("dbImage is null");
 return;

This is the Title of the Book, eMatter Edition

278 | Chapter 11: Sprites

 }
 else
 dbg = dbImage.getGraphics();
 }

 // draw the background: use the image or a black screen
 if (bgImage == null) { // no background image
 dbg.setColor(Color.black);
 dbg.fillRect (0, 0, PWIDTH, PHEIGHT);
 }
 else
 dbg.drawImage(bgImage, 0, 0, this);

 // draw game elements
 ball.drawSprite(dbg);
 bat.drawSprite(dbg);

 reportStats(dbg);

 if (gameOver)
 gameOverMessage(dbg);
} // end of gameRender()

gameUpdate() and gameRender() show the main way that the sprites are utilized. First
their states are updated via calls to updateSprite(), and then they’re drawn by invok-
ing drawSprite().

reportStats() calculates and renders the current time and the number of rebounds:

private void reportStats(Graphics g)
{
 if (!gameOver) // stop incrementing timer once game is over
 timeSpentInGame =
 (int) ((J3DTimer.getValue() - gameStartTime)/1000000000L);
 // ns --> secs

 g.setColor(Color.yellow);
 g.setFont(msgsFont);

 ball.drawBallStats(g, 15, 25); // ball sprite reports ball stats
 g.drawString("Time: " + timeSpentInGame + " secs", 15, 50);

 g.setColor(Color.black);
}

The number of rebounds is reported by the ball sprite, which is passed the graphics
context in the drawBallStats() call.

Finishing the Game
The game is terminated when the gameOver boolean is set to true. This stops any fur-
ther updates to the active entities via gameUpdate() and disables the processing of

This is the Title of the Book, eMatter Edition

Defining a Sprite | 279

keyboard and mouse actions. However, the screen is still periodically redrawn, and
the background music keeps playing until the application is closed.

The gameOver boolean is set by the BallSprite object calling gameOver() in BugPanel:

public void gameOver()
{ int finalTime =
 (int) ((J3DTimer.getValue() - gameStartTime)/1000000000L);
 // ns --> secs
 score = finalTime; // could be more fancy!
 clipsLoader.play("gameOver", false); // play clip once
 gameOver = true;
}

A score is calculated and the gameOver clip (polite applause) is played.

Defining a Sprite
A general-purpose Sprite class is hard to design since many of its features depend on
the application and the gaming context.

For example, a sprite’s on-screen movement greatly depends on the type of game. In
Tetris, Breakout, and Space Invaders (and many more), the sprite moves within the
gaming area while the background scenery remains stationary. In some of these
games, the sprite may be unable to move beyond the edges of the panel, while in oth-
ers it can wrap around to the opposite edge. In side-scrolling games, such as Super
Mario, the sprite hardly moves (perhaps only up and down); instead the background
shifts behind it.

A sprite must monitor the game environment, for example, reacting to collisions
with different sprites or stopping when it encounters an obstacle. Collision process-
ing can be split into two basic categories: collision detection and collision response,
with the range of responses being application specific. Many varieties of collision
detection exist: a sprite may be represented by a single bounding box, a reduced size
bounding box, or several bounding areas. Examples of each are shown in Figure 11-3
where the bounding regions are the dashed boxes around the pigeon and donkey.

Figure 11-3. Three types of collision detection

This is the Title of the Book, eMatter Edition

280 | Chapter 11: Sprites

A single bounding box is simple to manipulate but prone to inaccuracy. The reduced
bounding box is better, but choosing a suitable reduction factor is difficult. The
greatest accuracy can be achieved with several boxes for each sprite at the expense of
additional calculations.

Sometimes a 2D sprite will have a z-coordinate (or z-level) that dictates its drawing
position (or order) on screen, which the user perceives as depth. For instance, if two
sprites have the same z-level, then they’ll be unable to move past each other, so they
will collide. However, a sprite with a smaller z-level is conceptually “in front” of a
sprite with a larger z-level, so can pass by without collision. Sprites are drawn in
decreasing z-level order, so sprites in the foreground appear in front of those fur-
ther back.

The visual appearance of a sprite typically changes over time in response to impor-
tant events (e.g., being shot out of the sky) or by cycling through a series of images
(e.g., moving its arms and legs as it walks about). Associated audio effects (e.g., a
gunshot sound) may be triggered by events, or played periodically.

Coding a Sprite
The Sprite class is simple, storing little more than the sprite’s current position, its
speed specified as step increments in the x- and y- directions, with imaging managed
by ImagesLoader and ImagesPlayer objects. The ImagesPlayer class allows the sprite
to show a sequence of images repeatedly since this is how the ant moves its legs.

The Sprite subclasses, BatSprite and BallSprite in BugRunner, manage user interac-
tions, environment concerns (e.g., collision detection and response), and audio
effects. These elements are too application specific to be placed in Sprite.

The Sprite Constructor
A sprite is initialized with its position, the size of the enclosing panel, an
ImagesLoader object, and the name of an image:

// default step sizes (how far to move in each update)
private static final int XSTEP = 5;
private static final int YSTEP = 5;

private ImagesLoader imsLoader;
private int pWidth, pHeight; // panel dimensions

// protected vars
protected int locx, locy; // location of sprite
protected int dx, dy; // amount to move for each update

This is the Title of the Book, eMatter Edition

Coding a Sprite | 281

public Sprite(int x, int y, int w, int h, ImagesLoader imsLd, String name)
{ locx = x; locy = y;
 pWidth = w; pHeight = h;
 dx = XSTEP; dy = YSTEP;
 imsLoader = imsLd;
setImage(name); // the sprite's default image is 'name'

}

The sprite’s coordinate (locx, locy) and its step values (dx, dy) are stored as integers.
This simplifies certain tests and calculations but restricts positional and speed preci-
sion. For instance, a ball can’t move 0.5 pixels at a time.

The alternative is to use floats or doubles to hold the coordinates and
velocities. However, this adds complexity and is unnecessary in this
example. floats would be useful when the calculations require greater
accuracy, for example, for rotations using matrix multiplication.

locx, locy, dx, and dy are protected rather than private due to their widespread use in
Sprite subclasses. They have getter and setter methods, so they can be accessed and
changed by objects outside of the Sprite hierarchy.

Sprite only stores (x, y) coordinates: there’s no z-coordinate or z-level; such func-
tionality is unnecessary in BugRunner. Simple z-level functionality can be achieved by
ordering the calls to drawSprite() in gameRender(). Currently, the code is simply:

ball.drawSprite(dbg);
bat.drawSprite(dbg);

The ball is drawn before the bat, so will appear behind it if they happen to overlap
on-screen. In an application where you had 5, 10, or more sprites, this won’t work,
especially if the objects move in a way that changes their z-level.

A Sprite’s Image
setImage() assigns the named image to the sprite:

// default dimensions when there is no image
private static final int SIZE = 12;

// image-related globals
private ImagesLoader imsLoader;
private String imageName;
private BufferedImage image;
private int width, height; // image dimensions

private ImagesPlayer player; // for playing a loop of images
private boolean isLooping;

This is the Title of the Book, eMatter Edition

282 | Chapter 11: Sprites

public void setImage(String name)
{
 imageName = name;
 image = imsLoader.getImage(imageName);
 if (image == null) { // no image of that name was found
 System.out.println("No sprite image for " + imageName);
 width = SIZE;
 height = SIZE;
 }
 else {
 width = image.getWidth();
 height = image.getHeight();
 }
 // no image loop playing
 player = null;
 isLooping = false;
}

setImage() is a public method, permitting the sprite’s image to be altered at runtime.

An ImagesPlayer object, player, is available to the sprite for looping through a
sequence of images. Looping is switched on with the loopImage() method:

public void loopImage(int animPeriod, double seqDuration)
{
 if (imsLoader.numImages(imageName) > 1) {
 player = null; // for garbage collection of previous player
 player = new ImagesPlayer(imageName, animPeriod, seqDuration,
 true, imsLoader);
 isLooping = true;
 }
 else
 System.out.println(imageName + " is not a sequence of images");
}

The total time for the loop is seqDuration seconds. The update interval (supplied by
the enclosing animation panel) is animPeriod milliseconds.

Looping is switched off with stopLooping():

public void stopLooping()
{ if (isLooping) {
 player.stop();
 isLooping = false;
 }
}

A Sprite’s Bounding Box
Collision detection and collision response is left to subclasses. However, the bound-
ing box for the sprite is available through the getMyRectangle() method:

public Rectangle getMyRectangle()
{ return new Rectangle(locx, locy, width, height); }

This is the Title of the Book, eMatter Edition

Coding a Sprite | 283

Sprite uses the simplest form of bounding box, but it wouldn’t be dif-
ficult to introduce a reduction factor. The reduced bounded box
would have a smaller width and height and would need to be posi-
tioned so its center coincided with the center of the image’s full-size
bounding rectangle.

Updating a Sprite
A sprite is updated by adding its step values (dx, dy) to its current location (locx,
locy):

// global
private boolean isActive = true;
// a sprite is updated and drawn only when active

public void updateSprite()
{
 if (isActive()) {
 locx += dx;
 locy += dy;
 if (isLooping)
 player.updateTick(); // update the player
 }
}

The isActive boolean allows a sprite to be (temporarily) removed from the game
since the sprite won’t be updated or drawn when isActive is false. There are public
isActive() and setActive() methods for manipulating the boolean.

No attempt is made in updateSprite() to test for collisions with other
sprites, obstacles, or the edges of the gaming pane. These must be
added by the subclasses when they override updateSprite().

Sprites are embedded in an animation framework that works hard to maintain a
fixed frame rate. run() calls updateSprite() in all the sprites at a frequency as close
to the specified frame rate as possible. For example, if the frame rate is 40 FPS (as it
is in BugRunner), then updateSprite() will be called 40 times per second in each
sprite.

This allows me to make assumptions about a sprite’s update timing. For instance, if
the x-axis step value (dx) is 10, then the sprite will be moved 10 pixels in each update.
This corresponds to a speed of 10 × 40 = 400 pixels per second along that axis. This
calculation is possible because the frame rate is tightly constrained to 40 FPS.

An alternative approach is to call updateSprite() with an argument holding the
elapsed time since the previous call. This time value can be multiplied to a velocity

This is the Title of the Book, eMatter Edition

284 | Chapter 11: Sprites

value to get the step amount for this particular update. This technique is preferably
in animation frameworks, where the frame rate can vary during execution.

Drawing a Sprite
The animation loop will call updateSprite() in a sprite, followed by drawSprite() to
draw it:

public void drawSprite(Graphics g)
{
 if (isActive()) {
 if (image == null) { // the sprite has no image
 g.setColor(Color.yellow); // draw a yellow circle instead
 g.fillOval(locx, locy, SIZE, SIZE);
 g.setColor(Color.black);
 }
 else {
 if (isLooping)
 image = player.getCurrentImage();
 g.drawImage(image, locx, locy, null);
 }
 }
}

If the image is null, then the sprite’s default appearance is a small yellow circle. The
current image in the looping series is obtained by calling ImagesPlayer’s
getCurrentImage() method.

Specifying a Sprite with a Statechart
A sprite is a reactive object: it responds dynamically to events, changing its state and
modifying its behavior. For all but the simplest example, specify the sprite’s behav-
ior before becoming entangled in writing code. The UML statechart is an excellent
tool for defining a sprite, and there are even utilities for automatically generating
Java code from statecharts.

The rest of this section gives a brief introduction to statecharts and explains how
they can be translated to Java. However, this isn’t a book about UML, so I refer the
interested reader to UML Distilled (Addison-Wesley Professional) by Martin Fowler.
For a UML text with a Java slant, check out UML for Java Programmers (Prentice
Hall) by Robert C. Martin (http://www.objectmentor.com). Martin’s web site offers
SMC, a translator that takes textual statechart information and generates Java (or
C++) code.

A simple statechart for a subway turnstile is shown in Figure 11-4. (This example
comes from a tutorial by Robert C. Martin.)

This is the Title of the Book, eMatter Edition

Specifying a Sprite with a Statechart | 285

The states are inside rounded rectangles; the transitions (arrows) indicate how the
system responds to events. The syntax for a transition is:

event [condition] / action

An event arrives when the system is in a given state, causing the associated transition
to be executed. First, the condition is evaluated if one is present. If the result is true,
the associated action is carried out and the system follows the transition to a new
state. The solid black circle points to the starting state for the system.

The statechart in Figure 11-4 specifies what happens when a pass or coin event
occurs in the locked or unlocked states for a turnstile. A coin event corresponds to a
customer placing a coin in the turnstile; a pass event is generated when the turnstile
rotates to allow the customer to pass through.

Statecharts can be more sophisticated than this example. For instance, they can rep-
resent activities carried out when a state is entered and exited, states can be nested to
form hierarchies, states can be grouped together to model concurrent actions, and
there is a history mechanism.

Translating a Statechart to Code
There are various approaches for translating a statechart into executable code. One
of the simplest is to convert the graphical notation into table form, called a State
Transition Table (STT). Table 11-1 shows the STT for the turnstile statechart.

An imperative-style translation of the table converts it to a series of if statements
(see makeTransition() in Example 11-1).

Figure 11-4. A subway turnstile statechart

Table 11-1. Turnstile STT

Current state Event Action New state

Locked Coin Unlock Unlocked

Locked Pass Alarm Locked

Unlocked Coin Thanks Unlocked

Unlocked Pass Lock Locked

coin/unlock

pass/lock

coin/thankspass/alarm locked unlocked

This is the Title of the Book, eMatter Edition

286 | Chapter 11: Sprites

Example 11-1. Turnstile STT as code

public class TurnStile
{
 // state constants
 private static final int LOCKED = 0;
 private static final int UNLOCKED = 1;

 // event constants
 private static final int COIN = 2;
 private static final int PASS = 3;

 public static void main(String args[])
 {
 int currentState = LOCKED;
 int event;
 while (true) {
 event = /* get the next event */;
 currentState = makeTransition(currentState, event);
 }
 } // end of main()

 private static int makeTransition(int state, int event)
 // a translation of Table 1
 {
 if ((state == LOCKED) && (event == COIN)) {
 unlock();
 return UNLOCKED;
 }
 else if ((state == LOCKED) && (event == PASS)) {
 alarm();
 return LOCKED;
 }
 else if ((state == UNLOCKED) && (event == COIN)) {
 thanks();
 return UNLOCKED;
 }
 else if ((state == UNLOCKED) && (event == PASS)) {
 lock();
 return LOCKED;
 }
 else {
 System.out.println("Unknown state event");
 System.exit(0);
 }
 } // end of makeTransition()

 // methods for the actions: unlock, alarm, thanks, lock

} // end of Turnstile class

This is the Title of the Book, eMatter Edition

The Ball Sprite | 287

The translation strategy is to represent states and events as integers and transition
actions as method calls. If a transition has a condition, it will be added to the if-test
for that transition. The drawback of this approach is the generation of long
sequences of if tests, often with multiple conditions. Fortunately, the code can often
be rewritten to make it easier to understand, e.g., makeTransition() could be divided
into several smaller methods.

As states become more complex (e.g., hierarchical, with internal activities), it’s more
natural to map a state to a class and a transition to a method. The SMC translator
takes this approach (http://www.objectmentor.com/resources/downloads/).

A third coding solution is to employ a set of existing statechart classes (e.g., State,
Transition), subclassing them for the particular application. Excellent examples of
this approach can be found in Practical Statecharts in C/C++ (CMP Books) by Miro
Samek (http://www.quantum-leaps.com). As the book’s title suggests, its emphasis is
on C and C++, but the author’s web site contains a Java version of the software,
which requires a password generated from the book.

The Ball Sprite
I begin with a textual specification of what a ball sprite should do, then I will trans-
late this into a statechart, and then manually convert it into BallSprite, a subclass
of Sprite.

Textual Specification
In the following discussion, I’ll refer to the ant sprite as the bat, since that’s its func-
tion: the ant is used to knock away balls, preventing them from reaching the floor.

The ball drops from the top of the panel at varying speeds and angles of trajectory.
It’ll bounce off a wall if it hits one, reversing its x-axis direction. If the ball hits the
bat, it will rebound and disappear off the top of the panel. If the ball passes the bat,
it will disappear through the panel’s base.

Remember, bat refers to the ant—which could be drawn as anything,
but always functions as a bat.

After leaving the panel, the ball is reused: it’s placed back at the top of the panel and
put into motion again. The image associated with the ball is changed.

The number of returned balls is incremented when the ball bounces off the bat
(numRebounds is incremented). When the ball drops off the bottom, numRebounds is

This is the Title of the Book, eMatter Edition

288 | Chapter 11: Sprites

decremented. If numRebounds reaches MAX_BALLS_RETURNED, the game is over. If
numRebounds reaches 0, the game also terminates.

Sound effects are played when the ball hits the walls and the bat.

Statechart Specification
The statechart in Figure 11-5 specifies the actions of the ball sprite.

The statechart uses an update superstate, which is a state that encapsulates the states
that modify the sprite’s location, step sizes, and other values before the ball is moved
and drawn. The update superstate highlights the sprite’s update/draw cycle, which is
driven by the method calls updateSprite() and drawSprite(), originating from
BugPanel’s animation loop.

A do/ activity inside a state is carried out as the sprite occupies that state.

Figure 11-5. The BallSprite statechart

[numRebounds == 0]/
send bp.gameOver()

[hit bat]/
dy = -dy,
adjust locy

[off bottom]/
numRebounds--

[off top]/
numRebounds++

[numRebounds == max]/
send bp.gameOver()

[hit right wall]/
dx = -dx

[hit left wall]/
dx = -dx

examining
environment

initialize

do/ set locx,
 locy, dx, dy,
 image

Update

finishing

move

do/ update loc
 using dx, dy

[else]

drawSprite()

draw

do/ draw using
 loc & image

updateSprite()

re-initialize

do/ set locx,
 locy, dx, dy,
 image

[else]

updateSprite()

This is the Title of the Book, eMatter Edition

The Ball Sprite | 289

The “do” is what the state “does” when execution is in that state.

The examining environment state deals with the unusual situations that may occur as
the ball descends through the JPanel. The transitions leaving examining environ-
ment are triggered by tests on the sprite’s current location. Hitting the left or right
walls causes a change in direction along the x-axis. Moving past the top or bottom
edges of the panel places the ball in a finishing state. This may result in the sprite
notifying the BugPanel object (bp) that the game is over or the ball may be reused.
When none of the special environmental conditions apply, the sprite is moved and
redrawn.

The speaker icons next to the [hit bat], [hit right wall], and [hit left wall] conditional
transitions indicate that a sound effect will be played when the condition evaluates to
true.

Translating the Statechart
The initialize state is covered by BallSprite’s constructor:

// images used for the balls
private static final String[] ballNames =
 {"rock1", "orangeRock", "computer", "ball"};

// reach this number of balls to end the game
private static final int MAX_BALLS_RETURNED = 16;

// globals
private ClipsLoader clipsLoader;
private BugPanel bp;
private BatSprite bat;
private int numRebounds;

public BallSprite(int w, int h, ImagesLoader imsLd, ClipsLoader cl,
 BugPanel bp, BatSprite b)
{ super(w/2, 0, w, h, imsLd, ballNames[0]);
 // the ball is positioned in the middle at the top of the panel
 clipsLoader = cl;
 this.bp = bp;
 bat = b;

 nameIndex = 0;
 numRebounds = MAX_BALLS_RETURNED/2;
 // the no. of returned balls starts half way to the maximum
initPosition();

}

This is the Title of the Book, eMatter Edition

290 | Chapter 11: Sprites

The names of four ball images are fixed in ballNames[]; they are the names of four
GIF files stored in the Images/ subdirectory.

BallSprite stores a reference to the BugPanel so it can notify the panel when the
game is over. The BatSprite reference is used for collision detection (carried out by
the [hit bat] condition for the examining environment). The ClipsLoader reference
enables the sprite to play sounds when it hits the bat or rebounds from the walls.

The numRebounds variable performs the same task as the variable in the statechart. It
begins with a value halfway between 0 and the maximum number of returns required
for winning the game.

initPosition() initializes the ball’s image, position and step values:

private void initPosition()
{
setImage(ballNames[nameIndex]);

 nameIndex = (nameIndex+1)%ballNames.length;

setPosition((int)(getPWidth() * Math.random()), 0);
 // somewhere along the top

 int step = STEP + getRandRange(STEP_OFFSET);
 int xStep = ((Math.random() < 0.5) ? -step : step);
 // move left or right
setStep(xStep, STEP + getRandRange(STEP_OFFSET)); // move down

}

private int getRandRange(int x)
// random number generator between -x and x
{ return ((int)(2 * x * Math.random())) - x; }

setImage(), setPosition(), and setStep() are all methods inherited from Sprite.

Updating the sprite

The update superstate is represented by an overridden updateSprite():

public void updateSprite()
{
 hasHitBat();
 goneOffScreen();
 hasHitWall();

 super.updateSprite();
}

The calls to hasHitBat(), goneOffScreen(), and hasHitWall() roughly correspond to
the examining environment, finishing, and reinitialize states and transitions, while
the call to Sprite’s updateSprite() implements the move state.

This is the Title of the Book, eMatter Edition

The Ball Sprite | 291

The looping behavior of the examining environment has been simplified to a sequen-
tial series of tests. This is possible since the special conditions (e.g., hit a wall, hit the
bat) don’t occur more than once during a single update and are independent of each
other. However, such optimizations should be done carefully to avoid changing the
sprite’s intended behavior.

hasHitBat() implements the [hit bat] conditional transition:

private void hasHitBat()
{
 Rectangle rect = getMyRectangle();
 if (rect.intersects(bat.getMyRectangle())) { // bat collision?
 clipsLoader.play("hitBat", false);
 Rectangle interRect = rect.intersection(bat.getMyRectangle());
 dy = -dy; // reverse ball's y-step direction
 locy -= interRect.height; // move the ball up
 }
}

Collision detection is a matter of seeing if the bounding boxes for the ball and the bat
intersect. A sound effect is played if they overlap and the ball is made to bounce by
having its y-step reversed.

The ball’s y-axis location is moved up slightly so it no longer intersects the bat. This
rules out the (slim) possibility that the collision test of the ball and bat during the
next update will find them still overlapping. This would occur if the rebound veloc-
ity were too small to separate the objects within one update.

The collision algorithm could be improved. For instance, some consid-
eration could be given to the relative positions and speeds of the ball
and bat to determine the direction and speed of the rebound. This
would complicate the coding but improve the ball’s visual appeal.

Hitting a wall

hasHitWall() handles the [hit right wall] and [hit left wall] conditional transitions:

private void hasHitWall()
{
 if ((locx <= 0) && (dx < 0)) { // touching lhs and moving left
 clipsLoader.play("hitLeft", false);
 dx = -dx; // move right
 }
 else if ((locx+getWidth() >= getPWidth()) && (dx > 0)) {
 // touching rhs and moving right
 clipsLoader.play("hitRight", false);
 dx = -dx; // move left
 }
}

This is the Title of the Book, eMatter Edition

292 | Chapter 11: Sprites

hasHitWall() is made easier to understand by having it directly referring to the
sprite’s x-axis location (locx) and step sizes (dx and dy). They are protected vari-
ables, inherited from Sprite.

The if tests illustrate a common form of testing: a combination of location and
direction tests. It isn’t enough to examine the sprite’s location; you must determine
whether the sprite is heading out of the panel. This will correctly exclude a recently
rebounded sprite, which is still near an edge but moving away from it.

A subtle coding assumption is that the boundaries of the BufferedImage correspond
to the visible edges of the image on the screen. For example, a sprite surrounded by a
large transparent border, as shown in Figure 11-6, would not seem to be touching
the panel’s left edge when its top-left x-coordinate (locx) is at pixel 0.

The simplest solution is to ensure that images are cropped to have as small a trans-
parent border as possible. Alternatively, bounding box calculations could use a
reduction factor to shrink the bounding region.

Leaving the screen

goneOffScreen() implements the [off top] and [off bottom] conditional transitions
and implements the finishing and re-initialize states connected to them:

private void goneOffScreen()
{
 if (((locy+getHeight()) <= 0) && (dy < 0)) {
 numRebounds++; // off top and moving up
 if (numRebounds == MAX_BALLS_RETURNED)
 bp.gameOver(); // finish
 else
 initPosition(); // start the ball in a new position
 }
 else if ((locy >= getPHeight()) && (dy > 0)) {
 numRebounds--; // off bottom and moving down
 if (numRebounds == 0)
 bp.gameOver();
 else
 initPosition();
 }
}

Figure 11-6. Image with a large transparent border

transparent border

(0,0)

(width, height)

This is the Title of the Book, eMatter Edition

Defining the Bat | 293

The finishing state and its exiting transitions have been mapped to the bodies of the
if tests. The reinitialize state has been implemented by reusing initPosition(),
which is part of the initialize code.

Drawing the sprite

The draw state in BallSprite’s statechart has no equivalent method in the BallSprite

class. It’s handled by the inherited drawSprite() method from Sprite.

Defining the Bat
I’ll define and implement the bat in the same way as the ball sprite. I’ll write a tex-
tual specification of what a bat should do, translate it into a statechart, and then
manually convert it into BatSprite, a subclass of Sprite. Once again, I’ll refer to the
ant sprite as a bat since that’s what it does; that’s why its class is BatSprite. The ant
image is irrelevant to the game play since it could be anything.

Textual Specification
The bat can only move horizontally across the floor, controlled by arrow keys and
mouse presses. Once the bat is set in motion, it continues moving until its direction
is changed or it is stopped. As the bat leaves one side of the panel, it appears on the
other side. The bat is assigned a left-facing and right-facing set of images (a walking
ant), which are cycled through as the bat moves.

Statechart Specification
A statechart for BatSprite’s actions appears in Figure 11-7.

The new statechart element in Figure 11-7 is the concurrent state diagram with two
concurrent sections: user-based reactions and time-based reactions. Concurrent state
diagrams allow the modeling of concurrent activities using this section notation.
Concurrent activities are present in all sprites controlled by the user.

The time-based reactions section illustrates the update/draw cycle carried out by the
animation loop. The user-based reactions section encapsulates the changes made to
the sprite by the user pressing the arrow keys and/or the mouse. A move right transi-
tion occurs when the user presses the right arrow key or clicks the mouse to the right
of the bat. The move left transition handles the left arrow key and a mouse press to
the left of the bat. The stop transition deals with the down arrow key and a mouse
press over the bat. The implementation of user-based reactions uses listener meth-
ods, which are processed in Swing’s event thread. This means there’s no need for
explicit threaded coding in the BatSprite class.

This is the Title of the Book, eMatter Edition

294 | Chapter 11: Sprites

The statechart nicely highlights an important issue with user-controlled sprites: the
concurrent sharing of data between the animation loop and the event processing
code. The statechart shows that the shared data will be the sprite’s x-axis step size
(dx) and the current image.

Translating the Statechart
The initialize state is covered by BatSprite’s constructor:

// globals
private static final int FLOOR_DIST = 41;
 // distance of ant's top from the floor

private int period;
 /* in ms. The game's animation period used by the image
 cycling of the bat's left and right facing images. */

Figure 11-7. The BatSprite statechart

examining
environment

[off right]/
put on left

[off left]/
put on right

stationary

do/ set dx = 0

move left

move left

move right

move right
stop

initialize

do/ set locx,
 locy, dx, dy,
 image

User-Based Reactions

moving right

do/set dx = XSTEP
 change image

moving left

do/set dx =-XSTEP
 change image

stop

move right

Time-Based Reactions

move

do/ update loc
 using dx, dy

[else] drawSprite()

draw

do/ draw using
 loc & image

Update

updateSprite()

updateSprite()

move left
stop

This is the Title of the Book, eMatter Edition

Defining the Bat | 295

public BatSprite(int w, int h, ImagesLoader imsLd, int p)
{
 super(w/2, h-FLOOR_DIST, w, h, imsLd, "leftBugs2");
 // positioned at the bottom of the panel, near the center
 period = p;
 setStep(0,0); // no movement
}

User-based reactions

The key presses that trigger move left, move right, and stop events are caught by
BugPanel’s key listener, which calls processKey(). Inside processKey(), the code for
responding to the arrow keys is:

if (!isPaused && !gameOver) {
 if (keyCode == KeyEvent.VK_LEFT)
 bat.moveLeft();
 else if (keyCode == KeyEvent.VK_RIGHT)
 bat.moveRight();
 else if (keyCode == KeyEvent.VK_DOWN)
 bat.stayStill();
}

moveLeft() implements the moving left state in Figure 11-7:

// global
private static final int XSTEP = 10;
 // step distance for moving along x-axis

public void moveLeft()
{ setStep(-XSTEP, 0);
 setImage("leftBugs2");
 loopImage(period, DURATION); // cycle through leftBugs2 images
}

leftBugs2 is the name for a GIF file in Images/, which contains an
image strip of ants walking to the left.

moveRight() handles the moving right state in Figure 11-7:

public void moveRight()
{ setStep(XSTEP, 0);
 setImage("rightBugs2");
 loopImage(period, DURATION); // cycle through the images
}

The stationary state is encoded by stayStill():

public void stayStill()
{ setStep(0, 0);
 stopLooping();
}

This is the Title of the Book, eMatter Edition

296 | Chapter 11: Sprites

This translation of the statechart is possible because of a property of the events. A
move left event always enters the moving left state, a move right event always enters
moving right, and stop always goes to the stationary state. This means that I don’t
need to consider the current state to determine the next state when a given event
arrives; the next state is always determined solely by the event.

Mouse responses

Move left, move right, and stop events can be triggered by mouse actions. BugPanel
employs a mouse listener to call testPress() when a mouse press is detected:

private void testPress(int x)
{ if (!isPaused && !gameOver)
 bat.mouseMove(x);
}

BatSprite’s mouseMove() calls one of its move methods depending on the cursor’s
position relative to the bat:

public void mouseMove(int xCoord)
{
 if (xCoord < locx) // click was to the left of the bat
 moveLeft(); // make the bat move left
 else if (xCoord > (locx + getWidth())) // click was to the right
 moveRight(); // make the bat move right
 else
 stayStill();
}

Time-based reactions

The update superstate in the time-based reactions section is coded by overriding
updateSprite() (in a similar way to in BallSprite):

public void updateSprite()
{
 if ((locx+getWidth() <= 0) && (dx < 0)) // almost gone off lhs
 locx = getPWidth()-1; // make it just visible on the right
 else if ((locx >= getPWidth()-1)&&(dx>0)) // almost gone off rhs
 locx = 1 - getWidth(); // make it just visible on the left

 super.updateSprite();
}

The looping behavior of the examining environment has been simplified so that the
[off left] and [off right] conditional transitions are implemented as two sequential if
tests. The move state is handled by calling Sprite’s updateSprite().

The draw state in BatSprite’s statechart has no equivalent method in the BatSprite

class. As in BallSprite, it’s handled by the inherited drawSprite() method from
Sprite.

This is the Title of the Book, eMatter Edition

Defining the Bat | 297

Concurrently shared data

BatSprite makes no attempt to synchronize the accesses made to the data shared
between the user-based reactions and time-based reactions sections. The shared data
is the sprite’s x-axis step size (dx), and the current image.

The step size is modified by moveLeft(), moveRight(), and stayStill() when they
call the inherited setStep() method. Possibly at the same time, the step is used by
Sprite’s updateSprite() method.

Fortunately, Java guarantees that an assignment to a variable (other than a long or
double) is atomic, as is the accessing of the variable’s value. This means that simple
reads and writes of variables (other than longs and doubles) won’t interfere with
each other.

moveLeft() and moveRight() assign a new object to the image reference by calling the
inherited setImage() method. Meanwhile, in Sprite, drawSprite() passes the refer-
ence to drawImage() to draw the image on the screen. This amounts to a simple
assignment and a dereference of the variable, both of which will be atomic, so they
won’t interfere with each other.

Concurrent state diagrams highlight synchronization issues in sprite design, which
will always be present when the sprite can be updated by the user and affected by the
game at the same time. The decision on whether to add synchronization code to the
implementation depends on tradeoffs between speed and safety. Locking and
unlocking code at runtime will affect the speed, especially for operations being car-
ried out 50 times (or more) a second.

This is the Title of the Book, eMatter Edition

298

Chapter 12CHAPTER 12

A Side-Scroller

The player’s sprite in a side-scrolling game usually travels left or right through a
landscape that extends well beyond the limits of the gaming pane. The landscape
scrolls past in the background while the player jumps (or perhaps flies) over various
obstacles and bad guys, landing safely on platforms to collect treasure, food, or res-
cue Princess Peach. Of course, the quintessential side-scroller is Super Mario Bros.,
still available today in many versions on many platforms.

Most side-scrollers implement their backgrounds using tile maps: the tiles can be
square, rectangular, or any shape once transparent GIFs are brought in. Tiles can be
unchanging blocks, animated, or they can behave like (clever) sprites.

Backgrounds are often composed of several tile map layers, representing various
background and foreground details. They may employ parallax scrolling, in which lay-
ers “further back” in the scene scroll past at a slower rate than layers nearer the front.

Tiling is a versatile technique: Super Mario (and its numerous rela-
tives) present a side view of the game world, but tiles can offer bird’s
eye viewpoints looking down on the scene from above and can offer
isometric views, as in Civilization, to create a pseudo-3D environment.
You’ll see how to implement a basic isometric game in Chapter 13.

This chapter describes JumpingJack, a side-scroller in the Super Mario mold—albeit
considerably simpler—that illustrates tile maps, layers, parallax scrolling, and a
jumping hero called Jack who has to dodge exploding fireballs.

JumpingJack has some unusual elements: the foreground is a tile map, which Jack
scrambles over, but the other layers are large GIFs. The background layers and tiles
wrap around the drawing area, so if Jack travels long enough he returns to his start-
ing point. An introductory startup screen doubles as a help screen, toggled by press-
ing “h.”

Two screenshots of JumpingJack are shown in Figure 12-1.

This is the Title of the Book, eMatter Edition

JumpingJack in Layers | 299

The arrow keys make Jack move left, right, stand still, and jump. Once Jack starts
moving (when the user presses the left or right arrow keys), he keeps moving until he
hits a brick. To prevent him from stopping, the user should press the jump key (up
arrow) to make him hop over bricks in his path.

Fireballs shoot out from the right edge of the panel, heading to the left, unaffected by
bricks in their way. If a fireball hits Jack, the number of hits reported in the top-left
of the panel is incremented; when it reaches 20, the game is over and a score is
reported. (As a slight relief, only a single fireball is shot at Jack at a time, which sim-
plifies the coding).

An instrumental version of “Jumping Jack Flash” by The Rolling Stones repeatedly
plays in the background, occasionally punctuated by an explosion audio clip when a
fireball hits Jack.

JumpingJack in Layers
The easiest way of understanding JumpingJack’s coding design is to consider the
graphical layers making up the on-screen image. Figure 12-2 shows the various parts,
labeled with the classes that represent them.

The scenic background is made from three GIFs (mountains.gif, houses.gif, and trees.
gif in Images/), all wider than the JPanel, and moving at different speeds behind the
bricks layer and sprites. The images are drawn to the JPanel in back-to-front order
and are easily combined since houses.gif and trees.gif contain large transparent areas.
Each image is maintained by a Ribbon object, and these are collectively managed by a
RibbonsManager object.

The bricks layer is composed of bricks, positioned on the screen according to a
bricks map created by the programmer. Each brick is assigned a GIF, which can be
any rectangular shape. Other shapes can be faked by using transparency, showing
only a portion of the rectangle. Each brick is represented by a Brick object, grouped

Figure 12-1. Two JumpingJack screenshots

This is the Title of the Book, eMatter Edition

300 | Chapter 12: A Side-Scroller

together and managed by BricksManager. The brick layer is wider than the JPanel and
wraps around in a similar way to the Ribbon backgrounds. Jack walks or jumps over
the bricks.

A strange feature of side-scrollers, which is hard to believe unless you watch a game
carefully, is that the hero sprite often doesn’t move in the x-direction. The sprite’s
apparent movement is achieved by shifting the background. For example, when Jack
starts going right, he doesn’t move at all (aside from his little legs flapping). Instead,
the scenery (the GIF ribbons and the bricks layer) move left. Similarly, when Jack
appears to move left, it’s the scenery moving right.

When Jack jumps, the sprite moves up and down over the space of one to two sec-
onds. However, the jump’s arc is an illusion caused by the background moving.

Class Diagrams for JumpingJack
Figure 12-3 shows the class diagrams for the JumpingJack application. Only the class
names are shown.

Figure 12-2. The visual layers in JumpingJack

JPanel

wraparound and moving

3 Ribbon objects…,
coordinated by
RibbonsManager

represented by a Brick object

coordinated by
BricksManager

JumperSprite
(no x-movement)

FireBallSprite
(moves left)

drawing order

This is the Title of the Book, eMatter Edition

Class Diagrams for JumpingJack | 301

This large number of classes is daunting, but many of them can be
ignored since they’re unchanged from earlier chapters.

The image loaders read in the GIFs used by the Ribbon objects and by the tile and
sprite images. ImagesPlayer animates Jack’s legs and the fireball explosion. The
audio loaders play the “Jumping Jack Flash” MIDI sequence, the explosion, and the
applause clips. (Always applaud the users even when they lose.)

The JumperSprite object handles Jack, and FireBallSprite handles the fireball; both
are subclasses of the Sprite class that were introduced in Chapter 11. The
JumpingJack JFrame and the JackPanel JPanel implement the windowed animation
framework of Chapters 2 and 3. BugRunner of Chapter 11 uses the same technique.

Figure 12-3. Class diagrams for JumpingJack

Audio Loader Classes
(Chapter 8)

Sprites
(Chapter 11)

Image Loader Classes (Chapter 6)

Windowed
Animation
Framework
(Chapters 2 and 3)

This is the Title of the Book, eMatter Edition

302 | Chapter 12: A Side-Scroller

If you strip away the unchanged classes from earlier chapters, you’re left with the
more manageable collection of class diagrams shown in Figure 12-4. The public
methods, and any public or protected data, are shown.

Figure 12-4. The core classes of JumpingJack

This is the Title of the Book, eMatter Edition

The Animation Framework | 303

The Sprite class is included since JumperSprite and FireBallSprite
use many of its methods, but it’s unchanged from Chapter 11.

The code for the JumpingJack example can be found in JumpingJack/.

Start Jack Jumping
JumpingJack fixes the frame rate at 30 FPS; anything faster makes it almost impossi-
ble to control Jack. The illusion of speed is governed by how fast the bricks and
image ribbons move, which is controlled by a single moveSize variable in the
BricksManager class. moveSize specifies the distance that the bricks layer should be
shifted in each update of the animation loop.

It loads and starts playing a “Jumping Jack Flash” MIDI file using the MidisLoader

class developed in Chapter 8:

// global
private MidisLoader midisLoader;

midisLoader = new MidisLoader();
midisLoader.load("jjf", "jumping_jack_flash.mid");
midisLoader.play("jjf", true); // repeatedly play it

The file is played repeatedly until it’s stopped as the application window closes:

// global
private JackPanel jp; // where the game is drawn

public void windowClosing(WindowEvent e)
{ jp.stopGame(); // stop the game
 midisLoader.close();
}

JumpingJack sets up window listener methods for pausing and resuming the game, in a
similar way to the BugRunner application in Chapter 11. For example, window iconifica-
tion/deiconification causes the game in the JackPanel object, jp, to be paused/resumed:

public void windowIconified(WindowEvent e)
{ jp.pauseGame(); } // jp is the JackPanel object

public void windowDeiconified(WindowEvent e)
{ jp.resumeGame(); }

The Animation Framework
JackPanel is a subclass of JPanel and implements the animation framework described
in Chapters 2 and 3; JackPanel resembles the BugPanel class of Chapter 11.

This is the Title of the Book, eMatter Edition

304 | Chapter 12: A Side-Scroller

The JackPanel() constructor in Example 12-1 creates the game entities: the
RibbonsManager, BricksManager, JumperSprite, and FireBallSprite objects. It pre-
pares the explosion animation and the title/help screen.

Example 12-1. The JackPanel constructor

// some of the globals
private JumpingJack jackTop;
private JumperSprite jack; // the sprites
private FireBallSprite fireball;
private RibbonsManager ribsMan; // the ribbons manager
private BricksManager bricksMan; // the bricks manager

// to display the title/help screen
private boolean showHelp;
private BufferedImage helpIm;

// explosion-related
private ImagesPlayer explosionPlayer = null;
private boolean showExplosion = false;
private int explWidth, explHeight; // image dimensions
private int xExpl, yExpl; // coords where image is drawn

public JackPanel(JumpingJack jj, long period)
{
 jackTop = jj;
 this.period = period;

 setDoubleBuffered(false);
 setBackground(Color.white);
 setPreferredSize(new Dimension(PWIDTH, PHEIGHT));

 setFocusable(true);
 requestFocus(); // so receives key events

 addKeyListener(new KeyAdapter() {
 public void keyPressed(KeyEvent e)
 { processKey(e); }
 });

 // initialise the loaders
 ImagesLoader imsLoader = new ImagesLoader(IMS_INFO);
 clipsLoader = new ClipsLoader(SNDS_FILE);

 // initialise the game entities
 bricksMan = new BricksManager(PWIDTH, PHEIGHT, BRICKS_INFO, imsLoader);
 int brickMoveSize = bricksMan.getMoveSize();

 ribsMan = new RibbonsManager(PWIDTH, PHEIGHT, brickMoveSize, imsLoader);

 jack = new JumperSprite(PWIDTH, PHEIGHT, brickMoveSize,
 bricksMan, imsLoader, (int)(period/1000000L)); // in ms

This is the Title of the Book, eMatter Edition

The Animation Framework | 305

The BricksManager object is created first, so a brickMoveSize variable can be initial-
ized. This will contain the number of pixels that the bricks map is shifted when the
sprite appears to move. brickMoveSize is used as the basis for the move increments
employed by the Ribbon objects managed in RibbonsManager and is used by the
JumperSprite. However, the fireball travels at its own rate, independent of the back-
ground, so it doesn’t require the move size.

JackPanel is in charge of a fireball’s animated explosion and its associated audio,
rather than FireBallSprite. The explosion animation in explosion.gif is loaded into
an ImagesPlayer (see Figure 12-5 for its contents), and the dimensions of its first
image are recorded. When the sequence is finished, ImagesPlayer will call
sequenceEnded() back in JackPanel.

The title/help image (in title.gif; see Figure 12-6) is loaded into the global helpIm, and
the values of the Booleans showHelp and isPaused are set. isPaused causes the game’s
execution to pause and was introduced in the basic game animation framework;
showHelp is a new Boolean, examined by gameRender() to decide whether to draw the
image.

 fireball = new FireBallSprite(PWIDTH, PHEIGHT,
 imsLoader, this, jack);

 // prepare the explosion animation
 explosionPlayer = new ImagesPlayer("explosion",
 (int)(period/1000000L), 0.5, false, imsLoader);
 BufferedImage explosionIm = imsLoader.getImage("explosion");
 explWidth = explosionIm.getWidth();
 explHeight = explosionIm.getHeight();
 explosionPlayer.setWatcher(this) // report anim end back here

 // prepare title/help screen
 helpIm = imsLoader.getImage("title");
 showHelp = true; // show at start-up
 isPaused = true;

 // set up message font
 msgsFont = new Font("SansSerif", Font.BOLD, 24);
 metrics = this.getFontMetrics(msgsFont);
} // end of JackPanel()

Figure 12-5. The images strip in explosion.gif

Example 12-1. The JackPanel constructor (continued)

This is the Title of the Book, eMatter Edition

306 | Chapter 12: A Side-Scroller

gameRender() displays the image centered in the JPanel, so the image should not be
too large or its borders may be beyond the edges of the panel. If the image is the
same size as the JPanel, it will totally obscure the game window and look more like a
screen rather than an image drawn on the game surface.

Clever use can be made of transparency to make the image an interest-
ing shape though it’s still a rectangle as far as drawImage() is concerned.

Switching on isPaused while the help image is visible requires a small change to the
resumeGame() method:

public void resumeGame()
{ if (!showHelp) // CHANGED
 isPaused = false;
}

This method is called from the enclosing JumpingJack JFrame when the frame is acti-
vated (deiconified). Previously, resumeGame() is always set isPaused to false, but
now this occurs only when the help screen isn’t being displayed.

If the game design requires distinct title and help screens, then two images and two
Booleans will be needed. For example, you would need showHelp for the help image
and showTitle for the titles, which would be examined in gameRender(). Initially,
showTitle would be set to true and showHelp assigned a false value. When the titles
or the help is on-screen, isPaused would be set to true.

Dealing with Input
Only keyboard input is supported in JumpingJack. A key press triggers a call to
processKey(), which handles three kinds of input: termination keys, help controls,
and game-play keys:

private void processKey(KeyEvent e)
{
 int keyCode = e.getKeyCode();

Figure 12-6. title.gif: the title/help screen in JumpingJack

This is the Title of the Book, eMatter Edition

The Animation Framework | 307

 // termination keys
 // listen for esc, q, end, ctrl-c on the canvas to
 // allow a convenient exit from the full screen configuration
 if ((keyCode==KeyEvent.VK_ESCAPE) || (keyCode==KeyEvent.VK_Q) ||
 (keyCode == KeyEvent.VK_END) ||
 ((keyCode == KeyEvent.VK_C) && e.isControlDown()))
 running = false;

 // help controls
 if (keyCode == KeyEvent.VK_H) {
 if (showHelp) { // help being shown
 showHelp = false; // switch off
 isPaused = false;
 }
 else { // help not being shown
 showHelp = true; // show it
 isPaused = true;
 }
 }

 // game-play keys
 if (!isPaused && !gameOver) {
 // move the sprite and ribbons based on the arrow key pressed
 if (keyCode == KeyEvent.VK_LEFT) {
 jack.moveLeft();
 bricksMan.moveRight(); // bricks and ribbons move other way
 ribsMan.moveRight();
 }
 else if (keyCode == KeyEvent.VK_RIGHT) {
 jack.moveRight();
 bricksMan.moveLeft();
 ribsMan.moveLeft();
 }
 else if (keyCode == KeyEvent.VK_UP)
 jack.jump(); // jumping has no effect on bricks/ribbons
 else if (keyCode == KeyEvent.VK_DOWN) {
 jack.stayStill();
 bricksMan.stayStill();
 ribsMan.stayStill();
 }
 }
} // end of processKey()

The termination keys are utilized in the same way as in earlier examples. The help
key (h) toggles the showHelp and isPaused Booleans on and off. The arrow keys are
assigned to be the game play keys. When the left or right arrow keys are pressed, the
scenery (the bricks and ribbons) is moved in the opposite direction from Jack. You’ll
see that the calls to moveLeft() and moveRight() in Jack don’t cause the sprite to
move at all.

This is the Title of the Book, eMatter Edition

308 | Chapter 12: A Side-Scroller

Multiple Key Presses/Actions
A common requirement in many games is to process multiple key presses together.
For example, it should be possible for Jack to jump and move left/right at the same
time. There are two parts to this feature: implementing key capture code to handle
simultaneous key presses and implementing simultaneous behaviors in the sprite.

JumpingJack has the ability to jump and move left/right simultaneously: it was wired
into the JumperSprite class at the design stage, as you’ll see. If Jack is currently mov-
ing left or right, then an up arrow press will make him jump. A related trick is to
start Jack jumping from a stationary position, causing him to rise and fall over 1 to 2
seconds. During that interval, the left or right arrow keys can be pressed to get him
moving horizontally through the air or to change his direction in mid-flight!

Though Jack can jump and move simultaneously, this behavior is triggered by dis-
tinct key presses. First, the left/right arrow key is pressed to start him moving, and
then the up arrow key makes him jump. Alternatively, the up arrow key can be
pressed first, followed by the left or right arrow keys. If you want to capture multiple
key presses at the same time, then modifications are needed to the key listener code.

The main change would be to use keyPressed() and keyReleased() and to introduce
new Booleans to indicate when keys are being pressed. The basic coding strategy is
shown here:

// global Booleans, true when a key is being pressed
private boolean leftKeyPressed = false;
private boolean rightKeyPressed = false;
private boolean upKeyPressed = false;

public JackPanel(JumpingJack jj, long period)
{
 ... // other code
 addKeyListener(new KeyAdapter() {
 public void keyPressed(KeyEvent e)
 { processKeyPress(e); }
 public void keyReleased(KeyEvent e)
 { processKeyRelease(e); }
 });
 ... // other code
}

private void processKeyPress(KeyEvent e)
{
 int keyCode = e.getKeyCode();

 // record the key press in a Boolean
 if (keyCode == KeyEvent.VK_LEFT)
 leftKeyPressed = true;
 else if (keyCode == KeyEvent.VK_RIGHT)

This is the Title of the Book, eMatter Edition

The Animation Framework | 309

 rightKeyPressed = true;
 else if (keyCode == KeyEvent.VK_UP)
 upKeyPressed = true;

 // use the combined key presses
 if (leftKeyPressed && upKeyPressed)
 // do a combined left and up action
 else if (rightKeyPressed && upKeyPressed)
 // do a combined right and up action

 ... // other key processing code
} // end of processKeyPress()

private void processKeyRelease(KeyEvent e)
{
 int keyCode = e.getKeyCode();

 // record the key release in a Boolean
 if (keyCode == KeyEvent.VK_LEFT)
 leftKeyPressed = false;
 else if (keyCode == KeyEvent.VK_RIGHT)
 rightKeyPressed = false;
 else if (keyCode == KeyEvent.VK_UP)
 upKeyPressed = false;
} // end of processKeyRelease()

Key presses cause the relevant Booleans to be set, and they remain set until the user
releases the keys at some future time. The combination of key presses can be
detected by testing the Booleans in processKeyPress().

This coding effort is only needed for combinations of “normal” keys (e.g., the let-
ters, the numbers, and arrow keys). Key combinations involving a standard key and
the shift, control, or meta keys can be detected more directly by using the KeyEvent

methods isShiftDown(), isControlDown(), and isMetaDown(). This coding style can
be seen in the termination keys code in processKey():

if (...||((keyCode==KeyEvent.VK_C) && e.isControlDown())) //ctrl-c
 running = false;

The Animation Loop
The animation loop is located in run() and is unchanged from earlier examples. For
example, it’s the same run() method seen in BugRunner in Chapter 11. Essentially, it is:

public void run()
{ // initialization code
 while (running) {
 gameUpdate();
 gameRender();
 paintScreen();

This is the Title of the Book, eMatter Edition

310 | Chapter 12: A Side-Scroller

 // timing correction code
 }
 System.exit(0);
}

gameUpdate() updates the various game elements (the sprites, the brick layers, and
Ribbon objects):

private void gameUpdate()
{
 if (!isPaused && !gameOver) {
 if (jack.willHitBrick()) { // collision checking first
 jack.stayStill(); // stop jack and scenery
 bricksMan.stayStill();
 ribsMan.stayStill();
 }
 ribsMan.update(); // update background and sprites
 bricksMan.update();
 jack.updateSprite();
 fireball.updateSprite();

 if (showExplosion)
 explosionPlayer.updateTick(); // update the animation
 }
}

The new element here is dealing with potential collisions: if Jack is to hit a brick
when the current update is carried out, then the update should be cancelled. This
requires a testing phase before the update is committed, embodied in willHitBrick()

in JumperSprite. If Jack is to hit a brick with his next update, it will be due to him
moving (there are no animated tiles in this game), so the collision can be avoided by
stopping Jack (and the backgrounds) from moving.

The fireball sprite is unaffected by Jack’s impending collision: it travels left regard-
less of what the JumperSprite is doing.

The showExplosion Boolean is set to true when the explosion animation is being
played by the ImagesPlayer (explosionPlayer), so updateTick() must be called dur-
ing each game update.

Rendering order

gameRender() draws the multiple layers making up the game. Their ordering is
important because rendering must start with the image farthest back in the scene and
work forward. This ordering is illustrated in Figure 12-2 for JumpingJack:

private void gameRender()
{
 if (dbImage == null){
 dbImage = createImage(PWIDTH, PHEIGHT);
 if (dbImage == null) {
 System.out.println("dbImage is null");
 return;

This is the Title of the Book, eMatter Edition

The Animation Framework | 311

 }
 else
 dbg = dbImage.getGraphics();
 }

 // draw a white background
 dbg.setColor(Color.white);
 dbg.fillRect(0, 0, PWIDTH, PHEIGHT);

 // draw the game elements: order is important
 ribsMan.display(dbg); // the background ribbons
 bricksMan.display(dbg); // the bricks
 jack.drawSprite(dbg); // the sprites
 fireball.drawSprite(dbg);

 if (showExplosion) // draw the explosion (in front of jack)
 dbg.drawImage(explosionPlayer.getCurrentImage(),
 xExpl, yExpl, null);
reportStats(dbg);

 if (gameOver)
gameOverMessage(dbg);

 if (showHelp) // draw help at the very front (if switched on)
 dbg.drawImage(helpIm, (PWIDTH-helpIm.getWidth())/2,
 (PHEIGHT-helpIm.getHeight())/2, null);
} // end of gameRender()

gameRender() relies on the RibbonsManager and BricksManager objects to draw the
multiple Ribbon objects and the individual bricks. The code order means that Jack
will be drawn behind the fireball if they are at the same spot, i.e., when the fireball
hits him. An explosion is drawn in front of the fireball, and the game statistics, the
Game Over message, and the help screen is layered on top.

Handling an Explosion
The fireball sprite passes the responsibility of showing the explosion animation and
its audio clip to JackPanel, by calling showExplosion():

// names of the explosion clips
private static final String[] exploNames =
 {"explo1", "explo2", "explo3"};

public void showExplosion(int x, int y)
// called by FireBallSprite
{
 if (!showExplosion) { // only allow a single explosion at a time
 showExplosion = true;
 xExpl = x - explWidth/2; // (x,y) is center of explosion
 yExpl = y - explHeight/2;

 /* Play an explosion clip, but cycle through them.
 This adds variety, and gets around not being able to

This is the Title of the Book, eMatter Edition

312 | Chapter 12: A Side-Scroller

 play multiple instances of a clip at the same time. */
 clipsLoader.play(exploNames[numHits%exploNames.length],
 false);
 numHits++;
 }
} // end of showExplosion()

The (x, y) coordinate passed to showExplosion() is assumed to be where the center of
the explosion should occur, so the top-left corner of the explosion image is calcu-
lated and placed in the globals (xExpl, yExpl). These are used to position the explo-
sion in gameRender().

The use of a single Boolean (showExplosion) to determine if an explosion appears on-
screen is adequate only if a single explosion animation is shown at a time. This
means that if a fireball hits Jack while an explosion sequence is playing (as a result of
a previous fireball that hit him), a second animation will not be rendered. This
restriction allows me to use a single ImagesPlayer object instead of a set containing
one ImagesPlayer for each of the current explosions.

play() in ClipsLoader eventually calls start() for the Clip object. A design feature of
start() is that when a clip is playing, further calls to start() will be ignored. This
makes it impossible to play multiple instances of the same Clip object at the same
time and means that while the explosion clip is playing (for 1 to 2 seconds), another
explosion can’t be heard. This absence is quite noticeable (more so than the lack of
multiple explosion animations, for some reason). Also, the game just seems more fun
if there’s a crescendo of explosions as Jack gets pummeled.

Therefore, I’ve gone for a set of explosion clips, stored in exploNames[], and the code
cycles through them. A set of three seems enough to deal with even the highest rate
of fireball hits to Jack. Since these names represent separate Clips stored in the
ClipsLoader, they can be played simultaneously.

The clips are different from each other, so there’s a pleasing interplay of noises as
multiple explosions go off. The order the sounds are played isn’t relevant, at least in
this game.

I found the clips by searching for sound filenames containing the word
“explosion,” “bomb,” and similar, using the FindSounds site (http://
www.findsounds.com/). I looked for small clips, lasting 1–2 seconds, to
roughly match the duration of the explosion animation.

Once an explosion animation has finished playing, its ImagesPlayer object calls
sequenceEnded() in JackPanel:

public void sequenceEnded(String imageName)
// called by ImagesPlayer when the expl. animation finishes
{
 showExplosion = false;
 explosionPlayer.restartAt(0); // reset animation for next time

This is the Title of the Book, eMatter Edition

Managing the Ribbons | 313

 if (numHits >= MAX_HITS) {
 gameOver = true;
 score = (int) ((J3DTimer.getValue() -
 gameStartTime)/1000000000L);
 clipsLoader.play("applause", false);
 }
}

sequenceEnded() resets the animation, so it’s ready to be played next time, and checks
the game over condition. If the number of fireball hits equals or exceeds MAX_HITS,
then the game over flag is set, causing the game to terminate.

The main question about sequenceEnded() is why it is being used at all. The answer
is to make the game terminate at a natural time, just after an explosion has finished.
For instance, if the game over condition was tested at the end of showExplosion(),
the game might have been terminated while ImagesPlayer was in the middle of dis-
playing the explosion animation. This might seem a bit odd to a player, especially
one who likes to see explosions run their course.

Managing the Ribbons
RibbonsManager is mainly a router, sending move method calls and update() and
display() calls to the multiple Ribbon objects under its charge. Initially, it creates the
Ribbon objects, so it acts as a central storage for their GIFs and move factors.

The initialization phase is carried out in the constructor:

// globals
private String ribImages[] = {"mountains", "houses", "trees"};
private double moveFactors[] = {0.1, 0.5, 1.0};
 // applied to moveSize
 // a move factor of 0 would make a ribbon stationary

private Ribbon[] ribbons;
private int numRibbons;
private int moveSize;
 // standard distance for a ribbon to 'move' each tick

public RibbonsManager(int w, int h, int brickMvSz, ImagesLoader imsLd)
{ moveSize = brickMvSz;
 // the basic move size is the same as the bricks map

 numRibbons = ribImages.length;
 ribbons = new Ribbon[numRibbons];

 for (int i = 0; i < numRibbons; i++)
 ribbons[i] = new Ribbon(w, h, imsLd.getImage(ribImages[i]),
 (int) (moveFactors[i]*moveSize));
} // end of RibbonsManager()

This is the Title of the Book, eMatter Edition

314 | Chapter 12: A Side-Scroller

The choice of GIFs is hardwired into ribImages[], and the constructor loops through
the array creating a Ribbon object for each one.

The basic move size is the same as that used by the bricks layer but multiplied by a
fixed moveFactors[] value to get a size suitable for each Ribbon.

A move size is the amount that a background layer moves in each ani-
mation period.

A move factor will usually be less than one, to reduce the move size for a Ribbon in
comparison to the bricks layer. The Ribbons move more slowly, reinforcing the illu-
sion that they’re further back in the scene.

The other methods in RibbonsManager are routers. For example, moveRight() and
display():

public void moveRight()
{ for (int i=0; i < numRibbons; i++)
 ribbons[i].moveRight();
}

public void display(Graphics g)
/* The display order is important.
 Display ribbons from the back to the front of the scene. */
{ for (int i=0; i < numRibbons; i++)
 ribbons[i].display(g);
}

moveLeft(), stayStill(), and update() are similar to moveRight().

The calls from display() ensure that the display of the Ribbons is carried out in a
back-to-front order; in this case, mountains, houses, and then trees are displayed.

Wraparound Ribbons
A Ribbon object manages a wraparound, movable image, which should be wider than
the game panel. This width requirement is important for the amount of work needed
to draw the image as it wraps around the JPanel.

A wide image means that its display on-screen requires, at most, two drawImage()

calls (with associated calculations for the coordinates and image dimensions): one to
draw the tail of the image on the left side and the other for its start on the right. If the
image is narrower than the panel, then three drawImage() calls (or more) might be
needed, with an increase in the number of calculations.

This is the Title of the Book, eMatter Edition

Wraparound Ribbons | 315

Furthermore, if the panel width is constant, as here, then some parts of the calcula-
tions need only be carried out once and can be reused after that.

The constructor of this class initializes the graphic, its moveSize value, two move-
ment flags, and a position variable called xImHead:

// globals
private BufferedImage im;
private int width; // the width of the image (>= pWidth)
private int pWidth, pHeight; // dimensions of display panel

private int moveSize; // size of the image move (in pixels)
private boolean isMovingRight; // movement flags
private boolean isMovingLeft;

private int xImHead; // panel position of image's left side

public Ribbon(int w, int h, BufferedImage im, int moveSz)
{
 pWidth = w; pHeight = h;

 this.im = im;
 width = im.getWidth(); // no need to store the height
 if (width < pWidth)
 System.out.println("Ribbon width < panel width");

 moveSize = moveSz;
 isMovingRight = false; // no movement at start
 isMovingLeft = false;
 xImHead = 0;
}

xImHead holds the x-coordinate in the panel where the left side of the image (its head)
should be drawn.

The isMovingRight and isMovingLeft flags determine the direction of movement for
the Ribbon image (or whether it is stationary) when its JPanel position is updated.
The flags are set by the moveRight(), moveLeft(), and stayStill() methods:

public void moveRight()
// move the ribbon image to the right on the next update
{ isMovingRight = true;
 isMovingLeft = false;
}

update() adjusts the xImHead value depending on the movement flags. xImHead can
range between -width to width (where width is the width of the image):

public void update()
{ if (isMovingRight)
 xImHead = (xImHead + moveSize) % width;
 else if (isMovingLeft)
 xImHead = (xImHead - moveSize) % width;
}

This is the Title of the Book, eMatter Edition

316 | Chapter 12: A Side-Scroller

As xImHead varies, the drawing of the ribbon in the JPanel will usually be a combina-
tion of the image’s tail followed by its head.

Drawing the Ribbon’s Image
The display() method does the hard work of deciding where various bits of the
image should be drawn in the JPanel.

One of the hard aspects of display() is that it utilizes two different coordinate sys-
tems: JPanel coordinates and image coordinates. This can be seen in the many calls
to Graphics’ 10-argument drawImage() method:

boolean drawImage(Image img, int dx1, int dy1, int dx2, int dy2,
 int sx1, int sy1, int sx2, int sy2,
 ImageObserver observer);

Figure 12-7 shows that the eight integers represent two regions: the destination
JPanel and source image.

Fortunately, in JumpingJack, the regions are always the same height, starting at the
top edge of the JPanel (y == 0) and extending to its bottom (y == pHeight). How-
ever, dx1 and dx2 vary in the JPanel, and sx1 and sx2 vary in the image.

The x-coordinates are derived from the current xImHead value, which ranges between
width and –width as the image is shifted right or left across the JPanel. As the image
moves right (or left), there will come a point when it’ll be necessary to draw the head
and tail of the image to cover the JPanel.

These considerations lead to display() consisting of five cases; each is detailed in the
following sections:

public void display(Graphics g)
{
 if (xImHead == 0) // draw im start at (0,0)
 draw(g, im, 0, pWidth, 0, pWidth);
 else if ((xImHead > 0) && (xImHead < pWidth)) {
 // draw im tail at (0,0) and im start at (xImHead,0)
 draw(g, im, 0, xImHead, width-xImHead, width); // im tail
 draw(g, im, xImHead, pWidth, 0, pWidth-xImHead); // im start

Figure 12-7. Drawing a region with drawImage()

JPanel (destination) image (source)

(dx1,dy1)

(dx2,dy2)

(sx1,sy1)

(sx2,sy2)

drawImage(…)

This is the Title of the Book, eMatter Edition

Wraparound Ribbons | 317

 }
 else if (xImHead >= pWidth) // only draw im tail at (0,0)
 draw(g, im, 0, pWidth,
 width-xImHead, width-xImHead+pWidth); // im tail
 else if ((xImHead < 0) && (xImHead >= pWidth-width))
 draw(g, im, 0, pWidth, -xImHead, pWidth-xImHead); // im body
 else if (xImHead < pWidth-width) {
 // draw im tail at (0,0) and im start at (width+xImHead,0)
 draw(g, im, 0, width+xImHead, -xImHead, width); // im tail
 draw(g, im, width+xImHead, pWidth,
 0, pWidth-width-xImHead); // im start
 }
} // end of display()

private void draw(Graphics g, BufferedImage im,
 int scrX1, int scrX2, int imX1, int imX2)
/* The y-coords of the image always starts at 0 and ends at
 pHeight (the height of the panel), so are hardwired. */
{ g.drawImage(im, scrX1, 0, scrX2, pHeight,
 imX1, 0, imX2, pHeight, null);
}

Case 1: Draw the image at JPanel (0,0)

The relevant code snippet from display():

if (xImHead == 0) // draw im start at (0,0)
draw(g, im, 0, pWidth, 0, pWidth);

Figure 12-8 illustrates the drawing operation.

Case 1 occurs at startup time, when the scene is first drawn, and reoccurs when Jack
has run around the width of the image and xImHead is back at 0.

draw() is a simplified interface to drawImage(), hiding the fixed y-coordinates (0 to
pHeight). Its third and fourth arguments are the x-coordinates in the JPanel (the

Figure 12-8. Case 1 in Ribbon’s display()

Image Ribbon

0 pWidth width

xImHead
 == 0 pWidth

JPanel

This is the Title of the Book, eMatter Edition

318 | Chapter 12: A Side-Scroller

positions pointed to in the top gray box in Figure 12-8). The fifth and sixth argu-
ments are the positions pointed to in the image ribbon (the box at the bottom of the
figure).

Case 2: Image moving right, where xImHead is less than pWidth

Here’s the code fragment from display() for this case:

if ((xImHead > 0) && (xImHead < pWidth)) {
 // draw im tail at (0,0) and im head at (xImHead,0)
 draw(g, im, 0, xImHead, width-xImHead, width); // im tail
 draw(g, im, xImHead, pWidth, 0, pWidth-xImHead); // im head
}

Figure 12-9 illustrates the drawing operations.

When the image moves right (caused by the sprite apparently moving left), the
JPanel drawing will require two drawImage() calls: one for the tail of the image and
the other for the head (which still begins at xImHead in the JPanel).

The tricky part is calculating the x-coordinate of the start of the image’s tail and the
x-coordinate of the end of the head.

Case 3: Image moving right, where xImHead is greater than or equal to pWidth

Here’s the relevant piece of code:

if (xImHead >= pWidth) // only draw im tail at (0,0)
 draw(g, im, 0, pWidth, width-xImHead, width-xImHead+pWidth);

Figure 12-10 shows the drawing operation.

Case 3 happens after Case 2 as the image moves even further to the right and xImHead

travels beyond the right edge of the JPanel. This means only one drawImage() call is

Figure 12-9. Case 2 in Ribbon’s display()

0

ribbon moving right

head

pWidth – xImHead

 0 pWidth

JPanel

xImHead

tail

pWidth – xImHead width

This is the Title of the Book, eMatter Edition

Wraparound Ribbons | 319

necessary to draw the middle part of the image into the JPanel. The tricky x-coordinates
are the start and end points for the image’s middle.

Case 4: Image moving left, where xImHead is greater than or equal to
(pWidth-width)

This is the relevant code snippet:

if ((xImHead < 0) && (xImHead >= pWidth-width))
 draw(g, im, 0, pWidth, -xImHead, pWidth-xImHead); // im body

Figure 12-11 illustrates the drawing operation.

Case 4 occurs when the image is moving left, which happens when the sprite appar-
ently travels to the right. xImHead will become negative since it’s to the left of JPanel’s

Figure 12-10. Case 3 in Ribbon’s display()

Figure 12-11. Case 4 in Ribbon’s display()

Image Ribbon

width – xImHead width – xImHead + pWidth

0 pWidth

JPanel

ribbon moving right

xImHead

0

head

0
width

Image Ribbon

– xImHead pWidth – xImHead

0 pWidth

JPanel

ribbon moving left

xImHead

0

width

This is the Title of the Book, eMatter Edition

320 | Chapter 12: A Side-Scroller

origin. One drawImage() is needed for the middle of the image even though it is still
greater than (pWidth – width).

Case 5. Image moving left, where xImHead is less than (pWidth-width)

Here’s the code for this case:

if (xImHead < pWidth-width) {
 // draw im tail at (0,0) and im head at (width+xImHead,0)
 draw(g, im, 0, width+xImHead, -xImHead, width); // im tail
 draw(g, im, width+xImHead, pWidth, 0, pWidth-width-xImHead); // im head
}

Figure 12-12 shows the drawing operations.

Case 5 occurs after Case 4 when the image has moved further to the left and xImHead

is smaller than (pWidth-width). This distance marks the point at which two
drawImage() calls are required, one for the tail of the image and the other for its
head.

Managing the Bricks
BricksManager is separated into five broad groups of methods:

• Loading bricks information.

• Initializing the bricks data structures.

• Moving the bricks map.

• Drawing the bricks.

• JumperSprite-related tasks. These are mostly various forms of collision detection
between the sprite and the bricks.

Figure 12-12. Case 5 in Ribbon’s display()

Image Ribbon

width – xImHead

pwidth – width –xImHead

0 pWidth

JPanel

width + xImHead

0

head

ribbon moving left

0
width

This is the Title of the Book, eMatter Edition

Managing the Bricks | 321

BricksManager reads a bricks map and creates a Brick object for each brick. The data
structure holding the Brick objects is optimized so drawing and collision detection
can be carried out quickly.

Moving and drawing the bricks map is analogous to the moving and drawing of an
image by a Ribbon object. However, the drawing process is complicated by the rib-
bon consisting of multiple bricks instead of a single GIF.

Jack, the JumperSprite object, uses BricksManager methods to determine if its
planned moves will cause it to collide with a brick.

Loading Bricks Information
BricksManager calls loadBricksFile() to load a bricks map; the map is assumed to be
in bricksInfo.txt from Images/.

The first line of the file (ignoring comment lines) is the name of the image strip:

s tiles.gif 5

This means that tiles.gif holds a strip of five images. The map is a series of lines con-
taining numbers and spaces. Each line corresponds to a row of tiles in the game. A
number refers to a particular image in the image strip, which becomes a tile. A space
means that no tile is used in that position in the game.

The map file may contain empty lines and comment lines (those start-
ing with //), which are ignored.

bricksInfo.txt is:

// bricks information

s tiles.gif 5

// -----------
44444
 222222222
 111
 2222
 11111
 444
 444
 22222 444 111
 1111112222222 23333 2 33 44444444
00 000111333333000000222222233333 333 2222222223333301
00000000011100000000002220000000003300000111111222222234
// -----------

The images strip in tiles.gif is shown in Figure 12-13.

This is the Title of the Book, eMatter Edition

322 | Chapter 12: A Side-Scroller

The images strip is loaded with an ImagesLoader object, and an array of
BufferedImages is stored in a global variable called brickImages[].

This approach has several drawbacks. One is the reliance on single digits to index
into the images strip. This makes it impossible to utilize strips with more than 10
images (images can only be named from 0 to 9), which is inadequate for a real map.
The solution probably entails moving to a letter-based scheme (using A–Z and/or a–z)
to allow up to 52 tiles.

loadBricksFile() calls storeBricks() to read in a single map line, adding Brick

objects to a bricksList ArrayList:

private void storeBricks(String line, int lineNo, int numImages)
{
 int imageID;
 for(int x=0; x < line.length(); x++) {
 char ch = line.charAt(x);
 if (ch == ' ') // ignore a space
 continue;
 if (Character.isDigit(ch)) {
 imageID = ch - '0'; // Assume a digit is 0-9
 if (imageID >= numImages)
 System.out.println("Image ID "+imageID+" out of range");
 else // make a Brick object
 bricksList.add(new Brick(imageID, x, lineNo));
 }
 else
 System.out.println("Brick char " + ch + " is not a digit");
 }
}

A Brick object is initialized with its image ID (a number in the range 0 to 9); a refer-
ence to the actual image is added later. The brick is passed its map indices (x,
lineNo). lineNo starts at 0 when the first map line is read and is incremented with
each new line.

Figure 12-14 shows some of the important variables associated with a map, includ-
ing example map indices.

Initializing the Bricks Data Structures
Once the bricksList ArrayList has been filled, BricksManager calls initBricksInfo()

to extract various global data from the list and to check if certain criteria are met. For
instance, the maximum width of the map should be greater than the width of the

Figure 12-13. The images strip in tiles.gif

This is the Title of the Book, eMatter Edition

Managing the Bricks | 323

panel (width ≥ pWidth). initBricksInfo() calls checkForGaps() to check that no gaps
are in the map’s bottom row. The presence of a gap would allow Jack to fall down a
hole while running around, which would necessitate more complex coding in
JumperSprite. If checkForGaps() finds a gap, the game terminates after reporting the
error. The bricksList ArrayList doesn’t store its Brick objects in order, which makes
finding a particular Brick time-consuming. Unfortunately, searching for a brick is a
common task and must be performed every time that Jack is about to move to pre-
vent it from hitting something.

A more useful way of storing the bricks map is ordered by column, as illustrated in
Figure 12-15.

This data structure is excellent for brick searches where the column of interest is
known beforehand since the array allows constant-time access to a given column.

A column is implemented as an ArrayList of Bricks in no particular order, so a lin-
ear search looks for a brick in the selected column. However, a column contains few
bricks compared to the entire map, so the search time is acceptable. Since no gaps

Figure 12-14. Brick map variables

Figure 12-15. Bricks stored by column

Bricks Map
pHeight

height

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11

brick map indices

b b b b b b b b b b b b

b b

b

b b

0 pWidth

JPanel
Width

columnBricks[]
(one cell for each brick column)

ArrayList of Bricks for the column
(in no fixed order)

This is the Title of the Book, eMatter Edition

324 | Chapter 12: A Side-Scroller

are in the bottom row of the map, each column must contain at least one brick, guar-
anteeing that none of the column ArrayLists in columnBricks[] is null.

The columnBricks[] array is built by BricksManager calling createColumns().

Moving the Bricks Map
The BricksManager uses the same approach to moving its bricks map as the Ribbon

class does for its GIF.

The isMovingRight and isMovingLeft flags determine the direction of movement for
the bricks map (or if it is stationary) when its JPanel position is updated. The flags
are set by the moveRight(), moveLeft(), and stayStill() methods:

public void moveRight()
{ isMovingRight = true;
 isMovingLeft = false;
}

update() increments an xMapHead value depending on the movement flags. xMapHead
is the x-coordinate in the panel where the left edge of the bricks map (its head)
should be drawn. xMapHead can range between -width to width (where width is the
width of the bricks map in pixels):

public void update()
{ if (isMovingRight)
 xMapHead = (xMapHead + moveSize) % width;
 else if (isMovingLeft)
 xMapHead = (xMapHead - moveSize) % width;
}

Drawing the Bricks
The display() method does the hard work of deciding where the bricks in the map
should be drawn in the JPanel.

As in the Ribbon class, several different coordinate systems are combined: the JPanel

coordinates and the bricks map coordinates. The bad news is that the bricks map
uses two different schemes. One way of locating a brick is by its pixel position in the
bricks map; the other is by using its map indices (see Figure 12-14). This means that
three coordinate systems are utilized in display() and its helper method drawBricks():

public void display(Graphics g)
{
 int bCoord = (int)(xMapHead/imWidth) * imWidth;
 // bCoord is the drawing x-coord of the brick containing xMapHead
 int offset; // offset is distance between bCoord and xMapHead
 if (bCoord >= 0)
 offset = xMapHead - bCoord; // offset is positive
 else // negative position
 offset = bCoord - xMapHead; // offset is positive

This is the Title of the Book, eMatter Edition

Managing the Bricks | 325

 if ((bCoord >= 0) && (bCoord < pWidth)) {
 drawBricks(g, 0-(imWidth-offset), xMapHead,
 width-bCoord-imWidth); // bm tail
 drawBricks(g, xMapHead, pWidth, 0); // bm start
 }
 else if (bCoord >= pWidth)
 drawBricks(g, 0-(imWidth-offset), pWidth,
 width-bCoord-imWidth); // bm tail
 else if ((bCoord < 0) && (bCoord >= pWidth-width+imWidth))
 drawBricks(g, 0-offset, pWidth, -bCoord); // bm tail
 else if (bCoord < pWidth-width+imWidth) {
 drawBricks(g, 0-offset, width+xMapHead, -bCoord); // bm tail
 drawBricks(g, width+xMapHead, pWidth, 0); // bm start
 }
} // end of display()

The details of drawBricks() will be explained later in the chapter. For now, it’s
enough to know the meaning of its prototype:

void drawBricks(Graphics g, int xStart, int xEnd, int xBrick);

drawBricks() draws bricks into the JPanel starting at xStart, ending at xEnd. The
bricks are drawn a column at a time. The first column of bricks is the one at the
xBrick pixel x-coordinate in the bricks map.

display() starts by calculating a brick coordinate (bCoord) and offset from the
xMapHead position. These are used in the calls to drawBricks() to specify where a
brick image’s left edge should appear. This should become clearer as you consider
the four drawing cases.

Case 1. Bricks map moving right and bCoord is less than pWidth

This is the relevant code snippet in display():

if ((bCoord >= 0) && (bCoord < pWidth)) {
 drawBricks(g, 0-(imWidth-offset), xMapHead,
 width-bCoord-imWidth); // bm tail
 drawBricks(g, xMapHead, pWidth, 0); // bm start
} // bm means bricks map

Figure 12-16 illustrates the drawing operations:

Case 1 occurs as the bricks map moves right since the sprite is apparently moving
left. xMapHead will have a value between 0 and pWidth (the width of the JPanel). Two
groups of bricks will need to be drawn, requiring two calls to drawBricks(). The first
group starts near the left edge of the JPanel, and the second starts at the xMapHead

position. I’ve indicated these groups by drawing the bricks map area occupied by the
left group in gray in Figure 12-16 and the righthand group’s area with stripes.

The positioning of the bricks in the gray area of the bricks map in Figure 12-16 poses a
problem. The drawing of a column of bricks requires the x-coordinate of the column’s

This is the Title of the Book, eMatter Edition

326 | Chapter 12: A Side-Scroller

left edge. What is that coordinate for the first column drawn in the gray area of the
bricks map?

The left edge of that column will usually not line up with the left edge of the panel,
most likely occurring somewhere to its left and off screen. The required calculation
(width-bCoord-imWidth) is shown in Figure 12-16, next to the leftmost arrow at the
bottom of the figure.

The drawing of a group of bricks is packaged up in drawBricks(). The second and
third arguments of that method are the start and end x-coordinates for a group in the
JPanel. These are represented by arrows pointing to the JPanel box at the top of
Figure 12-16. The fourth argument is the x-coordinate of the left column of the
group in the bricks map. These coordinates are represented by the arrows at the bot-
tom of Figure 12-16.

drawBricks() is called twice in the code snippet shown earlier: once for the group in
the lefthand gray area of the bricks map in Figure 12-16, and once for the group in
the righthand striped area.

Case 2. Bricks map moving right and bCoord is greater than pWidth

Here’s the code piece:

if (bCoord >= pWidth)
 drawBricks(g, 0-(imWidth-offset), pWidth,
 width-bCoord-imWidth); // bm tail

Figure 12-17 shows the operation.

Figure 12-16. Case 1 in BricksManager’s display()

JPanel

b

pWidthxMapHead

b

0 - (imWidth - offset)

offset

xMapHead + imWidth - offset = bCoord + imWidth

width - bCoord - imWidth

map moving right

0

JPanel

0
width

This is the Title of the Book, eMatter Edition

Managing the Bricks | 327

Case 2 happens some time after Case 1, when xMapHead has moved farther right,
beyond the right edge of the JPanel. The drawing task becomes simpler since only a
single call to drawBricks() is required to draw a group of columns taken from the
middle of the bricks map. I’ve indicated that group’s area in gray in the bricks map in
Figure 12-17.

Case 2 has the same problem as Case 1 in determining the x-coordinate of the left
column of the gray group in the bricks map. The value is shown next to the leftmost
bottom arrow in Figure 12-17.

Case 3. Bricks map moving left and bCoord is greater than
(pWidth-width+imWidth)

The relevant code fragment is shown here:

if ((bCoord < 0) && (bCoord >= pWidth-width+imWidth))
 drawBricks(g, 0-offset, pWidth, -bCoord); // bm tail

Figure 12-18 illustrates the drawing operation.

Case 3 applies when the bricks map is moving left, as the sprite is apparently travel-
ing to the right. xMapHead goes negative, as does bCoord, but the calculated offset is
adjusted to be positive.

Until bCoord drops below (pWidth-width+imWidth), the bricks map will only require
one drawBricks() call to fill the JPanel.

Figure 12-17. Case 2 in BricksManager’s display()

JPanel

pWidth xMapHead

b

0 - (imWidth - offset)

offset

xMapHead + imWidth - offset = bCoord + imWidth

width - bCoord - imWidth

map moving right

0

JPanel

b

0
width

This is the Title of the Book, eMatter Edition

328 | Chapter 12: A Side-Scroller

Case 4. Bricks map moving left and bCoord is less than
(pWidth-width+ imWidth)

Here’s the code:

if (bCoord < pWidth-width+imWidth) {
 drawBricks(g, 0-offset, width+xMapHead, -bCoord); // bm tail
 drawBricks(g, width+xMapHead, pWidth, 0); // bm start
}

Figure 12-19 shows the operations.

Case 4 occurs after xMapHead has moved to the left of (pWidth-width+imWidth). Two
drawBricks() calls are needed to render two groups of columns to the JPanel. The
group’s areas are shown in solid gray and striped in the bricks map in Figure 12-19.

The drawBricks() method

drawBricks() draws bricks into the JPanel between xStart and xEnd. The bricks are
drawn a column at a time, separated by imWidth pixels. The first column of bricks
drawn is the one at the xBrick pixel x-coordinate in the bricks map:

private void drawBricks(Graphics g, int xStart, int xEnd, int xBrick)
{ int xMap = xBrick/imWidth; // get column position of the brick
 // in the bricks map
 ArrayList column;
 Brick b;
 for (int x = xStart; x < xEnd; x += imWidth) {
 column = columnBricks[xMap]; // get the current column
 for (int i=0; i < column.size(); i++) { // draw all bricks

Figure 12-18. Case 3 in BricksManager’s display()

width

pWidth

offset

0

0

JPanel

0 - offset

bricks map

offset

bCoord

-bCoord

xMapHead

map moving left

b b

This is the Title of the Book, eMatter Edition

Managing the Bricks | 329

 b = (Brick) column.get(i);
 b.display(g, x); // draw brick b at JPanel posn x
 }
 xMap++; // examine the next column of bricks
 }
}

drawBricks() converts the xBrick value, a pixel x-coordinate in the bricks map, into
a map x index. This index is the column position of the brick, so the entire column
can be accessed immediately in columnBricks[]. The bricks in the column are drawn
by calling the display() method for each brick.

Only the JPanel’s x-coordinate is passed to display() with the y-coordinate stored in
the Brick object. This is possible since a brick’s y-axis position never changes as the
bricks map is moved horizontally over the JPanel.

JumperSprite-Related Methods
The BricksManager has several public methods used by JumperSprite to determine or
check its position in the bricks map. The prototypes of these methods are:

int findFloor(int xSprite);
boolean insideBrick(int xWorld, int yWorld);
int checkBrickBase(int xWorld, int yWorld, int step);
int checkBrickTop(int xWorld, int yWorld, int step);

Finding the floor

When Jack is added to the scene, his x-coordinate is in the middle of the JPanel, but
what should his y-coordinate be? His feet should be placed on the top-most brick at

Figure 12-19. Case 4 in BricksManager’s display()

pWidth

offset

0

0

JPanel

0 - offset

offset

bCoord

-bCoord

xMapHead

map moving left

b b b

width + xMapHead

0
width

This is the Title of the Book, eMatter Edition

330 | Chapter 12: A Side-Scroller

or near the given x-coordinate. findFloor() searches for this brick, returning its
y-coordinate:

public int findFloor(int xSprite)
{
 int xMap = (int)(xSprite/imWidth); // x map index

 int locY = pHeight; // starting y pos (largest possible)
 ArrayList column = columnBricks[xMap];
 Brick b;
 for (int i=0; i < column.size(); i++) {
 b = (Brick) column.get(i);
 if (b.getLocY() < locY)
 locY = b.getLocY(); // reduce locY (i.e., move up)
 }
 return locY;
}

Matters are simplified by the timing of the call: findFloor() is invoked before the
sprite has moved and, therefore, before the bricks map has moved. Consequently,
the sprite’s x-coordinate in the JPanel (xSprite) is the same x-coordinate in the
bricks map.

xSprite is converted to a map x index to permit the relevant column of bricks to be
accessed in columnBricks[].

Testing for brick collision

JumperSprite implements collision detection by calculating its new position after a
proposed move and by testing if that point (xWorld, yWorld) is inside a brick. If it is,
then the move is aborted and the sprite stops moving.

The point testing is done by BricksManager’s insideBrick(), which uses worldToMap()

to convert the sprite’s coordinate to a brick map index tuple:

public boolean insideBrick(int xWorld, int yWorld)
// Check if the world coord is inside a brick
{
 Point mapCoord = worldToMap(xWorld, yWorld);
 ArrayList column = columnBricks[mapCoord.x];
 Brick b;
 for (int i=0; i < column.size(); i++) {
 b = (Brick) column.get(i);
 if (mapCoord.y == b.getMapY())
 return true;
 }
 return false;
} // end of insideBrick()

worldToMap() returns a Point object holding the x and y map indices corresponding
to (xWorld, yWorld). The relevant brick column in columnBricks[] can then be
searched for a brick at the y map position.

This is the Title of the Book, eMatter Edition

Managing the Bricks | 331

The conversion carried out by worldToMap() can be understood by referring to
Figure 12-14. Here’s the code:

private Point worldToMap(int xWorld, int yWorld)
// convert world coord (x,y) to a map index tuple
{
 xWorld = xWorld % width; // limit to range (width to –width)
 if (xWorld < 0) // make positive
 xWorld += width;
 int mapX = (int) (xWorld/imWidth); // map x-index

 yWorld = yWorld - (pHeight-height); // relative to map
 int mapY = (int) (yWorld/imHeight); // map y-index

 if (yWorld < 0) // above the top of the bricks
 mapY = mapY-1; // match to next 'row' up

 return new Point(mapX, mapY);
}

xWorld can be any positive or negative value, so it must be restricted to the range (0 to
width), which is the extent of the bricks map. The coordinate is then converted to a
map a index.

The yWorld value uses the JPanel’s coordinate system, so it is made relative to the
y-origin of the bricks map (some distance down from the top of the JPanel). The
conversion to a map y index must take into account the possibility that the sprite’s
position is above the top of the bricks map. This can occur by having the sprite jump
upward while standing on a platform at the top of the bricks map.

Jumping and hitting your head

When Jack jumps, his progress upward will be halted if he is about to pass through
the base of a brick. The concept is illustrated in Figure 12-20.

The sprite hopes to move upward by a step amount, but this will cause it to enter the
brick. Instead, it will travel upward by a smaller step, step-(imHeight-topOffset),
placing its top edge next to the bottom edge of the brick.

checkBrickBase() is supplied with the planned new position (xWorld, yWorld)—
labeled as (x, y) in Figure 12-20—and the step. It returns the step distance that the
sprite can move without passing into a brick:

public int checkBrickBase(int xWorld, int yWorld, int step)
{
 if (insideBrick(xWorld, yWorld)) {
 int yMapWorld = yWorld - (pHeight-height);
 int mapY = (int) (yMapWorld/imHeight); // map y- index
 int topOffset = yMapWorld - (mapY * imHeight);
 return (step - (imHeight-topOffset)); // a smaller step
 }
 return step; // no change
}

This is the Title of the Book, eMatter Edition

332 | Chapter 12: A Side-Scroller

Falling and sinking into the ground

As a sprite descends, during a jump or after walking off the edge of a raised plat-
form, it must test its next position to ensure that it doesn’t pass through a brick on
its way down. When a brick is detected beneath the sprite’s feet, the descent is
stopped, ensuring that the Jack lands on top of the brick. Figure 12-21 illustrates the
calculation.

The sprite moves downward by a step amount on each update, but when a collision
is detected, the step size is reduced to step-topOffset so it comes to rest on top of
the brick:

public int checkBrickTop(int xWorld, int yWorld, int step)
{
 if (insideBrick(xWorld, yWorld)) {
 int yMapWorld = yWorld - (pHeight-height);
 int mapY = (int) (yMapWorld/imHeight); // map y- index
 int topOffset = yMapWorld - (mapY * imHeight);
 return (step – topOffset); // a smaller step
 }
 return step; // no change
}

The intended new position for the sprite (xWorld, yWorld) is passed to checkBrickTop(),
along with the step size. The returned value is the step the sprite should take to avoid
sinking into a brick.

Figure 12-20. A rising sprite hitting a brick

0

:

:

JPanel

Bricks Map

pHeight

height

0

1

step

brick

(x,y)
 topOffset

step -
(imHeight -
topOffset)

 imHeight

yMapWorld =
y - (pHeight - height)

mapY

0 1 2 …

This is the Title of the Book, eMatter Edition

Storing Brick Information | 333

Storing Brick Information
The Brick class stores coordinate information for a brick and a reference to its image.
The coordinate details are the brick’s map indices and its y-axis pixel position inside
the map.

The x-axis position isn’t stored since it changes as the bricks map is
moved horizontally.

Brick’s display() method is short:

public void display(Graphics g, int xScr)
// called by BricksManager's drawBricks()
{ g.drawImage(image, xScr, locY, null); }

xScr is the current JPanel x coordinate for the brick.

The capabilities of the Brick class could be extended. One common feature in side-
scrollers is animated tiles, such as flames and rotating balls. If the animation is local

Figure 12-21. A falling sprite hitting a brick

0

JPanel

Bricks Map

pHeight

height

0

1

step

brick

(x,y)
 topOffset

step -
topOffset

 imHeight

mapY

0 2 …

yMapWorld =
y - (pHeight - height)

1

…

This is the Title of the Book, eMatter Edition

334 | Chapter 12: A Side-Scroller

to the tile’s allocated map location, then the effect can be coded by adding an
ImagesPlayer to Brick. One issue is whether to assign a unique ImagesPlayer to each
Brick (costly if there are many bricks) or to store a reference to a single ImagesPlayer.
The drawback with the reference solution is that all the bricks referring to a given
animation will be animated in the same way on the screen. This can look overly regi-
mented in most games. A compromise is to create an AnimatedBrick subclass, which
will be used rarely, so it can support the overhead of having its own ImagesPlayer.

If tiles can move about in the game world (e.g., a platform that moves up and down),
then bricks will need more sprite-like capabilities. This will complicate BricksManager

as a Brick object can no longer be relied on to stay in the same column.

The Fireball
A fireball starts at the lower righthand side of the panel and travels across to the left.
If it hits Jack, the fireball will explode and a corresponding sound will be heard. A
fireball that has traveled off the lefthand side of the panel, or has exploded, is reused.
The FireBallSprite object is repositioned somewhere on the right edge of the game
panel and fired at Jack again.

Only a single fireball is on the screen at a time, so JumpingJack creates only one
FireBallSprite object. It is declared in JackPanel’s constructor:

fireball = new FireBallSprite(PWIDTH, PHEIGHT, imsLoader, this, jack);

The fourth argument is a reference to JackPanel allowing the fireball to call its meth-
ods; the fifth argument is a reference to the JumperSprite object, jack, allowing the
fireball to call its methods.

As the fireball moves left, it keeps checking whether it has hit Jack. If a collision
occurs, JackPanel will be asked to display an explosion as FireBallSprite resets its
position.

Statechart Specification
The statechart in Figure 12-22 is a useful way of specifying the design needs of
FireBallSprite.

Statecharts were introduced in Chapter 11.

The update/draw cycle driven by JackPanel’s animation loop is visible. There are two
special cases to consider: when the fireball hits Jack and when it leaves the left side of
the panel.

This is the Title of the Book, eMatter Edition

The Fireball | 335

The examining environment and move states are represented by updateSprite():

public void updateSprite()
{ hasHitJack();
goneOffScreen();

 super.updateSprite();
}

private void hasHitJack()
/* If the ball has hit jack, tell JackPanel (which will
 display an explosion and play a clip), and begin again.
*/
{ Rectangle jackBox = jack.getMyRectangle();
 jackBox.grow(-jackBox.width/3, 0); // make bounding box thinner

 if (jackBox.intersects(getMyRectangle())) { // collision?
 jp.showExplosion(locx, locy+getHeight()/2);
 // tell JackPanel, supplying it with a hit coordinate
 initPosition();
 }
} // end of hasHitJack()

Figure 12-22. The FireBallSprite statechart

[has hit jack]/
jp.showExplosion()
at this position

[gone off screen]

examining
environment

initialize

do/ set position,
speed, image

move

do/ update
position

drawSprite()

draw

do/ draw using
position & image

[else]

updateSprite()

This is the Title of the Book, eMatter Edition

336 | Chapter 12: A Side-Scroller

private void goneOffScreen()
{
 if (((locx+getWidth()) <= 0) && (dx < 0)) // gone off left
 initPosition(); // start the ball in a new position
}

Collision detection (the [has hit jack] condition in the statechart) is carried out by
obtaining Jack’s bounding box and checking if it intersects the bounding box for the
fireball. The bounding box dimensions for Jack are temporarily reduced a little to
trigger a collision only when the fireball is right on top of him.

The move state is dealt with by Sprite’s updateSprite(), which is called from
FireBallSprite’s updateSprite(). The draw state is implemented by Sprite’s
drawSprite() method.

The Jumping Sprite
A JumperSprite object can appear to move left or right, jump, and stand still. The
sprite doesn’t move horizontally at all, but the left and right movement requests will
affect its internal state. It maintains its current world coordinates in (xWorld, yWorld).

When a sprite starts moving left or right, it will keep traveling in that direction until
stopped by a brick. If the sprite runs off a raised platform, it will fall to the ground
below and continue moving forward.

When the sprite jumps, it continues upward for a certain distance and falls back to
the ground. The upward trajectory is stopped if the sprite hits a brick.

Statechart Specification
The JumperSprite statechart is given in Figure 12-23.

The statechart models JumperSprite as three concurrent activities: its horizontal
movement in the top section, its vertical movement in the middle section, and the
update/draw cycle in the bottom section.

The effects of an updateSprite() event have been distributed through
the diagram, rather than placing them together in an examining envi-
ronment state.

The horizontal movement section shows that a new updateSprite() event doesn’t
change the current state, be it moving right, moving left, or stationary. Movement
stops when the user sends a stop event or when the sprite hits a brick.

The vertical movement section utilizes three states: not jumping, rising, and falling.
Rising is controlled by an upCount counter, which limits how long an upward move
can last. Rising may be stopped by the sprite hitting a brick. Falling is triggered when

This is the Title of the Book, eMatter Edition

The Jumping Sprite | 337

rising finishes and when no brick is underneath the sprite. This latter condition
becomes true when the sprite moves horizontally off a raised platform.

The falling state can lead to termination if the sprite drops below the bottom of the
panel (yWorld > pHeight). In fact, this transition led to a redesign of BricksManager to
reject a bricks map with a gap in its floor. Consequently, dropping off the panel can-
not occur in JumpingJack.

Though the statechart is clear, I want to avoid the complexity of multiple threads in
JumperSprite. Instead, the concurrent activities are interleaved together in my code,
making it somewhat harder to understand but easier to write.

Figure 12-23. The JumperSprite statechart

stationary

move left
move left

move right

move right
stop

initialize

do/ set
(xWorld,yWorld)
and (locx,locy)

moving right moving left

stop

move right

[will hit brick
on the right]

updateSprite() /
xWorld += moveSize

drawSprite()updateSprite()

updateSprite()

move left
stop

[will hit brick
on the left]

updateSprite() /
xWorld -= moveSize

not jumping
do / upCount = 0

rising falling

jump

[will hit brick below]
/ locy,yWorld +=
smallStep[no brick below]

[will hit brick above] /
locy,yWorld -= smallStep [yWorld > pHeight]

updateSprite() / upCount++,
locy,yWorld -= vertStep

updateSprite() /
locy,yWorld +=
vertStep

[upCount == MAX]

do/ draw using
loc & image

update

draw

updateSprite()

This is the Title of the Book, eMatter Edition

338 | Chapter 12: A Side-Scroller

Representing the States
The moving right, moving left, and stationary states are represented indirectly as two
Booleans—isFacingRight and isStill—which combine to define the current hori-
zontal state. For instance, when isStill is false and isFacingRight is true, then the
sprite is moving right.

The not jumping, rising, and falling states are encoded as constants, assigned to a
vertMoveMode variable:

private static final int NOT_JUMPING = 0;
private static final int RISING = 1;
private static final int FALLING = 2;

private int vertMoveMode;
 /* can be NOT_JUMPING, RISING, or FALLING */

private boolean isFacingRight, isStill;

In J2SE 5.0, vertMoveMode could be defined using an enumerated type.

Initialization
The initialize state is coded in JumperSprite’s constructor:

// some globals
private int vertStep; // distance to move vertically in one step
private int upCount;

private int moveSize; // obtained from BricksManager

private int xWorld, yWorld;
 /* the current position of the sprite in 'world' coordinates.
 The x-values may be negative. The y-values will be between
 0 and pHeight. */

public JumperSprite(int w, int h, int brickMvSz, BricksManager bm,
 ImagesLoader imsLd, int p)
{
 super(w/2, h/2, w, h, imsLd, "runningRight");
 // standing center screen, facing right
 moveSize = brickMvSz;
 // the move size is the same as the bricks ribbon

 brickMan = bm;
 period = p;
 setStep(0,0); // no movement

This is the Title of the Book, eMatter Edition

The Jumping Sprite | 339

 isFacingRight = true;
 isStill = true;

 /* Adjust the sprite's y- position so it is
 standing on the brick at its mid x- position. */
 locy = brickMan.findFloor(locx+getWidth()/2)-getHeight();
 xWorld = locx; yWorld = locy; // store current position

 vertMoveMode = NOT_JUMPING;
 vertStep = brickMan.getBrickHeight()/2;
 // the jump step is half a brick's height
 upCount = 0;
} // end of JumperSprite()

The (xWorld, yWorld) coordinates and the sprite’s position and speed are set. The
state variables isFacingRight, isStill, and vertMoveMode define a stationary, non-
jumping sprite, facing to the right.

BricksManager’s findFloor() method is used to get a y location for the sprite that lets
it stand on top of a brick. The method’s input argument is the sprite’s midpoint
along the x-axis, which is its leftmost x-coordinate plus half its width
(locx+getWidth()/2).

Key Event Processing
The events move left, move right, stop, and jump in the statechart are caught as key
presses by the key listener in JackPanel, triggering calls to the JumperSprite methods
moveLeft(), moveRight(), stayStill(), and jump().

moveLeft(), moveRight(), and stayStill() affect the horizontal state by adjusting
the isFacingRight and isStill variables. The animated image associated with the
sprite changes:

public void moveLeft()
{ setImage("runningLeft");
 loopImage(period, DURATION); // cycle through the images
 isFacingRight = false; isStill = false;
}

public void moveRight()
{ setImage("runningRight");
 loopImage(period, DURATION); // cycle through the images
 isFacingRight = true; isStill = false;
}

public void stayStill()
{ stopLooping();
 isStill = true;
}

This is the Title of the Book, eMatter Edition

340 | Chapter 12: A Side-Scroller

The jump() method represents the transition from the not jumping to the rising state
in the statechart. This is coded by changing the value stored in vertMoveMode. The
sprite’s image is modified:

public void jump()
{ if (vertMoveMode == NOT_JUMPING) {
 vertMoveMode = RISING;
 upCount = 0;
 if (isStill) { // only change image if the sprite is 'still'
 if (isFacingRight)
 setImage("jumpRight");
 else
 setImage("jumpLeft");
 }
 }
}

JackPanel Collision Testing
The [will hit brick on the right] and [will it brick on the left] conditional transitions in
the statechart are implemented as a public willHitBrick() method called from
JackPanel’s gameUpdate() method:

private void gameUpdate()
{
 if (!isPaused && !gameOver) {
 if (jack.willHitBrick()) { // collision checking first
 jack.stayStill(); // stop everything moving
 bricksMan.stayStill();
 ribsMan.stayStill();
 }
 ribsMan.update(); // update background and sprites
 bricksMan.update();
 jack.updateSprite();
 fireball.updateSprite();

 if (showExplosion)
 explosionPlayer.updateTick(); // update the animation
 }
}

The reason for placing the test in JackPanel’s hands is so it can coordinate the other
game entities when a collision occurs. The JumperSprite and the background layers
in the game are halted:

public boolean willHitBrick()
{
 if (isStill)
 return false; // can't hit anything if not moving

 int xTest; // for testing the new x- position
 if (isFacingRight) // moving right
 xTest = xWorld + moveSize;

This is the Title of the Book, eMatter Edition

The Jumping Sprite | 341

 else // moving left
 xTest = xWorld - moveSize;

 // test a point near the base of the sprite
 int xMid = xTest + getWidth()/2;
 int yMid = yWorld + (int)(getHeight()*0.8); // use y posn

 return brickMan.insideBrick(xMid,yMid);
} // end of willHitBrick()

willHitBrick() represents two conditional transitions, so the isFacingRight flag is
used to distinguish how xTest should be modified. The proposed new coordinate is
generated and passed to BricksManager’s insideBrick() for evaluation.

The vertical collision testing in the middle section of the statechart, [will hit brick
below] and [will hit brick above], is carried out by JumperSprite, not JackPanel, since
a collision affects only the sprite.

Updating the Sprite
The statechart distributes the actions of the updateState() event around the state-
chart: actions are associated with the moving right, moving left, rising, and falling
states. These actions are implemented in the updateState() method, and the func-
tions it calls:

public void updateSprite()
{
 if (!isStill) { // moving
 if (isFacingRight) // moving right
 xWorld += moveSize;
 else // moving left
 xWorld -= moveSize;
 if (vertMoveMode == NOT_JUMPING) // if not jumping

checkIfFalling(); // may have moved out into empty space
 }

 // vertical movement has two components: RISING and FALLING
 if (vertMoveMode == RISING)

updateRising();
 else if (vertMoveMode == FALLING)

updateFalling();

 super.updateSprite();
} // end of updateSprite()

The method updates its horizontal position (xWorld) first, distinguishing between
moving right or left by examining isStill and isFacingRight. After the move,
checkIfFalling() decides whether the [no brick below] transition from not jumping
to falling should be applied. The third stage of the method is to update the vertical
states.

This is the Title of the Book, eMatter Edition

342 | Chapter 12: A Side-Scroller

Lastly, the call to Sprite’s updateSprite() method modifies the sprite’s position and
image. updateSprite() illustrates the coding issues that arise when concurrent activi-
ties (in this case, horizontal and vertical movement) are sequentialized. The state-
chart places no restraints on the ordering of the two types of movement, but an
ordering must be imposed when it’s programmed as a sequence. In updateSprite(),
the horizontal actions are carried out before the vertical ones.

Falling?

checkIfFalling() determines whether the not jumping state should be changed to
falling:

private void checkIfFalling()
{
 // could the sprite move downwards if it wanted to?
 // test its center x-coord, base y-coord
 int yTrans = brickMan.checkBrickTop(xWorld+(getWidth()/2),
 yWorld+getHeight()+vertStep, vertStep);
 if (yTrans != 0) // yes it could
 vertMoveMode = FALLING; // set it to be in falling mode
}

The test is carried out by passing the coordinates of the sprite’s feet, plus a vertical
offset downward, to checkBrickTop() in BricksManager.

Vertical Movement
updateRising() deals with the updateSprite() event associated with the rising state,
and tests for the two conditional transitions that leave the state: rising can stop either
when upCount = MAX or when [will hit brick above] becomes true. Rising will con-
tinue until the maximum number of vertical steps is reached or the sprite hits the
base of a brick. The sprite then switches to falling mode. checkBrickBase() in
BricksManager carries out the collision detection:

private void updateRising()
{ if (upCount == MAX_UP_STEPS) {
 vertMoveMode = FALLING; // at top, now start falling
 upCount = 0;
 }
 else {
 int yTrans = brickMan.checkBrickBase(xWorld+(getWidth()/2),
 yWorld-vertStep, vertStep);
 if (yTrans == 0) { // hit the base of a brick
 vertMoveMode = FALLING; // start falling
 upCount = 0;
 }
 else { // can move upwards another step
 translate(0, -yTrans);

This is the Title of the Book, eMatter Edition

Other Side-Scroller Examples | 343

 yWorld -= yTrans; // update position
 upCount++;
 }
 }
} // end of updateRising()

updateFalling() processes the updateSprite() event associated with the falling state,
and deals with the [will hit brick below] transition going to the not jumping state.
checkBrickTop() in BricksManager carries out the collision detection.

The other conditional leading to termination is not implemented since the bricks
map cannot contain any holes for the sprite to fall through:

private void updateFalling()
{ int yTrans = brickMan.checkBrickTop(xWorld+(getWidth()/2),
 yWorld+getHeight()+vertStep, vertStep);
 if (yTrans == 0) // hit the top of a brick

finishJumping();
 else { // can move downwards another step
 translate(0, yTrans);
 yWorld += yTrans; // update position
 }
}

private void finishJumping()
{ vertMoveMode = NOT_JUMPING;
 upCount = 0;
 if (isStill) { // change to running image, but not looping yet
 if (isFacingRight)
 setImage("runningRight");
 else // facing left
 setImage("runningLeft");
 }
}

Other Side-Scroller Examples
JumpingJack could be improved in many areas, including adding multiple levels,
more bad guys (enemy sprites), and complex tiles.

A good source of ideas for improvements can be found in other side-scrolling games.
ArcadePod.com (http://arcadepod.com/java/) lists 64 scroller games though none of
the ones I tried came with source code.

The following is a list of side-scrollers, which do include source and were written in
the last two to three years:

• Meat Fighter: The Wiener Warrior (http://www.meatfighter.com/). The web site
includes an article about the implementation, which appeared in Java Develop-
ers Journal, March 2003, Vol. 8, No. 3.

• Frogma (http://sourceforge.net/projects/frogma/).

This is the Title of the Book, eMatter Edition

344 | Chapter 12: A Side-Scroller

• VideoToons (http://sourceforge.net/projects/videotoons/).

• Mario Platformer (http://www.paraduck.net/misterbob/Platformer1.1/classes/). Only
the compiled classes are available for this applet.

Chapter 5 of Developing Games in Java (New Riders Publishing) by David
Brackeen, Bret Barker, and Laurence Vanhelswue is about a side-scroller (a 2D
platform game). (The source code for this book’s examples can be obtained from
http://www.brackeen.com/javagamebook/.) He develops a wider range of bad guys
than I have and includes things for the hero to pick up. However, the game doesn’t
have multiple scrolling backgrounds.

A good place for articles about tile-based games is the “Isometric and Tile-based
Games” reference section at GameDev (http://www.gamedev.net/reference/list.
asp?categoryid=44).

Tiling Software
One of the time-consuming aspects of side-scroller creation is the building of the tile
map. A realistic game will require a much larger collection of tiles, including ones for
smoothing the transition between one type of tile and another.

Tile map editors let you visually edit tiles and build a map using drawing tools. Here
are two popular, free tools:

• Tile Studio (http://tilestudio.sourceforge.net/)

• Mappy for PC (http://www.tilemap.co.uk/mappy.php)

Functionally, they’re similar, but Mappy has additional support for creating hexago-
nal and isometric tiles. It’s possible to customize how TileStudio exports its data by
creating a Tile Studio Definition (TSD), which defines the output file format.

Tile Studio is used with Java (actually J2ME) in Chapter 11 of J2ME Game Program-
ming by Martin Wells (Muska and Lipman/Premier-Trade). In the example, Tile Studio
exports several tile maps to a TSD-defined file, and Java is used to read them. This chap-
ter is available online at http://www.courseptr.com/ptr_detail.cfm?isbn=1592001181.

Mappy places a lot of emphasis on playback libraries/APIs, allowing its maps to be
loaded, manipulated, and displayed. The Mappy web site offers two Java playback
libraries. JavaMappy (http://www.alienfactory.co.uk/javamappy/) is an open source
Java playback library for Mappy. It includes pluggable renderers for J2ME and J2SE
1.4. The download includes several examples and documentation.

This is the Title of the Book, eMatter Edition

345

Chapter 13 CHAPTER 13

An Isometric Tile Game

AlienTiles is a basic isometric tile game consisting of one player who must pick up a
cup, flower pot, and a watch before four nasty aliens catch and hit him three times
(see Figure 13-1).

The player is represented by a little blue man with a red cap in the center of the
screen. The orange aliens (with red hair) are a bit easier to see in Figure 13-1, though
one is mostly hidden by the black and white column just to the right of the player,
and two of the aliens are momentarily occupying the same tile, so one is obscured.

Figure 13-1. AlienTiles in action

This is the Title of the Book, eMatter Edition

346 | Chapter 13: An Isometric Tile Game

Isometric Tiles
Isometric tiles are the basis of many real-time strategy (RTS) games, war games, and
simulations (e.g., Civilization II, Age of Empires, and SimCity variants), though the
tiling of the game surface is usually hidden.

Isometric tiles give an artificial sense of depth as if the player’s viewpoint is some-
where up in the sky, looking down over the playing area. Of course, this view is arti-
ficial since no perspective effects are applied; the tiles in the row “nearest” the viewer
are the same size and shape as the tiles in the most “distant” row at the top of the
screen. This is where the term isometric comes from: an isometric projection is a 3D
projection that doesn’t correct for distance.

The illusion that each row of tiles is further back inside the game is supported by the
z-ordering of things (sprites, objects) drawn in the rows. An object on a row nearer
the front is drawn after those on rows further back, hiding anything behind it. This is
the case in Figure 13-1, where the black and white column partially hides the alien
standing two rows behind it.

There are various ways of labeling the x-axis and y-axis of a isometric tile map. I’ll
use the standard staggered-map approach illustrated in Figure 13-2.

Odd and even rows are offset from each other, which means that the tile coordinates
can be a little tricky to work out as a sprite moves between rows.

Figure 13-2. A staggered isometric tile map

0

1 2 3 . . .

1

2

3

4

5

:

:

0

x-axis (tile columns)

y-axis
(tile rows)

tile
(1,4)

tile
(2,1)

This is the Title of the Book, eMatter Edition

Isometric Tiles | 347

AlienTiles uses tile coordinates to position sprites and other objects on the surface.
However, the surface isn’t made from tiles; instead, it’s a single medium size GIF
(216 KB), as shown in Figure 13-3.

Most isometric games construct the surface from individual tiles, which allows the
floor space to be rendered incrementally and to change dynamically over time. The
drawback is the increased complexity (and time) in drawing the tiles to the screen.
Drawing the individual tiles in back-to-front row order is necessary, with each dia-
mond represented by a rectangular GIF with transparent corners. The coding prob-
lems are like the difficulties detailed in Chapter 12, with positioning bricks correctly
on screen as the JumpingSprite moved around. And do you want to go through all of
that again?

Often, the surface will be a composite of several layers of tile of different sizes. For
example, there may be several large green tiles for the terrain, partially covered over
with smaller grass, dirt, and sand tiles to create variety. Fringe tiles are employed to
break up the regularity of the edges between two large areas, such as the land and the
sea. The graphic on a fringe tile represents the edge (or fringe) of one kind of tile, and
the start of another.

Movement
AlienTiles offers four directions for a sprite to follow: northeast, southeast, south-
west, and northwest, as illustrated by Figure 13-4.

The user interface maps these directions to the four corners of the numbers keypad:
to the keys 9, 3, 1, and 7. Pressing one of these keys makes the sprite move one step
to the corresponding adjacent tile. An obvious extension is to offer north, east,
south, and west movement.

Figure 13-3. The surface.gif image

This is the Title of the Book, eMatter Edition

348 | Chapter 13: An Isometric Tile Game

The range of directions is dictated by the tile shape, to a large extent, and diamonds
aren’t the only possibility. For instance, a number of strategy games use hexagons to
form a Hex map (Figure 13-5), which allows six compass directions out of a tile.

Movement around an isometric tile surface is often based on single steps between
tiles. It’s not possible for a sprite to move about inside a tile; the sprite can only
stand still on a tile or make a single step to an adjacent tile. In AlienTiles, a key press
causes a single step, and the user must hold down the key to make the sprite sprint
across several tiles. A key press triggers a method call to update the sprite’s position,
which is updated onscreen at 40 FPS.

Figure 13-4. Directions of movement for a sprite

Figure 13-5. A hex map

0

1

2

3

4

:

0 0 1 1

(1,3)

2 2 3

x-values 1 2 3 40

y-values

0

1

2

3

4

5

This is the Title of the Book, eMatter Edition

Isometric Tiles | 349

This rate is fast enough to deal with the user keeping a key constantly
held down.

Though I talk about a player moving around the surface, the truth is that the user’s
sprite doesn’t move at all. Instead, the surface moves in the opposite direction,
together with the other objects and sprites. For instance, when the player moves to
the northeast, the user’s sprite stays still but the ground underneath it shifts to the
southwest.

This nonmovement is only true for the user’s sprite; the alien sprites
do move from one tile to another.

As with a side-scroller, this approach keeps the user’s sprite center stage at all times.
In commercial games, a player’s sprite does sometimes move to the edge of the
screen, usually as a prelude to entering a new game level.

Placing a Sprite/Object
Care must be taken with object placement so the illusion of an object standing on
top a tile is maintained. Figure 13-6 shows that the positioning of a sprite’s top-left
corner, so planting its “feet” on the tile’s surface can be a little hard to calculate:

The sprite can occupy screen space above the tile but should not overlap the bottom
left and right edges of the diamond. If it does, the image will seem to be partly in the
next row, weakening the row ordering effect. I’ll implement this placement rule in
my code later.

Figure 13-6. Placing a sprite onto a tile

+

sprite image

tile image

sprite on the tile

This is the Title of the Book, eMatter Edition

350 | Chapter 13: An Isometric Tile Game

The Tile Map Surface
The AlienTiles surface contains no-go areas that the sprites cannot enter. These
include the ocean around the edges of the tiled surface, a lake, a pond, and four red
squares (all visible in Figure 13-1). The no-go areas are defined in a configuration file
read in by AlienTiles at start-up.

The game surface has two kinds of objects resting on it: blocks and pickups. A block
fully occupies a tile, preventing a sprite from moving onto it. The block image can be
anything; I employ various columns and geometric shapes. A player can remove a
pickup from the surface when it’s standing on the same tile by pressing 2 on the
numeric keypad.

Blocks and pickups are harder to implement than no-go areas since they occupy
space on the game surface. This means that a sprite can move behind one and be par-
tially hidden. Pickups pose more problems than blocks since they can be removed
from a tile.

More sophisticated games have a much greater variety of surface objects. Two com-
mon types are walls and portals (doors). A wall between two tiles prevents a sprite
from moving between the tiles. A portal is often used as a way of moving between
tile maps, for example when moving to the next game level or entering a building
with its own floor plan.

The Aliens
AlienTiles offers two types of aliens: those that actively chase after the player
(AlienAStarSprite objects) and those that congregate around the pickup that the
player is heading toward (AlienQuadSprite objects).

The AlienAStarSprite class uses A* (pronounced “A star”) pathfind-
ing to chase the player, which will be explained later in this chapter.

In general, alien design opens the door to intelligent behavior code, often based on
Artificial Intelligence (AI) techniques. Surprisingly though, quite believable sprite
behavior can often be hacked together with the use of a few random numbers and
conventional loops and branches, and AlienQuadSprite is an illustration.

Class Diagrams for AlienTiles
Figure 13-7 shows a simplified set of class diagrams for AlienTiles. The audio and
image classes (e.g., MidisLoader, ClipsLoader, and ImagesLoader) have been edited
away, and the less important links between the remaining classes have been pruned
back for clarity.

This is the Title of the Book, eMatter Edition

Class Diagrams for AlienTiles | 351

The AlienTiles JFrame and the AlienTilesPanel JPanel implement the
windowed animation framework introduced in Chapters 2 and 3,
BugRunner of Chapter 11, and JumpingJack of Chapter 12 use the same
technique.

Figure 13-7. AlienTiles classes diagram (simplified)

This is the Title of the Book, eMatter Edition

352 | Chapter 13: An Isometric Tile Game

Pausing, resuming, and quitting are controlled via AlienTiles’ window listener meth-
ods. The frame rate is set to 40 FPS, which is still too fast for the alien sprites; they
are slowed down further by code in AlienQuadSprite and AlienAStarSprite.

WorldDisplay displays the surface image and the blocks, pickups, and sprites resting
on the surface. The tile coordinates for the entities are stored in a WorldItems object,
using a TileOccupier object for each one. WorldDisplay acts as a communication layer
between the player and the aliens.

Figure 13-7 includes a small sprite inheritance hierarchy, rooted at Sprite, which is
shown on its own in Figure 13-8.

Most of the methods in Sprite are extended or overridden by tile-related methods in
its subclasses. Tile coordinates are utilized by the game most of the time, supported
by methods in TiledSprite though a sprite’s pixel location (maintained by Sprite) is
needed when it’s being drawn to the screen. The player is represented by a
PlayerSprite object.

AlienAStarSprite uses the A* JWS (Java Web Start):JWS and other libraries algo-
rithm, which necessitates the TilesPriQueue and TilesList data structure classes;
they maintain sequences of TileNode objects.

The code for the AlienTiles game can be found in the AlienTiles/
directory.

The Animation Framework
AlienTilesPanel is similar to JackPanel in Chapter 12; it uses an active rendering ani-
mation loop driven by Java 3D’s timer. It displays an introductory image when the

Figure 13-8. The sprite hierarchy in AlienTiles

pickup guarding behaviorplayer chasing behavior

extends

TiledSprite

PlayerSprite AlienSprite

AlienQuadSpriteAlienAStarSprite

Sprite

This is the Title of the Book, eMatter Edition

The Animation Framework | 353

game starts, which doubles as a help screen during the course of play. While the help
screen is being shown, the game pauses.

Managing the Game World
AlienTilesPanel creates the various game elements in createWorld():

// globals game entities
private WorldDisplay world;
private PlayerSprite player;
private AlienSprite aliens[];

private void createWorld(ImagesLoader imsLoader)
// create the world display, the player, and aliens
{
 world = new WorldDisplay(imsLoader, this);

 player = new PlayerSprite(7,12, PWIDTH, PHEIGHT,
 clipsLoader, imsLoader, world, this);
 // sprite starts on tile (7,12)

 aliens = new AlienSprite[4];
 aliens[0] = new AlienAStarSprite(10, 11, PWIDTH, PHEIGHT,
 imsLoader, world);
 aliens[1] = new AlienQuadSprite(6, 21, PWIDTH, PHEIGHT,
 imsLoader, world);
 aliens[2] = new AlienQuadSprite(14, 20, PWIDTH, PHEIGHT,
 imsLoader, world);
 aliens[3] = new AlienAStarSprite(34, 34, PWIDTH, PHEIGHT,
 imsLoader, world);
 // use 2 AStar and 2 quad alien sprites
 // the 4th alien is placed at an illegal tile location (34,34)

 world.addSprites(player, aliens);
 // tell the world about the sprites
} // end of createWorld()

Tile coordinates are passed to the sprites, rather than pixel locations in the JPanel.
The two A* and two quad sprites are stored in an aliens[] array to make it easier to
send messages to all of them as a group.

The player and aliens do not communicate directly; instead, they call methods in the
WorldDisplay object, world, which passes the messages on. This requires that sprite
references be passed to world via a call to addSprites().

Dealing with Input
The game is controlled from the keyboard only; no mouse events are caught. As in
previous applications, the key presses are handled by processKey(), which deals with

This is the Title of the Book, eMatter Edition

354 | Chapter 13: An Isometric Tile Game

termination keys (e.g., Ctrl-C), toggling the help screen, and player controls. The
code related to the player keys is:

private void processKey(KeyEvent e)
// handles termination, help, and game-play keys
{
 int keyCode = e.getKeyCode();

 // processing of termination and help keys
 ...

 // game-play keys
 if (!isPaused && !gameOver) {
 // move the player based on the numpad key pressed
 if (keyCode == KeyEvent.VK_NUMPAD7)
 player.move(TiledSprite.NW); // move north west
 else if (keyCode == KeyEvent.VK_NUMPAD9)
 player.move(TiledSprite.NE); // north east
 else if (keyCode == KeyEvent.VK_NUMPAD3)
 player.move(TiledSprite.SE); // south east
 else if (keyCode == KeyEvent.VK_NUMPAD1)
 player.move(TiledSprite.SW); // south west
 else if (keyCode == KeyEvent.VK_NUMPAD5)
 player.standStill(); // stand still
 else if (keyCode == KeyEvent.VK_NUMPAD2)
 player.tryPickup(); // try to pick up from this tile
 }
} // end of processKey()

Three PlayerSprite methods are called: move(), standStill(), and tryPickup().
These correspond to the three things a sprite can do: move to another tile, stand still,
and pick up something. The “standing still” action is fairly trivial: it only changes the
sprite’s image.

The Animation Loop
The animation loop is located in run() and unchanged from earlier examples:

public void run()
{ // initialization code
 while (running) {
 gameUpdate();
 gameRender();
 paintScreen();
 // timing correction code
 }
 System.exit(0);
}

This is the Title of the Book, eMatter Edition

The Animation Framework | 355

gameUpdate() updates the changing game entities (the four mobile aliens):

private void gameUpdate()
{ if (!isPaused && !gameOver) {
 for(int i=0; i < aliens.length; i++)
 aliens[i].update();
 }
}

gameRender() relies on the WorldDisplay object to draw the surface and its contents:

private void gameRender()
{
 // create the dbg graphics context

 // a light blue background
 dbg.setColor(lightBlue);
 dbg.fillRect(0, 0, PWIDTH, PHEIGHT);

 // draw the game elements: order is important
 world.draw(dbg);
 /* WorldDisplay draws the game world: the tile floor, blocks,
 pickups, and the sprites. */

reportStats(dbg);
 // report time spent playing, number of hits, pickups left

 if (gameOver)
 gameOverMessage(dbg);

 if (showHelp) // draw the help at the very front (if switched on)
 dbg.drawImage(helpIm, (PWIDTH-helpIm.getWidth())/2,
 (PHEIGHT-helpIm.getHeight())/2, null);
} // end of gameRender()

Ending the Game
The game finishes (gameOver is set to true) when the player has been hit enough
times or when all the pickups (a cup, flower pot, and watch) have been gathered.
The first condition is detected by the PlayerSprite object and the second by the
WorldDisplay object; both of them call gameOver() to notify AlienTilesPanel when
the game should be stopped:

public void gameOver()
{ if (!gameOver) {
 gameOver = true;
 score = (int) ((J3DTimer.getValue() -
 gameStartTime)/1000000000L);
 clipsLoader.play("applause", false);
 }
}

This is the Title of the Book, eMatter Edition

356 | Chapter 13: An Isometric Tile Game

Managing the World
WorldDisplay manages:

• The moving tile floor, represented by a single GIF

• No-go areas on the floor

• Blocks occupying certain tiles

• Pickups occupying certain tiles

• Communication between the player and aliens sprites

The communication between the player and sprites in the game is rudimentary,
mainly involving the transmission of position information and the number of pick-
ups left. However, the coding technique of passing this information through the
WorldDisplay is a useful one since it allows WorldDisplay to monitor and control the
interactions between the sprites. WorldDisplay utilizes three main data structures:

• An obstacles[][] Boolean array specifying which tiles are no-go’s or contain
blocks

• A WorldItems object that stores details on blocks, pickups, and sprites in tile row
order to make them easier to draw with the correct z-ordering

• A numPickups counter to record how many pickups are still left to be picked up

These are simply declared as variables in the class:

private boolean obstacles[][];
private WorldItems wItems;
private int numPickups;

WorldDisplay’s methods fall into five main groups, which I’ll consider in detail in the
following subsections:

• The loading of floor information, which describes where the tiles, rows, and col-
umns are located on the floor

• The loading of world entity information, which gives the tile coordinates of the
no-go areas, blocks, and pickups

• Pickup-related methods

• Player-related methods

• Drawing the world

Loading Floor Information
The floor image is a single GIF, so additional information must state where the odd
and even tile rows are located and give the dimensions for a tile (a diamond). These
details are shown in Figure 13-9.

This is the Title of the Book, eMatter Edition

Managing the World | 357

The relevant information is stored in worldInfo.txt in the World/ subdirectory and
read in by loadWorldInfo(). The file contains the following:

// name of the GIF (surface.gif) holding the floor image
image surface

// number of tiles (x,y)
numTiles 16 23

// pixel dimensions of a single tile (width, height)
dimTile 56 29

// 'start of first even row' (x,y) coordinate
evenRow 12 8

// 'start of first odd row' (x,y) coordinate
oddRow 40 23

Lines beginning with // are comments.

The image used is surface.gif, which should be in the Images/ subdirectory below the
AlienTiles/ directory. There are 16 columns of tiles, and 23 rows. Each tile is 56 pix-
els wide, at its widest point, and 29 pixels high. The first even row (row 0) starts at
pixel coordinate (12,8), the first odd row (row 1) at (40,23). The starting point is
taken to be the top-left corner of the rectangle that surrounds the diamond. With
this information, translating any tile coordinate into a pixel location in the floor
image is possible.

Figure 13-9. Floor information

transparent edge
of Floor Image

(0,0)

0

1

2

3

:

:

0 0 1 1

even row coord

odd row coord

tileHeight

…

tileWidth

This is the Title of the Book, eMatter Edition

358 | Chapter 13: An Isometric Tile Game

Storing floor data

The data read in by loadFloorInfo() and its secondary methods are stored in a series
of globals in WorldDisplay:

// world size in number of tiles
private int numXTiles, numYTiles;

// max pixel width/height of a tile
private int tileWidth, tileHeight;

// 'start of first even row' coordinate
private int evenRowX, evenRowY;

// 'start of first odd row' coordinate
private int oddRowX, oddRowY;

Most of them are used only to initialize the WorldItems object:

WorldItems wItems = new WorldItems(tileWidth, tileHeight,
 evenRowX, evenRowY, oddRowX, oddRowY);

The WorldItems object organizes details about the surface entities (blocks, pickups, and
sprites) by tile row to ensure they are drawn to the JPanel with the correct z-ordering.
The floor information is required so an entity’s tile coordinates can be translated to
pixel locations.

Creating obstacles

The number of tiles on the surface is used to initialize the obstacles[][] array:

private void initObstacles()
// initially there are no obstacles in the world
{
 obstacles = new boolean[numXTiles][numYTiles];
 for(int i=0; i < numXTiles; i++)
 for(int j=0; j < numYTiles; j++)
 obstacles[i][j] = false;
}

Obstacles are registered (i.e., particular cells are set to true) as WorldDisplay loads
entity information (see the next section for details).

Sprites utilize validTileLoc() to check if a particular tile (x, y) can be entered:

public boolean validTileLoc(int x, int y)
// Is tile coord (x,y) on the tile map and not contain an obstacle?
{
 if ((x < 0) || (x >= numXTiles) || (y < 0) || (y >= numYTiles))
 return false;
 if (obstacles[x][y])
 return false;
 return true;
}

This is the Title of the Book, eMatter Edition

Managing the World | 359

Loading World Entity Information
Rather than specify the entity positions as constants in the code, the information is
read in by loadWorldObjects() from the file worldObjs.txt in the subdirectory World/.

The data come in three flavors—no-go areas, blocks, and pickups—placed at a given
tile coordinate and unable to move. Sprites aren’t included in this category since
their position can change during game play. Consequently, worldObjs.txt supports
three data formats:

// no-go coordinates
n <x1>-<y1> <x2>-<y2>
.... #

// block coordinates for blockName
b <blockName>
 <x1>-<y1> <x2>-<y2>
 #

// pickup coordinate for pickupName
p <pickupName> <x>-<y>

An n is for no-go, followed by multiple lines of (x, y) coordinates defining which tiles
are inaccessible. The sequence of coordinates is terminated with a #. A b line starts
with a block name, which corresponds to the name of the GIF file for the block, and
is followed by a sequence of tile coordinates where the block appears. The name on a
p line is mapped to a GIF file name but is followed only by a single coordinate. A
pickup is assumed to only appear once on the floor.

The GIFs referenced in this file should be in the subdirectory Images/
below the AlienTiles/ directory.

Here is a fragment of worldObjs.txt:

// bottom right danger zone (red in the GIF)
n 12-13 12-14 13-14 12-15 #

// blocks
b column1
9-3 7-7 7-18 #

b pyramid
1-12 5-16 #

b statue
14-13 #

// pickups
p cup 1-8

This is the Title of the Book, eMatter Edition

360 | Chapter 13: An Isometric Tile Game

A quick examination of the Images/ subdirectory will show the pres-
ence of column1.gif, pyramid.gif, statue.gif, and cup.gif.

As the information is parsed by loadWorldObjects() and its helper methods, the
obstacles[][] array and the WorldItems objects are passed through the entity details.
For instance, in getsBlocksLine(), the following code fragment is executed when a
(x, y) coordinate for a block has been found:

wItems.addItem(blockName+blocksCounter, BLOCK, coord.x, coord.y, im);
obstacles[coord.x][coord.y] = true;

addItem() adds information about the block to the WorldItems object. The relevant
obstacles[][] cell is set to true.

Similar code is executed for a pickup in getPickup():

wItems.addItem(pickupName, PICKUP, coord.x, coord.y, pickupIm);
numPickups++;

The obstacles[][] array is not modified since a sprite must be able to move to a tile
occupied by a pickup (so it can pick it up). BLOCK, PICKUP, and SPRITE are constants
used by WorldItems to distinguish between tile entities.

Pickup Methods
WorldDisplay offers a range of pickup-related methods used by the sprites. For exam-
ple, the PlayerSprite object calls removePickup() to pick up a named item:

public void removePickup(String name)
{ if (wItems.removePickup(name)) { // try to remove it
 numPickups--;
 if (numPickups == 0) // player has picked up everything
 atPanel.gameOver();
 }
 else
 System.out.println("Cannot delete unknown pickup: " + name);
}

WorldDisplay communicates with its WorldItems object to attempt the removal and
decrements of its numPickups counter. If the counter reaches 0, then the player has
collected all the pickups and AlienTilesPanel (atPanel) can be told the game is over.

Player Methods
The player sprite and the aliens don’t communicate directly; instead, their interac-
tion is handled through WorldDisplay. This allows code in WorldDisplay the potential
to modify, add, or delete information. For example, WorldDisplay might not pass the
player’s exact position to the aliens, thereby making it harder for them to find him.

This is the Title of the Book, eMatter Edition

Managing the World | 361

This version of the application doesn’t change or limit information transfer, but that
sort of behavior could be introduced without much difficulty.

One of the more complicated player methods is playerHasMoved() called by the
PlayerSprite object when it moves to a new tile.

public void playerHasMoved(Point newPt, int moveQuad)
{
 for(int i=0; i < aliens.length; i++)
 aliens[i].playerHasMoved(newPt); // tell the aliens
updateOffsets(moveQuad); // update world's offset

}

The player passes in a Point object holding its new tile coordinate, as well as the
quadrant direction that brought the sprite to the tile. The moveQuad value can be the
constant NE, SE, SW, NW, or STILL, which correspond to the four possible compass
directions that a sprite can use, plus the no-movement state.

The new tile location is passed to the aliens, which can use it to modify their
intended destination. The quadrant direction is passed to updateOffsets() to change
the surface image’s offset from the enclosing JPanel.

As mentioned earlier, the player sprite doesn’t move at all. A careful examination of
AlienTiles during execution shows that the sprite always stays at the center of the
game’s JPanel. The floor image and its contents (blocks, pickups, aliens) move
instead. For instance, when the player sprite is instructed to move northwest (the
quadrant direction NW), the sprite does nothing, but the floor and its contents shifts
southeast.

The floor offset is maintained in two globals:

private int xOffset = 0;
private int yOffset = 0;

xOffset and yOffset hold the pixel offsets for drawing the top-left corner of the floor
image (and its contents) relative to the top-left corner (0,0) of the JPanel, as shown in
Figure 13-10. The offsets may have negative values.

The offsets are the final part of the mapping required to translate a tile coordinate
into an on-screen pixel location.

This approach means that a stationary block or pickup, always positioned on the
same tile, will be drawn at different places inside the JPanel as the xOffset and
yOffset values change.

The offsets are adjusted by updateOffsets():

private void updateOffsets(int moveQuad)
{
 if (moveQuad == TiledSprite.SW) { // offset to NE
 xOffset += tileWidth/2;
 yOffset -= tileHeight/2;
 }

This is the Title of the Book, eMatter Edition

362 | Chapter 13: An Isometric Tile Game

 else if (moveQuad == TiledSprite.NW) { // offset to SE
 xOffset += tileWidth/2;
 yOffset += tileHeight/2;
 }
 else if (moveQuad == TiledSprite.NE) { // offset to SW
 xOffset -= tileWidth/2;
 yOffset += tileHeight/2;
 }
 else if (moveQuad == TiledSprite.SE) { // offset to NW
 xOffset -= tileWidth/2;
 yOffset -= tileHeight/2;
 }
 else if (moveQuad == TiledSprite.STILL) { // do nothing
 }
 else
 System.out.println("moveQuad error detected");
}

Drawing the World
AlienTilesPanel delegates the world drawing task to draw() in WorldDisplay:

public void draw(Graphics g)
{
 g.drawImage(floorIm, xOffset, yOffset, null); // draw floor image
 wItems.positionSprites(player, aliens); // add the sprites
 wItems.draw(g, xOffset, yOffset); // draw entities
 wItems.removeSprites(); // remove sprites
}

Figure 13-10. The floor offset from the JPanel

transparent edge
of Floor Image

(0,0)

0

1

2

3

:

:

0 0 1 1

even row coord

odd row coord

tileHeight

…

tileWidth

JPanel

yOffset (varies)

xOffset (varies)

This is the Title of the Book, eMatter Edition

Managing WorldItems | 363

WorldDisplay draws the floor GIF, suitably offset, but the entities resting on the floor
(the blocks, pickups, and sprites) are left to WorldItems to render.

During WorldDisplay’s loading phase, the WorldItems object is initialized with the
locations of the blocks and pickups, but not sprites. The reason is that sprites move
about at run time, so they would have to be reordered repeatedly in WorldItems’
internal data structures.

Instead, whenever the game surface needs to be drawn, the sprites’ current positions
are recorded temporarily in WorldItems by calling positionSprites(). After the draw-
ing is completed, the sprite data are deleted with removeSprites().

This approach simplifies the housekeeping tasks carried out by WorldItems, as you’ll
soon see. A drawback to this approach, though, is the need for repeated insertions
and deletions of sprite information. However, there are only five sprites in
AlienTiles, so the overhead isn’t excessive.

If the number of sprites were considerably larger, then you might have
to rethink this approach, as the cost of adding and removing the
sprites would become significant. The data structures used by
WorldItems would need to be made more sophisticated, so moveable
items could be permanently stored there and found quickly.

Managing WorldItems
WorldItems maintains an ArrayList of TileOccupier objects (called items) ordered by
increasing tile row. Figure 13-10 shows that row 0 is the row furthest back in the
game, and the last row is nearest the front. When the ArrayList objects are drawn,
the ones in the rows further back will be drawn first, matching the intended z-order-
ing of the rows.

A TileOccupier object can represent a block, pickup, or sprite.

The ArrayList changes over time. The most frequent change is to add sprites tempo-
rarily, so they can be drawn in their correct positions relative to the blocks and pick-
ups. Pickups are deleted as they are collected by the player.

The WorldItems constructor stores floor information. This is used to translate the tile
coordinates of the TileOccupiers into pixel locations on the floor:

// max pixel width/height of a tile
private int tileWidth, tileHeight;

// 'start of first even row' coordinate
private int evenRowX, evenRowY;

This is the Title of the Book, eMatter Edition

364 | Chapter 13: An Isometric Tile Game

// 'start of first odd row' coordinate
private int oddRowX, oddRowY;

private ArrayList items;
 // a row-ordered list of TileOccupier objects

public WorldItems(int w, int h, int erX, int erY, int orX, int orY)
{ tileWidth = w; tileHeight = h;
 evenRowX = erX; evenRowY = erY;
 oddRowX = orX; oddRowY = orY;
 items = new ArrayList();
}

Adding an Entity
Adding an entity (a pickup or a block) requires the creation of a TileOccupier object
and its placement in the items ArrayList sorted by its row/column position:

public void addItem(String name, int type, int x, int y,
 BufferedImage im)
{ TileOccupier toc;
 if (y%2 == 0) // even row
 toc = new TileOccupier(name, type, x, y, im,
 evenRowX, evenRowY,
 tileWidth, tileHeight);
 else
 toc = new TileOccupier(name, type, x, y, im,
 oddRowX, oddRowY,
 tileWidth, tileHeight);
 rowInsert(toc, x, y);
}

Each TileOccupier object must calculate its pixel location on the floor, which
requires the tile coordinate of the occupier (x, y), the dimensions of a tile (tileWidth
and tileHeight), and the start coordinate of the first even or odd row. If the
TileOccupier is positioned on an even row (i.e., y%2 = 0), then it’s passed to the
even row coordinate; if not, it is passed to the odd coordinate.

addItem() only deals with blocks or pickups, so the type argument will be BLOCK or
PICKUP. The creation of a SPRITE entity is handled by a separate method, posnSprite(),
which is similar to addItem(). posnSprite() adds a sprite reference to the information
in the TileOccupier object. rowInsert() inserts the TileOccupier object into the
ArrayList in increasing row order. Within a row, the objects are ordered by increasing
column position.

This is the Title of the Book, eMatter Edition

Managing WorldItems | 365

Drawing Entities
WorldDisplay’s draw() displays all the entities using a z-ordering that draws the rows
further back first. Since the TileOccupier objects are stored in the ArrayList in
increasing row order, this is achieved by cycling through them from start to finish:

public void draw(Graphics g, int xOffset, int yOffset)
{
 TileOccupier item;
 for(int i = 0; i < items.size(); i++) {
 item = (TileOccupier) items.get(i);

item.draw(g, xOffset, yOffset); // draw the item
 }
}

The TileOccupier draw() call is passed the x- and y-offsets of the floor image from
the JPanel’s top-left corner. They are used to draw the entity offset by the same
amount as the floor.

Pickup Methods
WorldItems contains several pickup-related methods. They all employ a similar algo-
rithm, involving a loop through the items list looking for a specified pickup. Then a
method is called upon the located TileOccupier object instance.

As a concrete example, I’ll consider the implementation of nearestPickup(). It’s sup-
plied with a tile coordinate and returns the coordinate of the nearest pickup:

public Point nearestPickup(Point pt)
{
 double minDist = 1000000; // dummy large value (a hack)
 Point minPoint = null;
 double dist;
 TileOccupier item;
 for(int i=0; i < items.size(); i++) {
 item = (TileOccupier) items.get(i);
 if (item.getType() == WorldDisplay.PICKUP) {
 dist = pt.distanceSq(item.getTileLoc());
 // get squared dist. to pickup
 if (dist < minDist) {
 minDist = dist; // store smallest dist
 minPoint = item.getTileLoc(); // store associated pt
 }
 }
 }
 return minPoint;
} // end of nearestPickup()

This is the Title of the Book, eMatter Edition

366 | Chapter 13: An Isometric Tile Game

The pickups are found by searching for the PICKUP type. The square of the distance
between the input point and a pickup is calculated, thereby avoiding negative
lengths, and the current minimum distance and the associated pickup point is
stored.

The Tile Occupier
A tile occupier has a unique name, a type value (BLOCK, PICKUP, or SPRITE), a tile coor-
dinate (xTile, yTile), and a coordinate relative to the top-left corner of the floor
image (xDraw, yDraw), where the occupier’s image should be drawn. The relationship
between these coordinates is shown in Figure 13-11.

xDraw and yDraw are relative to the floor image, so floor offsets must be added to them
before the image is drawn into the JPanel. The constructor initializes the coordinate
details and calls calcPosition() to calculate xDraw and yDraw:

// globals
private String name;
private int type; // BLOCK, PICKUP, or SPRITE
private BufferedImage image;
private int xTile, yTile; // tile coordinate
private int xDraw, yDraw;
 // coordinate relative to the floor image where the tile
 // occupier should be drawn

private TiledSprite sprite = null;
 // used when the TileOccupier is a sprite

Figure 13-11. Positioning a tile occupier in a tile

tileHeight

tileWidth

tile coord:
(xTile, yTile)

tileHeight/5

height

width(xDraw, yDraw)

(xImOffset, yImOffset)

Floor Image(0,0)

This is the Title of the Book, eMatter Edition

The Tile Occupier | 367

public TileOccupier(String nm, int ty, int x, int y,
 BufferedImage im, int xRowStart, int yRowStart,
 int xTileWidth, int yTileHeight)
{ name = nm;
 type = ty;
 xTile = x; yTile = y;
 image = im;
calcPosition(xRowStart, yRowStart, xTileWidth, yTileHeight);

}

If this object is in an even row, then xRowStart and yRowStart will hold the pixel loca-
tion of the first even row; otherwise, the location of the first odd row is used. The (x, y)
arguments give the tile’s location.

calcPosition() calculates the (xDraw, yDraw) coordinate relative to the floor image:

private void calcPosition(int xRowStart, int yRowStart,
 int xTileWidth, int yTileHeight)
{
 // top-left corner of image relative to its tile
 int xImOffset = xTileWidth/2 - image.getWidth()/2; // in middle
 int yImOffset = yTileHeight - image.getHeight() - yTileHeight/5;
 // up a little from bottom point of the diamond

 // top-left corner of image relative to floor image
 xDraw = xRowStart + (xTile * xTileWidth) + xImOffset;
 if (yTile%2 == 0) // on an even row
 yDraw = yRowStart + (yTile/2 * yTileHeight) + yImOffset;
 else // on an odd row
 yDraw = yRowStart + ((yTile-1)/2 * yTileHeight) + yImOffset;
}

The (xDraw, yDraw) coordinate will cause the TileOccupier’s image to be rendered so
its base appears to be resting on the tile, centered in the x-direction, and a little for-
ward of the middle in the y-direction.

Additional Sprite Information
When a TileOccupier object is created for a sprite, the addSpriteRef() method is
called to store a reference to the sprite:

public void addSpriteRef(TiledSprite s)
{ if (type == WorldDisplay.SPRITE)
 sprite = s;
}

addSpriteRef() is used by the draw() method, as explained below.

This is the Title of the Book, eMatter Edition

368 | Chapter 13: An Isometric Tile Game

Drawing a Tile Occupier
When the draw() method is called, the (xDraw, yDraw) coordinate relative to the floor
image is known. Now the x- and y- offsets of the floor image relative to the JPanel

must be added to get the image’s position in the JPanel.

One complication is drawing a sprite. A sprite may be animated and will be repre-
sented by several images, so which one should be drawn? The task is delegated to the
sprite, by calling its draw() method:

public void draw(Graphics g, int xOffset, int yOffset)
{
 if (type == WorldDisplay.SPRITE) {

sprite.setPosition(xDraw+xOffset, yDraw+yOffset);
 // set its position in the JPanel

sprite.drawSprite(g); // let the sprite do the drawing
 }
 else // the entity is a PICKUP or BLOCK
 g.drawImage(image, xDraw+xOffset, yDraw+yOffset, null);
}

Prior to the draw, the sprite’s pixel position must be set.

draw() in TileOccupier is the only place where the pixel coordinates maintained by
the Sprite class are manipulated. Tile coordinates, held in the TiledSprite subclass,
are utilized in the rest of AlienTiles.

A Sprite on a Tile
A TiledSprite represents a sprite’s position using tile coordinates (xTile, yTile); its
most important method allows a sprite to move from its current tile to an adjacent
one using a compass direction (quadrant): NE, SE, SW, NW. One assumption of
TiledSprite is that a sprite cannot move around inside a tile—the sprite can only
step from one tile to another.

The constructor initializes a sprite’s tile position after checking its validity with
WorldDisplay:

protected int xTile, yTile; // tile coordinate for the sprite
protected WorldDisplay world;

public TiledSprite(int x, int y, int w, int h,
 ImagesLoader imsLd, String name,
 WorldDisplay wd)
{ super(0, 0, w, h, imsLd, name);

This is the Title of the Book, eMatter Edition

A Sprite on a Tile | 369

 setStep(0, 0); // no movement
 world = wd;

 if (!world.validTileLoc(x, y)) { // is tile (x,y) valid
 System.out.println("Alien tile location (" + x + "," + y +
 ") not valid; using (0,0)");
 x = 0; y = 0;
 }
 xTile = x; yTile = y;
} // end of TiledSprite()

Moving to Another Tile
AlienTiles’ staggered tile layout means that the coordinates of the four tiles adjacent
to the current one are obtained in different ways, depending on if the current tile is
on an even or odd row. Figures 13-12 and 13-13 show examples of the two possibilities.

The highlighted tile in Figure 13-12 is in row 3 (odd), and the one in Figure 13-13 is
in row 2 (even). The coordinates of the adjacent tiles are calculated differently in
these two cases.

Figure 13-12. Moving from tile (1,3)

Figure 13-13. Moving from tile (1,2)

0

1

2

3

4

:

0 0 1 1

(1,3)

2 2 3

nw: (1,3) (1,2)

ne: (1,3) (2,2)

se: (1,3) (2,4)

sw: (1,3) (1,4)

0

1

2

3

4

:

0 0 1 1

(1,2)

2 2 3

nw: (1,2) (0,1)

ne: (1,2) (1,1)

se: (1,2) (1,3)

sw: (1,2) (0,3)

This is the Title of the Book, eMatter Edition

370 | Chapter 13: An Isometric Tile Game

tryMove() calculates a new tile coordinate based on the current location and the sup-
plied quadrant. A four-way branch deals with the four possible directions, and each
branch considers whether the starting point is on an even or odd row:

public Point tryMove(int quad)
{
 Point nextPt;
 if (quad == NE)
 nextPt = (yTile%2 == 0)? new Point(xTile,yTile-1) :
 new Point(xTile+1,yTile-1);
 else if (quad == SE)
 nextPt = (yTile%2 == 0)? new Point(xTile,yTile+1) :
 new Point(xTile+1,yTile+1);
 else if (quad == SW)
 nextPt = (yTile%2 == 0)? new Point(xTile-1,yTile+1) :
 new Point(xTile,yTile+1);
 else if (quad == NW)
 nextPt = (yTile%2 == 0)? new Point(xTile-1,yTile-1) :
 new Point(xTile,yTile-1);
 else
 return null;

 if (world.validTileLoc(nextPt.x, nextPt.y))
 // ask WorldDisplay if proposed tile is valid
 return nextPt;
 else
 return null;
} // end of tryMove()

The method is called tryMove() since there is a possibility that the desired quadrant
direction is invalid because the new tile is a no-go area (it is occupied by a block) or
the coordinate lies off the surface. These cases are checked by called validTileLoc()

in WorldDisplay.

The Player Sprite
PlayerSprite represents the player and is a subclass of TiledSprite. The statechart
for PlayerSprite in Figure 13-14 shows that the sprite performs three concurrent
activities.

The move() and tryPickup() transitions are triggered by the user from the keyboard.
The hitByAlien() transition is initiated by the WorldDisplay object when an alien
tells it that it has hit the player.

The transitions in Figure 13-14 are labeled with method names; this is
a practice that I’ll use when there’s a direct mapping from a transition
to a method call. This makes it easier to see the mapping from the stat-
echart to the corresponding code.

This is the Title of the Book, eMatter Edition

The Player Sprite | 371

Moving (and Standing Still)
A PlayerSprite tries to move when the user presses one of the quadrant keys (9, 3, 1,
or 7):

public void move(int quad)
{
 Point newPt = tryMove(quad);
 if (newPt == null) { // move not possible
 clipsLoader.play("slap", false);
 standStill();
 }
 else { // move is possible

setTileLoc(newPt); // update the sprite's tile location
 if (quad == NE)
 setImage("ne");
 else if (quad == SE)
 setImage("se");
 else if (quad == SW)

Figure 13-14. PlayerSprite statechart

initialize

do/ set tile posn

do / try to move to new tile;
Then tell the world:
world.playerHasMoved()

move()
do / set pixel
 posn and
 draw sprite

draw()

move()

move draw

do / hitCount++;
if (hitCount == MAX)
 atPanel.gameOver()

hitByAlien()
attacked

do / try to pickup from
 current tile;
if (possible)
 world.removePickup()

tryPickup()
picking up

This is the Title of the Book, eMatter Edition

372 | Chapter 13: An Isometric Tile Game

 setImage("sw");
 else // quad == NW
 setImage("nw");

world.playerHasMoved(newPt, quad);
 }
} // end of move()

The attempt is handled by TiledSprite’s inherited tryMove() method, and the
sprite’s tile location is updated if it’s successful. The move is dressed up with an
image change for the sprite and the playing of a sound effect if the move is blocked.

The player can press 5 to make the sprite stand still, which only changes its associ-
ated image. Normally, the sprite is poised in a running position, pointing in one of
the quadrant directions.

public void standStill()
{ setImage("still"); }

Drawing the Player
The statechart includes a draw state, triggered by a draw() transition. The draw
activity is implemented by using the setPosition() and draw() methods inherited
from Sprite. The drawing isn’t initiated by code in PlayerSprite but is by
WorldDisplay’s draw() method:

public void draw(Graphics g)
// in WorldDisplay
{ g.drawImage(floorIm, xOffset, yOffset, null); // draw floor image
 wItems.positionSprites(player, aliens); // add sprites
 wItems.draw(g, xOffset, yOffset); // draw things
 wItems.removeSprites(); // remove sprites
}

As explained earlier, all the sprites, including the player, are added to WorldItems

temporarily so they can be drawn in the correct z-order. Each sprite is stored as a
TileOccupier object, and setPosition() and draw() are called from there.

Being Hit by an Alien
PlayerSprite maintains a hit counter, which is incremented by a call to hitByAlien()

from the WorldDisplay object:

public void hitByAlien()
{ clipsLoader.play("hit", false);
 hitCount++;
 if (hitCount == MAX_HITS) // player is dead

atPanel.gameOver();
}

When hitCount reaches a certain value (MAX_HITS), it’s all over. The sprite doesn’t ter-
minate though; it only notifies AlienTilePanel. This allows AlienTilesPanel to carry
out “end of game” tasks, which in this case are reporting the game score and playing

This is the Title of the Book, eMatter Edition

The Alien Sprite | 373

a sound clip of applause. AlienTilesPanel could do a lot more, such as ask users if
they wanted to play another game. These kinds of game-wide activities should be
done at the game panel level and not by a sprite.

Trying to Pick Up a Pickup
The user tries to pick up an item by pressing 2 on the numbers keypad. The hard
work here is determining if the sprite’s current tile location contains a pickup and to
remove that item from the scene. The two operations are handled by WorldDisplay

methods:

public boolean tryPickup()
{
 String pickupName;
 if ((pickupName = world.overPickup(getTileLoc())) == null) {
 clipsLoader.play("noPickup", false); // nothing to pickup
 return false;
 }
 else { // found a pickup
 clipsLoader.play("gotPickup", false);

world.removePickup(pickupName); // tell WorldDisplay
 return true;
 }
}

The name of the pickup on the current tile is obtained and used in the deletion
request. If the tile is empty, a sound clip will be played instead.

The Alien Sprite
AlienSprite implements the basic behavior of an alien sprite and is subclassed to cre-
ate the AlienAStarSprite and AlienQuadSprite classes. AlienSprite is a subclass of
TiledSprite.

Alien behavior can best be understood by considering the statechart in Figure 13-15.

The plan move state is entered by the WorldDisplay object, notifying the alien that
the player has moved. This gives it the opportunity to recalculate its current direc-
tion or destination, but the precise algorithm will vary from one AlienSprite sub-
class to another.

The other activity is the usual update/draw cycle driven by the animation loop in
AlienTilesPanel. The alien tries to hit the player while in the attack state. A success-
ful hit is reported to the WorldDisplay object, and the alien stays where it is. Other-
wise, the alien updates its position, in the hope of getting closer to the player. In the
draw state, the sprite’s tile coordinates are mapped to a pixel location and the
sprite’s image is rendered.

This is the Title of the Book, eMatter Edition

374 | Chapter 13: An Isometric Tile Game

Responding to a player’s movement is sprite-specific, so playerHasMoved() is empty
in AlienSprite:

public void playerHasMoved(Point playerLoc)
{ }

PlayerLoc contains the current tile coordinates for the PlayerSprite object.

Updating the AlienSprite
The attack, stationary, and move states are encapsulated in update():

// globals
private final static int UPDATE_FREQ = 30;
private int updateCounter = 0;

public void update()
{
 updateCounter = (updateCounter+1)%UPDATE_FREQ;
 if (updateCounter == 0) { // reduced update frequency

Figure 13-15. Alien statechart

initialize

do/ set tile posn

do / calculate
 quad direction

playerHas Moved()
plan move

do / try to
 hit player

update()
attack

[!hit player] draw()

draw()

update()

do / set pixel
 posn and
 draw sprite

draw

stationary

do / update
 tile posn
 using quad

move

[hit player]
/worldhitByAlien()

This is the Title of the Book, eMatter Edition

The Alien Sprite | 375

 if (!hitPlayer())
move();

 }
}

update() is called from AlienTilesPanel’s animation loop, which executes at 40 FPS.
This makes the aliens respond too quickly. The solution is to use a counter to reduce
the update frequency.

This issue only became apparent when the game was first tested with-
out the alien movement being slowed down. At 40 FPS, the aliens
always caught the user’s sprite quickly, even when the user kept the
move keys constantly pressed.

The A* pathfinding algorithm in AlienAStarSprite becomes deadly
accurate when it’s recalculated so frequently. There’s no way to avoid
capture, even if the user randomly changes direction at frequent
intervals.

hitPlayer() checks if the alien is on the same tile as the player. If it is, then the
WorldDisplay object will be informed of a hit:

private boolean hitPlayer()
{
 Point playerLoc = world.getPlayerLoc();
 if (playerLoc.equals(getTileLoc())) {

world.hitByAlien(); // whack!
 return true;
 }
 return false;
}

The details of the move state will vary from one alien to another, which translates to
the alien subclasses overriding the move() method.

AlienSprite’s move() carries out a random walk. getRandDirection() (a method inher-
ited from TiledSprite) returns a quadrant, and this is tried out with TiledSprite’s
tryMove() method:

protected void move()
{
 int quad = getRandDirection();
 Point newPt;
 while ((newPt = tryMove(quad)) == null)
 quad = getRandDirection();
 // the loop could repeat for a while,
 // but it should eventually find a direction
setMove(newPt, quad);

}

This is the Title of the Book, eMatter Edition

376 | Chapter 13: An Isometric Tile Game

The new tile coordinate is use to update the sprite’s position in setMove():

protected void setMove(Point newPt, int quad)
{
 if (world.validTileLoc(newPt.x, newPt.y)) { // should be ok
 setTileLoc(newPt);
 if ((quad == NE) || (quad == SE))
 setImage("baddieRight");
 else if ((quad == SW) || (quad == NW))
 setImage("baddieLeft");
 else
 System.out.println("Unknown alien quadrant: " + quad);
 }
 else
 System.out.println("Cannot move alien to (" + newPt.x +
 ", " + newPt.y + ")");
} // end of doMove()

setMove() double-checks the validity of the new tile and changes the sprite’s appear-
ance. The method is protected since only subclasses of AlienSprite will use it (as
part of the subclasses’ versions of move()).

update() handles the attack, stationary, and move states of the alien statechart. This
leads to the question: Where is the draw state processed? As with the PlayerSprite

class, this task is part of the drawing operation carried out by WorldDisplay through
its WorldItems object.

The Quadrant-Based Alien Sprite
AlienQuadSprite is a subclass of AlienSprite and overrides the playerHasMoved() and
move() methods. AlienQuadSprite has the same basic statechart as AlienSprite

(shown in Figure 13-15), but the plan move and move states are different.

In the plan move state, the alien calculates a quadrant direction (NE, SE, SW, or NW).
The direction is chosen by finding the nearest pickup point to the player, and then
calculating that pickup’s quadrant direction relative to the alien. This gives the alien
a “pickup-guarding” behavior, as the alien then moves towards the pickup that the
player (probably) wants to collect.

Planning a Move
playerHasMoved() calculates a quadrant direction for the sprite:

// global
private int currentQuad;

public void playerHasMoved(Point playerLoc)
{
 if (world.hasPickupsLeft()) {

This is the Title of the Book, eMatter Edition

The Quadrant-Based Alien Sprite | 377

 Point nearPickup = world.nearestPickup(playerLoc);
 // return coord of nearest pickup to the player
 currentQuad = calcQuadrant(nearPickup);
 }
}

private int calcQuadrant(Point pickupPt)
/* Roughly calculate a quadrant by comparing the
 pickup's point with the alien's position. */
{
 if ((pickupPt.x > xTile) && (pickupPt.y > yTile))
 return SE;
 else if ((pickupPt.x > xTile) && (pickupPt.y < yTile))
 return NE;
 else if ((pickupPt.x < xTile) && (pickupPt.y > yTile))
 return SW;
 else
 return NW;
 } // end of calcQuadrant()

calcQuadrant() could be more complex, but the emphasis is on speed.
playerHasMoved() and calcQuadrant() will be called frequently—whenever the
player moves—so there is no need to spend a large amount of time processing a sin-
gle move.

This is an example of the common tradeoff between accuracy and speed.
calcQuadrant() is called often, so should be fast and doesn’t need to be accurate
since any errors will be smoothed out by subsequent calls. Also, I don’t want to
make the alien’s behavior too sophisticated or the player will always be caught,
which isn’t much fun.

This kind of deliberately inaccurate algorithm needs to be tested in real gameplay to
ensure that it’s not too inadequate, and perhaps to see if it can be simplified more.

Moving the AlienQuadSprite
The sprite tries to move in the currentQuad direction. If that direction leads to a no-
go tile or a tile holding a block, then the sprite randomly will try another direction.

protected void move()
{ int quad = currentQuad;
 Point newPt;
 while ((newPt = tryMove(quad)) == null)
 quad = getRandDirection();
 // the loop could repeat for a while,
 // but it should eventually find a way
 setMove(newPt, quad);
}

This is the Title of the Book, eMatter Edition

378 | Chapter 13: An Isometric Tile Game

The use of a randomly chosen direction when the sprite is blocked
may lead to it repeatedly picking a blocked direction, especially if it’s
stuck in a cul-de-sac. This is unlikely to be a problem for long, and
this kind of suboptimal behavior is endearing to a player who is use to
being chased at close quarters by deadly aliens.

The A*-Based Alien Sprite
In a similar manner to AlienQuadSprite, AlienAStarSprite is a subclass of
AlienSprite and overrides its superclass’s playerHasMoved() and move() methods.

The alien calculates a path to the player using the A* pathfinding algorithm. The
path is stored as a sequence of tile coordinates that need to be visited to reach the
player. In each call to move(), the sprite moves to the next coordinate in the
sequence, giving it a “player-chasing” behavior.

Planning a Move
Every time the user presses one of the move keys, the PlayerSprite object moves to
an adjacent tile, and it notifies WorldDisplay by calling playerHasMoved(). You don’t
want to recalculate a path after every player move since the change will be minimal
but expensive to generate. Instead, the path is generated only when the player has
moved MAX_MOVES steps. This saves on computation and makes things a bit easier for
the player:

// globals
private final static int MAX_MOVES = 5;

private int numPlayerMoves = 0;
private ArrayList path; // tile coords going to the player
private int pathIndex = 0;

public void playerHasMoved(Point playerLoc)
{ if (numPlayerMoves == 0)

calcNewPath(playerLoc);
 else
 numPlayerMoves = (numPlayerMoves+1)%MAX_MOVES;
}

private void calcNewPath(Point playerLoc)
{ path = aStarSearch(getTileLoc(), playerLoc);
 pathIndex = 0; // reset the index for the new path
}

This is the Title of the Book, eMatter Edition

The A*-Based Alien Sprite | 379

The A* Algorithm
A* search finds a path from a start node to a goal node; in AlienTiles, the starting
point is the alien’s current tile position and the goal is the player’s tile. The algo-
rithm maintains a set of tiles it has seen but not visited. It chooses the highest scor-
ing tile from that set and moves there. The search is finished if that tile holds the
player; otherwise, it stores the locations of the adjacent tiles in its set of seen-but-not-
visited tiles. The algorithm then repeats until the player’s tile is found. The algo-
rithm scores a tile (for algorithmic purposes, called a node) by estimating the cost of
the best path that starts at the alien’s position, goes through the node being exam-
ined, and finishes at the player’s tile. The scoring formula is expressed using two
functions, usually called g() and h(). I’ll break with tradition and call them
getCostFromStart() and costToGoal() for clarity’s sake:

score(node) = node.getCostFromStart() + node.costToGoal()

getCostFromStart() is the smallest cost of arriving at node from the starting tile (the
alien’s current position). costToGoal() is a heuristic estimate (an educated guess) of
the cost of reaching the goal tile (the player’s location) from node.

A* search is popular because it’s guaranteed to find the shortest path from the start
to the goal as long as the heuristic estimate, costToGoal(), is admissible. Admissibil-
ity means that the node.costToGoal() value is always less than (or equal to) the
actual cost of getting to the goal from the node. The A* algorithm has been proven to
make the most efficient use of costToGoal(), in the sense that other search tech-
niques cannot find an optimal path by checking fewer nodes.

If costToGoal() is inaccurate—it returns too large a value—then the search will
become unfocused, examining nodes which won’t contribute to the final path. The
generated path may not be the shortest possible. However, a less accurate
costToGoal() function may be easier (and faster) to calculate, so path generation may
be quicker. Speed might be preferable, as long as the resulting path isn’t excessively
meandering. A less accurate path gives the player more of a chance to evade capture
(and death).

In visual terms, an optimal path goes directly to the goal, examining only the nodes
along the edges of that path. A suboptimal path wanders about, with many more
nodes examined on either side. The A* demo applet by James Macgill at http://
www.ccg.leeds.ac.uk/james/aStar/ allows the costToGoal() function to be varied,
and the incremental generation of the path is displayed.

Figure 13-16 shows the applet’s calculations to find a path from a start node at the
top of a grid to a goal node at the bottom, with few wasteful operations.

Figure 13-17 shows the result when the applet uses an estimation function that is much
worse, resulting in unnecessary computation, though a path was found eventually.

This is the Title of the Book, eMatter Edition

380 | Chapter 13: An Isometric Tile Game

getCostFromStart() and costToGoal() rely on calculating a cost of moving from one
tile to another. Various costing approaches are possible, including the distance
between the tiles, the cost in time, the cost of fuel, or weights based on the terrain
type. AlienTiles ignores these factors (you don’t want this chapter to be longer, do
you?) and uses raw distance.

A* employs two list data structures, usually called open and closed. open is a list of
tiles that have not yet been examined (i.e., their adjacent tiles have not been scored).
closed contains the tiles which have been examined. The tiles in open are sorted by

Figure 13-16. A* applet path calculations with a good estimator

Figure 13-17. A* applet path calculations with a bad estimator

This is the Title of the Book, eMatter Edition

The A*-Based Alien Sprite | 381

decreasing score, so the most promising tile is always the first one. The following
pseudocode shows how the A* search progresses:

add the start tile to open;
create an empty closed list;

while (open isn't empty) {
 get the highest scoring tile x from open;
 if (x is the goal tile)

return a path to x; // I'm done
 else {
 for (each adjacent tile y to x) {
 calculate the costFromStart() value for y;
 if ((y is already in open or closed) and
 (value is no improvement))
 continue; // ignore y
 else {
 delete old y from open or close (if present);
 calculate costToGoal() and the total score for y;
 store y in open;
 }
 }
 }
 put x into closed; // since I'm finished with it
}
report no path found;

This pseudocode is based on code in “The Basics of A* for Path Plan-
ning” by Bryan Stout, from Game Programming Gems (Charles River
Media), edited by Mike DeLoura.

The translation of the pseudocode to the aStarSearch() method is quite direct:

private ArrayList aStarSearch(Point startLoc, Point goalLoc)
{
 double newCost;
 TileNode bestNode, newNode;

 TileNode startNode = new TileNode(startLoc); // set start node
 startNode.costToGoal(goalLoc);

 // create the open queue and closed list
 TilesPriQueue open = new TilesPriQueue(startNode);
 TilesList closed = new TilesList();

 while (open.size() != 0) { // while some node still left
 bestNode = open.removeFirst();
 if (goalLoc.equals(bestNode.getPoint())) // reached goal
 return bestNode.buildPath(); // return a path to that goal
 else {
 for (int i=0; i < NUM_DIRS; i++) { // try every direction
 if ((newNode = bestNode.makeNeighbour(i, world)) != null) {
 newCost = newNode.getCostFromStart();

This is the Title of the Book, eMatter Edition

382 | Chapter 13: An Isometric Tile Game

 TileNode oldVer;
 // if this tile already has a cheaper open or closed node
 // then ignore the new node
 if (((oldVer=open.findNode(newNode.getPoint())) !=null)&&
 (oldVer.getCostFromStart() <= newCost))
 continue;
 else if (((oldVer = closed.findNode(newNode.getPoint()))
 != null) &&
 (oldVer.getCostFromStart() <= newCost))
 continue;
 else { // store new/improved node, removing old one
 newNode.costToGoal(goalLoc);
 // delete the old details (if they exist)
 closed.delete(newNode.getPoint()); // may do nothing
 open.delete(newNode.getPoint()); // may do nothing
 open.add(newNode);
 }
 }
 } // end of for block
 } // end of if-else
 closed.add(bestNode);
 }
 return null; // no path found
} // end of aStarSearch()

The code is simplified by being able to rely on the TilesList and TilesPriQueue

classes to represent the closed and open lists. They store tile information as TileNode

objects. TilesList is essentially a wrapper for an ArrayList of TileNode objects, with
additional methods for finding and deleting a node based on a supplied coordinate.
TilesPriQueue is a subclass of TilesList and stores TileNodes sorted by decreasing
node score (i.e., the highest scoring node comes first).

Moving the AlienAStarSprite
AlienAStarSprite overrides AlienSprite’s move() method, so the next move is to the
next tile in the path calculated by the A* algorithm:

protected void move()
{
 if (pathIndex == path.size()) // current path is used up
 calcNewPath(world.getPlayerLoc());
 Point nextPt = (Point) path.get(pathIndex);
 pathIndex++;
 int quad = whichQuadrant(nextPt);
 setMove(nextPt, quad);
}

If move() finds the destination of the current path has been reached (i.e., the sprite
has reached the goal node), it will initiate the calculation of a new path by calling
calcNewPath().

This is the Title of the Book, eMatter Edition

Storing Tile Details | 383

Storing Tile Details
A TileNode object stores details about a particular tile node, which are used by the A*
algorithm when it looks at that node. The most important are values for the
getCostFromStart() and costToGoal() functions so the overall score for the node can
be worked out.

As explained in the last section, the getCostFromStart() function is the cost of the
path that leads to this node from the starting tile. This algorithm’s precise definition
will vary from game to game, but I use the simplest measure—the length of the
path—with the step between adjacent tiles assigned a value of 1. costToGoal() esti-
mates the cost of going from this tile node to the goal.

This is a little harder to calculate in AlienTiles due to the staggered
layout of the tiles as detailed below.

Each TileNode stores a reference to its parent, the tile node that was visited before it.
The sequence of nodes from this particular tile node back to the starting tile defines
the sprite’s path (in reverse).

Calculating the Cost to the Goal
costToGoal() treats the tile coordinates of the current tile and the goal as points on
the XY plane and calculates the length of the floor of the straight line between them:

public void costToGoal(Point goal)
{ double dist = coord.distance(goal.x, goal.y);
 costToGoal = Math.floor(dist);
}

However, the tiles are positioned in staggered rows, which means the straight line
distance can be an inaccurate measure. Therefore, the costToGoal() value may not
be less than or equal to the cheapest path, so the path found by A* may not be opti-
mal. However, the calculation is simple and fast, and the path is sufficient for
AlienTiles.

This “sufficiency” was checked by playing the game and seeing how
quickly and accurately the AlienAStarSprite sprites closed in on the
player. The algorithm is arguably still too good since the aliens almost
always take the shortest path to the player and are very fast.

The reason for using Math.floor() can be justified by considering an example.
Figure 13-18 shows the four adjacent tiles to tile (1,3).

This is the Title of the Book, eMatter Edition

384 | Chapter 13: An Isometric Tile Game

Figure 13-19 maps the five tile points to a rectangular grid and shows the straight
line distances between them.

The cost of moving to a neighbor is 1 in all cases. However, the straight-line dis-
tances to two of the tiles (the north east and south east ones) are the square root of
two. Fortunately, the floor of all the distances is one (1.414 is rounded down to one),
which makes the cost function optimal.

The Math.floor() solution works for adjacent tiles but is less successful when the
straight-line distances span multiple tiles.

Further Reading
The Isometrix Project (http://www.isometrix.org/; http://isometrix.tsx.org/) concen-
trates on isometric tile games. The articles section covers topics such as map for-
mats, tile layout, placing objects, and lighting. The engines section lists code sources,
tools, and demos.

Figure 13-18. Tiles adjacent to (1,3)

Figure 13-19. Straight-line distances between the tiles in Figure 13-18

0

1

2

3

4

:

0 0 1 1

(1,3)

2 2 3

nw: (1,3) (1,2)

ne: (1,3) (2,2)

se: (1,3) (2,4)

sw: (1,3) (1,4)

1 2 3 4

1

2

3

4

nw ne

sesw

(1,3)

(1,2) (2,2)

(1,4) (2,4)

1

1 2

0

2

(2,3)

This is the Title of the Book, eMatter Edition

Further Reading | 385

I mentioned GameDev.net’s “Isometric and Tile-based Games” section at the end of
the last chapter (http://www.gamedev.net/reference/list.asp?categoryid=44). It con-
tains over 30 articles on tile-based gaming.

A good introductory book is Isometric Game Programming with DirectX 7.0 (Muska
and Lipman/Premium-Trade) by Ernest Pazera. The first 230 or so pages are about
Windows programming, and the examples use C. However, there’s good stuff on the
basics of rectangular and isometric games tile plotting, drawing, world and map
coordinate systems, and moving about a map.

Some modern Java isometric or tile games examples, which come with source code,
are:

Javagaming.org: Scroller (http://sourceforge.net/projects/jgo-scroller/)
A full-screen isometric scrolling game intended to illustrate how to write high-
performance 2D games in J2SE 1.4.

haphazard (http://haphazard.sourceforge.net/)
A role-playing game set in an isometric world.

CivQuest (http://civquest.sourceforge.net/)
A strategy game inspired by Civilization, including game play against AI oppo-
nents. The coding is at an earlier stage.

IsometricEngine (http://sourceforge.net/projects/jisoman/)
An isometric game engine written by Jason Gauci, with support for line-of-sight
calculations, entity and terrain objects, a tile map and wall map. It has a graphi-
cally mode for designing maps.

JTBRPG (http://jtbrpg.sourceforge.net/)
Includes tools for creating role-playing isometric game content and an engine for
making it playable.

YARTS (http://www.btinternet.com/~duncan.jauncey/old/javagame/)
YARTS (Yet Another Real Time Strategy game) is a 2D rectangular tile-based
real-time strategy game. The source code for the first version is available.

Hephaestus (http://kuoi.asui.uidaho.edu/~kamikaze/Hephaestus/)
A role-playing game construction kit based around 2D rectangular tiles.

Mappy for PC (http://www.tilemap.co.uk/mappy.php) can create isometric and hexag-
onal tile maps, and there are several Java-based playback libraries, including JavaMappy
(http://www.alienfactory.co.uk/javamappy/).

The surface image created for AlienTiles (shown in Figure 13-3) was hacked
together using MS PowerPoint and Paint—a reasonable approach for demos but not
recommended for real maps.

This is the Title of the Book, eMatter Edition

386 | Chapter 13: An Isometric Tile Game

A* Information
The workings of the A* algorithm can be hard to visualize. The A* Demo page (http://
www.ccg.leeds.ac.uk/james/aStar/) by James Macgill, lets the user create a search map
and watch the scoring process in action. The applet source code can be downloaded.

The pseudocode I used is based on code from “The Basics of A* for Path Planning”
by Bryan Stout, from Game Programming Gems (Charles River Media), edited by
Mike DeLoura. There are other articles in Game Programming Gems related to A*
optimization worth checking out as well.

An online version of another A* article by Bryan Stout, “Smart Moves: Intelligent Path-
finding,” is available at http://www.gamasutra.com/features/19970801/pathfinding.htm.
It includes a PathDemo application which graphically illustrates several search algo-
rithms, including A*.

The A* algorithm tutor (http://www.geocities.com/SiliconValley/Lakes/4929/astar.html)
by Justin Heyes-Jones offers a detailed account of the algorithm.

Amit J. Patel’s web site on games programming (http://www-cs-students.stanford.edu/
~amitp/gameprog.html) covers several relevant topics, including pathfinding (with a
bias towards A*), tile games, and the use of hexagonal grids.

Information on A* can be found at game AI sites, usually under the pathfinding
heading. Two excellent sources are:

• Game AI Site (http://www.gameai.com/)

• GameDev’s AI section (http://www.gamedev.net/reference/list.asp?categoryid=18)

A modern AI textbook, which discusses several search algorithms (including A*), is
Artificial Intelligence: A Modern Approach (Prentice Hall) by Stuart Russell and Peter
Norvig. Many of the pseudocode examples from the book have been rewritten in
Java (including those for doing searches), and they’re available from the web site,
http://aima.cs.berkeley.edu/.

This is the Title of the Book, eMatter Edition

387

Chapter 14 CHAPTER 14

Introducing Java 3D

The next 15 chapters will be about programming 3D games using Java 3D, Java’s
scene graph API. A scene graph makes 3D programming easier for novices (and for
experienced programmers) because it emphasizes scene design, rather than render-
ing, by hiding the graphics pipeline. The scene graph supports complex graphical
elements such as 3D geometries, lighting modes, picking, and collision detection.
Java 3D is a scene graph API.

I’ll summarize the main elements of Java 3D in this chapter, leaving program exam-
ples aside for the moment. Then, as in Chapter 1, I’ll examine Java 3D’s suitability
for games programming by considering the criticisms leveled against it.

Java 3D
The Java 3D API provides a collection of high-level constructs for creating, render-
ing, and manipulating a 3D scene graph composed of geometry, materials, lights,
sounds, and more. Java 3D was developed by Sun Microsystems, and the most
recent stable release is Version 1.3.1.

There is a Version 1.3.2, but it’s a bug fix release under review as I
write this in December 2004. For example, a rarely occurring bug with
the J3DTimer class has been fixed.

By the time you read this, Version 1.3.2 will have been finalized (an
FCS release will be available).

There are two Java 3D variants: one implemented on top of OpenGL, and the other
above DirectX Graphics. OpenGL is a popular software API for writing 3D (and 2D)
graphics applications across a wide range of hardware and operating systems (http://
www.opengl.org/). It’s a low-level API based around a graphics pipeline for pixel and
vertex manipulation.

This is the Title of the Book, eMatter Edition

388 | Chapter 14: Introducing Java 3D

Prior to the 1.3.2 bug fix release, a programmer had to choose whether
to download the OpenGL version of Java 3D or the DirectX imple-
mentation since they were offered as separate installers. With Version
1.3.2 (build 7 and later), both versions are in a single download.

DirectX Graphics supports a traditional graphics pipeline, describing all geometry in
terms of vertices and pixels. It’s part of DirectX, a collection of related gaming mod-
ules aimed at MS Windows (http://www.microsoft.com/directx). The other DirectX
APIs support 3D audio, networking, input device integration, multimedia, and
installation management.

DirectX or OpenGL?
Often, the debate about which version of Java 3D is better is a debate about the rela-
tive merits of DirectX Graphics and OpenGL.

In most technical areas, DirectX Graphics and OpenGL are almost equivalent since
both are based on the same graphics pipeline architecture and ideas flow between the
two. The most significant differences between the two APIs are unrelated to their
functionality. OpenGL is ported to a wide range of platforms and OSs, and DirectX
is limited to PCs running Windows and the Xbox. DirectX is controlled by Microsoft
alone, and the OpenGL Architecture Review Board (ARB) allows input from many
partners.

The Direct X Graphics version of Java 3D is only available for Windows, where some
users report that it’s marginally faster than the OpenGL implementation. However,
I’ve never noticed any difference when I’ve tried both systems.

The future seems brightest for the OpenGL version, which is the main focus of the
current “bug fix” release of Java 3D, Version 1.3.2. I’ll use the stable OpenGL ver-
sion (1.3.1) in the rest of this book. It can be downloaded from http://java.sun.com/
products/java-media/3D/, together with ample documentation and a long tutorial.

The FCS release of Version 1.3.2 will be available by the time you read
this. You can obtain it from https://java3d.dev.java.net/.

The Scene Graph
Java 3D uses a scene graph to organize and manage a 3D application. The underly-
ing graphics pipeline is hidden, replaced by a tree-like structure built from nodes rep-
resenting 3D models, lights, sounds, the background, the camera, and many other
scene elements.

This is the Title of the Book, eMatter Edition

Java 3D | 389

The nodes are typed, the main division being between Group and Leaf nodes. A Group

node is one with child nodes, grouping the children so operations such as transla-
tions, rotations, and scaling can be applied en masse. Leaf nodes are the leaves of the
graph (did you guess that?), which often represent the visible things in the scene
such as the models, but may be nontangible entities, such as lighting and sounds.
Additionally, a Leaf node (e.g., for a 3D shape) may have node components, specify-
ing color, reflectivity, and other attributes of the leaf.

The scene graph can contain behaviors, nodes holding code that can affect other
nodes in the graph at runtime. Typical behavior nodes move shapes, detect and
respond to shape collisions, and cycle lighting from day to night.

Scene graph is used, rather than scene tree, because it’s possible for nodes to be
shared (i.e., have more than one parent).

Before looking at a real Java 3D scene graph, Figure 14-1 shows how the scene graph
idea can be applied to defining the contents of an office.

The office Group node is the parent of Leaf nodes representing a desk and two chairs.
Each Leaf utilizes geometry (shape) and color node components, and the chair geom-
etry information is shared. This sharing means that both chairs will have the same
shape but will be colored differently.

The choice of symbols in Figure 14-1 comes from a standard symbol set (shown in
Figure 14-2), used in all of this book’s Java 3D scene graph diagrams. I’ll explain the
VirtualUniverse and Locale nodes and the Reference relationship in due course.

Some Java 3D scene graph nodes

The Java 3D API can be viewed as a set of classes that subclass the Group and Leaf

nodes in various ways. The Leaf class is subclassed to define different kinds of 3D
shapes and environmental nodes (i.e., nodes representing lighting, sounds, and
behaviors).

Figure 14-1. Scene graph for an office

desk

brown geometry

office

chair chair

black geometry blue

This is the Title of the Book, eMatter Edition

390 | Chapter 14: Introducing Java 3D

The main shape class is called Shape3D, which uses two node components to define
its geometry and appearance; these classes are called Geometry and Appearance.

The Group class supports basic node positioning and orientation for its children and
is subclassed to extend those operations. For instance, BranchGroup allows children to
be added or removed from the graph at runtime; TransformGroup permits the posi-
tion and orientation of its children to be changed.

The HelloUniverse scene graph

The standard first example for Java 3D programmers is HelloUniverse. (It appears in
Chapter 1 of Sun’s Java 3D tutorial.) It displays a rotating colored cube, as in
Figure 14-3.

The scene graph for this application is given in Figure 14-4.

VirtualUniverse is the top node in every scene graph and represents the virtual world
space and its coordinate system. Locale acts as the scene graph’s location in the vir-
tual world. Below the Locale node are two subgraphs—the left branch is the content
branch graph, holding program-specific content such as geometry, lighting, textures,
and the world’s background. The content branch graph differs significantly from one
application to another.

The ColorCube is composed from a Shape3D node and associated Geometry and
Appearance components. Its rotation is carried out by a Behavior node, which affects
the TransformGroup parent of the ColorCube’s shape.

Figure 14-2. Scene graph symbols

Scene Graph Nodes Node Relationships

Virtual Universe

Locale

Group

Leaf

Node Component

Other Nodes

Parent-Child

Reference

This is the Title of the Book, eMatter Edition

Java 3D | 391

Figure 14-3. A rotating colored cube

Figure 14-4. Scene graph for HelloUniverse

Virtual Universe

Locale

BG

ViewPlatformShape3DBehavior

Can be created with
the SimpleUniverse utility

view
branch
graph

ColorCube

TG

BG

TG

View Canvas3D

Geometry Appearance

content
branch
graph

BranchGroup
node

TransformGroup
noderotations

This is the Title of the Book, eMatter Edition

392 | Chapter 14: Introducing Java 3D

The righthand branch below Locale is the view branch graph, which specifies the
users’ position, orientation, and perspective as they look into the virtual world from
the physical world (e.g., from in front of a monitor). The ViewPlatform node stores
the viewer’s position in the virtual world; the View node states how to turn what the
viewer sees into a physical world image (e.g., a 2D picture on the monitor). The
Canvas3D node is a Java GUI component that allows the 2D image to be placed inside
a Java application or applet.

The VirtualUniverse, Locale, and view branch graph often have the same structure
across different applications since most programs use a single Locale and view the
virtual world as a 2D image on a monitor. For these applications, the relevant nodes
can be created with Java 3D’s SimpleUniverse utility class, relieving the programmer
much graph construction work.

Java 3D Strengths
The core strengths of Java 3D are its scene graph, its performance, collection of
unique features, the fact that it’s Java and can call upon an enormous number of sup-
port packages and APIs, and its extensive documentation and examples.

The Scene Graph
The scene graph has two main advantages: it simplifies 3D programming and accel-
erates the resulting code. The scene graph hides low-level 3D graphics elements and
allows the programmer to manage and organize a 3D scene. A scene graph supports
many complex graphical elements.

At the Java 3D implementation level, the scene graph is used to group shapes with
common properties, carry out view culling, occlusion culling, level of detail selec-
tion, execution culling, and behavior pruning, all optimizations that must be coded
directly by the programmer in lower-level APIs. Java 3D utilizes Java’s multithread-
ing to carry out parallel graph traversal and rendering, both useful optimizations.

Performance
Java 3D is designed with performance in mind, which it achieves at the high level by
scene graph optimizations and at the low level by being built on top of OpenGL or
DirectX Graphics.

Some programmer-specified scene graph optimizations are available through capabil-
ity bits, which state what operations can/cannot be carried out at runtime (e.g., pro-
hibiting a shape from moving). Java 3D also permits the programmer to bypass the
scene graph, either totally by means of an immediate mode, or partially via the mixed
mode. Immediate mode gives the programmer greater control over rendering and

This is the Title of the Book, eMatter Edition

Java 3D Strengths | 393

scene management, but it isn’t often required. Retained mode programs only use the
scene graph API. All the examples in this book employ retained mode.

Unique Features
Java 3D’s view model separates the virtual and physical worlds through the
ViewPlatform and View nodes. This makes it straightforward to reconfigure an appli-
cation to utilize many output devices, from a monitor, to stereo glasses, to CAVEs.

Virtual world behavior is coded with Behavior nodes in the scene graph and is trig-
gered by events. Among other things, this offers a different style of animation based
on responding to events instead of the usual update redraw/cycle you’ve seen in all
my 2D games programs.

The core Java 3D API package, javax.media.j3d, supports basic polygons and trian-
gles within a scene graph; the com.sun.j3d packages add a range of utility classes
including ColorCube and SimpleUniverse, mouse and keyboard navigation behaviors,
audio device handling, and loaders for several 3D file formats.

Geometry compression is possible, often reducing size by an order of magnitude.
When this is combined with Java’s NIO and networking, it facilitates the ready
transfer of large quantities of data between applications such as multiplayer games.

Java 3D allows 2D and 3D audio output, ambient and spatialized sound. Unfortu-
nately, the sound system has bugs. Consequently, spatialized sound isn’t available by
default in Java 3D 1.3.2. Version 1.4 may offer a JOALMixer class instead, i.e., a
JOAL-based audio device. JOAL is a Java binding for a 3D audio API called OpenAL,
which is supported by many sound cards.

Java Integration
Java 3D is Java and offers object orientation (classes, inheritance, polymorphism),
threads, exception handling, and more. Java 3D can easily make use of other Java
APIs, such as JMF and JAI. The Java Media Framework (JMF) includes mechanisms
for playing audio and video segments and can be extended to support new forms or
audio and video (http://java.sun.com/products/java-media/jmf). Java Advanced Imag-
ing (JAI) provides many advanced image processing features, including over 100
imaging operators, tiling of large images, network-based capabilities, and the means
to add new image processing features (http://java.sun.com/products/java-media/jai).

Documentation and Examples
The Java 3D distribution comes with about 40 small to medium examples. They’re a
great help but somewhat lacking in documentation. Fortunately, more resources are
online. Sun’s Java 3D tutorial is available at http://java.sun.com/products/java-media/3D/
collateral/. The tutorial is a good introduction to Java 3D but can confuse beginners.

This is the Title of the Book, eMatter Edition

394 | Chapter 14: Introducing Java 3D

Ben Moxon has a good introductory Java 3D tutorial based around getting a MilkShape
3D figure to move over a hilly terrain (http://www.newview.co.uk/e/tutorials/java3d/
index.jsp) and is called The Little Purple Dude Walks.

Criticisms of Java 3D for Games
Programming
The misconceptions and complaints about Java 3D closely match those used against
Java, which we discussed in Chapter 1:

• Java 3D is too slow for games programming.

• Java 3D is too high-level.

• Java 3D isn’t supported on games consoles, so why bother using it?

• No one uses Java 3D to write real games.

• Sun Microsystems isn’t interested in supporting Java 3D.

Java 3D Is Too Slow for Games
This claim comes with almost no evidence. Jacob Marner did the only serious test
(2002). Marner carried out comparative performance tests on OpenGL and Java 3D
versions of the same 3D noninteractive space of randomly positioned, scaled and
rotated boxes. He used the C++ and GL4Java bindings for OpenGL, and used

Reading Up
I recommend three Java 3D textbooks as supplemental reading:

• Java 3D API Jump-Start by Aaron E. Walsh and Doug Gehringer (Prentice Hall)

• Java 3D Programming by Daniel Selman (Manning)

• Java Media APIs: Cross-Platform Imaging, Media, and Visualization by Alejandro
Terrazas, John Ostuni, and Michael Barlow (Sams)

The Walsh and Gehringer text is an excellent overview, using code snippets rather than
pages of listings. It complements the Java 3D tutorial.

The Selman book is more advanced. For the games enthusiast, Selman describes a
Doom-like world, utilizing first-person perspective keyboard navigation and scene cre-
ation from a 2D map. The world contains bookcases, pools of water, flaming torches,
and animated guards.

Terrazas is involved in VR research and business, so there’s a heavy slant in the 3D part
of his book toward less common topics such as sensors, head tracking, and a bit on
CAVEs. There’s an example combining Java 3D and JMF to create a streaming 3D chat
room.

This is the Title of the Book, eMatter Edition

Criticisms of Java 3D for Games Programming | 395

Version 1.3.0 beta 1 of Java 3D. His master’s thesis, Evaluating Java for Game
Development, can be obtained from http://www.rolemaker.dk/articles/evaljava/.

The C++ version was fastest, the GL4Java implementation a little slower, and Java
3D about 2.5 times slower. However, the slowdown was due to a performance bug
in that version of Java 3D and a poorly optimized scene graph. The timings haven’t
been repeated with the latest version of Java 3D or with more recent Java bindings to
OpenGL such as JOGL or LWJGL.

Marner’s code highlights some striking differences between Java 3D and OpenGL.
The C++ and GL4Java programs are of comparable sizes (about 10 classes and 30 pages
of code with documentation), but the Java 3D application is smaller (5 classes and
11 pages). Marner comments on the complexity of the OpenGL code, which requires
a kd-tree data structure, a culling algorithm around the view frustum, and prepro-
cessing vertex operations. All of these capabilities are built into Java 3D, so they
didn’t need to be implemented in the Java 3D application. In the GL4Java source,
the optimized view frustum algorithm is hard to understand but is responsible for an
order of magnitude speedup over the simpler version.

The OpenGL applications could have been considerable faster if extensions avail-
able on the graphics card were employed.

Another outcome of Marner’s work is that it shows a negligible overhead for JNI:
GL4Java uses JNI to interface Java to OpenGL, and its performance is slightly less
than the C++ binding.

Java 3D is slow because Java is slow

Java 3D performance is often equated with Java performance: the myth of Java’s
slowness somehow demonstrates the slowness of Java 3D. Since Java 3D relies on
OpenGL or DirectX for rendering, much of the graphics processing speed of Java 3D
is independent of Java.

History suggests that performance will become a less important consideration as the
base speed of hardware keeps increasing. Many successful games rely less on special
effects, more on gaming characterization and story. Of course, games will always
need performance, but the real bottleneck will not be the platform but the network
as multiplayer games begin to dominate.

Performance should be considered alongside issues such as code complexity, produc-
tivity, maintainability, and portability. These criteria strongly influence a move
toward higher-level APIs, as typified by Java 3D.

Java 3D Is Too High-Level
Java 3D’s scene graph is often considered an unreasonable overhead, especially by
programmers with experience in OpenGL or DirectX. Though Java 3D’s scene graph

This is the Title of the Book, eMatter Edition

396 | Chapter 14: Introducing Java 3D

does introduce some overhead, this overhead should be compared to the optimiza-
tions that comes along. These can be implemented in a low-level API by an experi-
enced programmer but at what cost in time and maintainability?

Most large OpenGL and DirectX applications need a data structure like a scene
graph to manage code complexity, so the scene graph versus no scene graph argu-
ment is often invalid.

A powerful, high-level, and flexible 3D graphics API needs a scene graph and a way
to access the graphics pipeline efficiently. These mechanisms are aimed at different
levels in 3D graphics programming, sometimes called the entity level and the render-
ing level. An application’s entity level requires a data structure for organizing the
scene objects, and the rendering level handles light mapping, shadows, radiosity, ver-
tex shading, and so on. Great games are designed at the entity level, in terms of game
play, characters, scenarios, and story elements. The look and feel of a great game, the
light and dark, the atmosphere, is created at the rendering level.

Though Java 3D has highly developed tools for entity level programming, its deficit
is at the rendering level. For example, the current version of Java 3D cannot perform
vertex and pixel shading. Part of this is due to the desire to support Java 3D portabil-
ity across OpenGL and DirectX, preventing it from making assumptions about which
low-level features are present. Nevertheless, it is possible to achieve some striking
rendering effects in Java 3D by employing multi-textures. The next major Java 3D
release, Version 1.4, is scheduled to support two shader languages (Cg and GLSL); a
beta version is due out in the middle of 2005.

The high-level nature of the scene graph makes Java 3D code harder to tune for
speed unlike programs using OpenGL or DirectX directly. However, a programmer
does have the option of moving to Java 3D’s mixed or immediate modes.

Hiding low-level graphics API makes programming code around bugs harder in the
APIs or the drivers.

Lack of Console Support
The lack of a console implementation for Java 3D is a serious problem, but if Java
and OpenGL are available on a game machine, then Java 3D should be readily porta-
ble. The Game Cube already uses OpenGL.

Linux for the PlayStation 2 includes OpenGL support (http://playstation2-linux.com/
projects/openglstuff/). There’s an old alpha version of an OpenGL for the PlayStation
2, implemented by DataPlus (http://www.dataplus.co.jp/OpenGL4ps2.html). How-
ever, the future for OpenGL on consoles and other small devices is probably
OpenGL ES, a subset of OpenGL (http://www.khronos.org/opengles/).

A Java binding is being developed for OpenGL ES, managed by JSR 239 (http://
www.jcp.org/en/jsr/detail?id=239). A JSR is a Sun-sanctioned process for defining a

This is the Title of the Book, eMatter Edition

Criticisms of Java 3D for Games Programming | 397

new Java API. Much of the work is derived from JSR 231, which will be based on
JOGL and/or LWJGL (both are explained in the section “Java Bindings to
OpenGL”). JSR 239 is scheduled to be finished early in 2005.

No Real Java 3D Games
Java 3D has been employed in relatively few games, but they include bestsellers and
award winners. I mentioned the commercial games in Chapter 1.

• Law and Order II by Legacy Interactive (http://www.lawandordergame.com/
index2.htm).

• Pernica by Starfire Research (http://www.starfireresearch.com/pernica/pernica.html).

• Cosm by Navtools, Inc. (http://www.cosm-game.com/).

• Roboforge by Liquid Edge Games (http://www.roboforge.com).

• FlyingGuns (http://www.flyingguns.com/).

• CazaPool3D (http://cazapool3d.sourceforge.net/cazapooljws/Pool.html).

• Out Of Space (http://www.geocities.com/Psionic1981).

• Cassos (http://www.la-cfd.com/cassos/english/index.php). Racing monkeys, with a
dragon.

• Immediate Mode Interactive (http://www.imilabs.com/) has built several impres-
sive game demos with Java 3D over the years, including Java 3D Grand Prix (a
racing game), JAMID (a first-person shooter in the Quake mold), and Under-
world Assault (a two-person fighting game). Pictures and videos of these games
can be found at the web site.

• The Virtual Fishtank (http://www.virtualfishtank.com/main.html). A distributed
simulation of a 24,000-gallon aquarium rendered to 13 large projection screens
and running on 15 networked machines. The fish migrate from server to server
as they swim from screen to screen. It was shown at the Boston Museum of Sci-
ence and the St. Louis Science Center to teach children about emergent self-
organizing behavior in decentralized rule-based systems.

• DALiWorld (http://www.dalilab.com/). Another distributed aquatic virtual world
inhabited by autonomous artificial life.

The “Other Sites” page at j3d.org (http://www.j3d.org/sites.html) is a good source for
Java 3D examples and includes games and demos sections with many links.

The Java Games Factory (JGF), http://grexengine.com/sections/externalgames/, places
its games into 2D and 3D categories, with the 3D examples further subdivided by the
3D API being used, such as Java 3D, JOGL, and LWJGL.

The third year Computer Graphics course in the Computer Science Department of
the University of Applied Sciences in Biel, Switzerland, maintains a site of student
projects using Java 3D (http://www.hta-bi.bfh.ch/~swc/DemoJ3D/). Several of them

This is the Title of the Book, eMatter Edition

398 | Chapter 14: Introducing Java 3D

have been games, including Battleship3D-Net (networked Battleships), Billard-3D
(pool), Glymp3D (role playing action), JBomba (based on Bomberman), and
TriChess (3D networked chess).

A good strategy for finding Java 3D games and source code is to visit SourceForge
(http://sourceforge.net/search/) and FreshMeat.com (http://freshmeat.net/) and search
for keywords such as “Java,” “3d,” and “game.”

Two very exciting Java 3D projects, which aren’t really games:

Project Looking Glass (https://lg3d.dev.java.net/)
A prototype 3D desktop offering rotating, transparent windows, multiple desk-
top workspaces, and an API for developing applications. It received much atten-
tion at JavaOne in 2004.

The Mars Rover Mission (http://www.sun.com/aboutsun/media/features/mars.html)
Java 3D and JAI are being used to render and interpret the real-time images cap-
tured by the rover. A rover simulator is implemented in Java 3D, which is sort of
a game.

Java 3D loaders for games

A loader is an essential tool for quickly populating a game with people, artifacts, and
scenery. All the model loaders listed below are for popular games formats, and all
support animation.

Quake Loaders (http://www.newdawnsoftware.com/)
Supports Id Software's Quake 2 MD2 and BSP and Quake 3 MD3 formats. A
morphing animation example using the MD3 loader can be found at http://www.
la-cfd.com/cassos/test/md3/index.html.

JAVA is DOOMED (http://javaisdoomed.sourceforge.net/)
A complete 3D engine, including loaders for Quake 2 MD2 and 3D Studio Max
3DS files.

The Java XTools (http://www.3dchat.org/dev.php) package
Offers a range of Java 3D extras, including loaders for Renderware, Caligari
TrueSpace, Alias/Wavefront Maya OBJ, and MTL files. Other elements include
a lens flare mechanism, a text-to-texture converter, and a skybox class.

Salamander3D (https://skinandbones.dev.java.net/)
Supports a file format for specifying 3D worlds and levels, character animations,
collision objects, sensor objects, and other useful aspects of game scenes.

NWN Java 3D utilities (http://nwn-j3d.sourceforge.net/)
Handles Neverwinter Night models, including animation and emitters.

Java 3D 3DS Loader (http://sourceforge.net/projects/java3dsloader/)
Supports 3D Studio Max models, including cameras, point and directional
lights, animation, and hierarchy textures.

This is the Title of the Book, eMatter Edition

Criticisms of Java 3D for Games Programming | 399

Anim8or Loader (http://anim8orloader.sourceforge.net/)
Can load 3D models and scenes saved in the Anim8or file format. Anim8or is a
3D-modeling and character animation program (http://www.anim8or.com/main/
index.html).

Xj3D (http://www.xj3d.org/)
Implements the X3D standard, a successor to VRML 97, and provides for key-
frame animation. Xj3D also contains it own OpenGL renderer, which is report-
edly much faster than the one inside Java 3D.

Add-ons for gaming

• Yaarq (http://www.sbox.tugraz.at/home/w/wkien/), by Wolfgang Kienreich, offers
APIs for several gaming-related features, including texturing, bump maps, reflec-
tion maps, overlays, and particle systems. It also demonstrates how to achieve
stable frame rates.

• Lighting Effects (http://planeta.terra.com.br/educacao/alessandroborges/java3d.html).
Java 3D is often criticized for lacking sophisticated lighting effects. Alessandro
Borges has developed several examples that show how to use bump maps to gen-
erate irregular surface lighting and cube map textures for reflection effects.
Florin Herinean has also developed a series of texture examples, available at
http://www.seelenbinder-schule.de/~fherinean/.

• Toon shaders (http://www.antiflash.net/java3d/comicshader.html) demonstrates
how simple cartoon-style shading can be added to shapes.

• A library for building 3D geometries using meshes, NURBS, and subdivision sur-
faces (https://jgeom.dev.java.net/).

• A CSG API, by Danilo Balby Silva Castanheira, for geometry Boolean operators
is available at http://www.geocities.com/danbalby/.

• A skeletal animation and skinning system, by Mark McKay, can be found at
https://skinandbones.dev.java.net/.

• Java 3D Game SDK (https://java3dgamesdk.dev.java.net/). The extra functional-
ity includes a menu to let the user choose between full-screen and window
mode, a game mouse, and a collision box for the precise steering of objects.

• JXInput (http://www.hardcode.de/jxinput). This game supports joysticks and
other input devices on Windows via Java 3D's Sensor class. It's also possible to
interface Java 3D with JInput for game controller discovery and polled input
(https://jinput.dev.java.net/).

• The j3d.org Code Repository (http://code.j3d.org/) includes code (or partial code)
for ROAM terrain rendering, particle systems, and 2D overlays.

• The j3d-incubator project (https://j3d-incubator.dev.java.net/) on java.net is for
sharing examples and utility code.

This is the Title of the Book, eMatter Edition

400 | Chapter 14: Introducing Java 3D

Sun Doesn’t Support Java 3D
Perhaps this statement was true in 2003, but Java 3D is now a community project
managed by the Advanced Software Development Group at Sun. If support means a
pool of knowledgeable people ready to offer advice and large archives of technical
information, then Java 3D has an abundance of support.

In the middle of 2003, Doug Twilleager issued the now infamous message “Java 3D 1.4
is currently in a holding pattern” (read it in full at http://www.javagaming.org/cgi-bin/
JGNetForums/YaBB.cgi?board=3D;action=display;num=1054567731). Doug Twilleager
is the chief architect of the Game Technologies Group at Sun and one of the designers of
Java 3D.

His message appeared just before JavaOne 2003, a conference that emphasized the
JOGL, JOAL, and JInput APIs. Many people interpreted this as meaning that Java
3D was heading for the dustbin of history.

A possible reason for the holding pattern was Java 3D’s development origins in the
3D Graphics Hardware Group at Sun. As graphics cards from companies such as
ATI and nVidia caught up and surpassed Sun’s hardware, the group started to
become less profitable. Layoffs occurred and unprofitable group projects, such as
Java 3D, were given low priority.

In March 2004, Doug Twilleager was back, this time announcing that Sun was mak-
ing Java 3D available through a public source license at https://java3d.dev.java.net/.

The reemergence of Java 3D is due to the work of a few key people, including Doug
Twilleager, and high-profile uses in Sun projects such as Mars Rover and Looking
Glass. Java 3D has moved to the Advanced Software Development Group, a unit
within Sun that is actively supported by upper management.

The new Java 3D project site (https://java3d.dev.java.net/) hosts the source code for
Java 3D 1.3.2, a bug fix release. The version that was stable while I was writing was
1.3.1, which is used in this book.

Java 3D’s license allows developers to download the source code and to contribute
bug fixes and utilities. Modifications are allowed for research purposes, and a no-fee
commercial license is available.

An expert group is being formed to define and implement future versions of the Java
3D API. An important point is that much of the implementation work is expected to
come from the community, a strategy successfully employed to develop the JOGL,
JOAL, and JInput APIs.

Four new Java 3D mailing lists exist:

• interest@java3d.dev.java.net

• announce@java3d.dev.java.net

This is the Title of the Book, eMatter Edition

Criticisms of Java 3D for Games Programming | 401

• issues@java3d.dev.java.net

• cvs@java3d.dev.java.net

A new Java Desktop 3D Forum is at: http://www.javadesktop.org/forums/forum.
jspa?forumID=55.

Older Java 3D information sources are still around:

• The Java 3D Product Page (http://java.sun.com/products/java-media/3D/), with
links to demos, a basic FAQs page, and several application sites such as the Vir-
tual Fishtank.

• The Java 3D Gaming Forum (http://www.javagaming.org/cgi-bin/JGNetForums/
YaBB.cgi?board=3D).

• The Java 3D Interest Mailing list can be searched at (http://archives.java.sun.com/
archives/java3d-interest.html). Subscription is possible from this site. A search-
able-only interface can be found at http://www.mail-archive.com/java3d-
interest@java.sun.com/.

• The Java Technology Forum for Java 3D (http://forum.java.sun.com/forum.
jsp?forum=21).

• A Java 3D Programming Forum hosted at Manning Publications (http://www.
manning-sandbox.com/forum.jspa?forumID=31). This is a good place to contact
Daniel Selman, the author of Java 3D Programming (Manning).

• The best independent Java 3D site is j3d.org (http://www.j3d.org). It has a great
FAQs page, and a large collection of tutorials, utilities, and a code repository.

• Java 3D at VirtualWorlds (http://java3d.virtualworlds.de/index.php) is a Ger-
man/English site with sections on loaders, input devices, add-on libraries, docu-
mentation links, and a Java 3D Wiki (at an early stage).

• The USENET newsgroup comp.lang.java.3d can be searched and mailed to from
Google’s Groups page (http://groups.google.com/groups?group=comp.lang.java.3d).

Roadmaps for the future

A feature-complete beta version of Java 3D 1.4 may be released by mid-2005 and will
include programmable shaders and other features that can be quickly added.

The shader support will be able to process descriptions written in the Cg or the
GLSL shader languages. There is an active forum thread on this topic at http://
www.javadesktop.org/forums/thread.jspa?threadID=5056.

There have been discussions about using JOAL to replace Java 3D’s buggy sound
and to add in character animation, terrain utilities, improved collision detection and
avoidance, NURBs, CSG (geometry Boolean operators), and more loaders. As men-
tioned in the sections “Java 3D loaders for games” and “Add-ons for gaming,” many
of these extensions exist.

This is the Title of the Book, eMatter Edition

402 | Chapter 14: Introducing Java 3D

The Java 3D team at Sun has a web page containing proposed Version 1.4 (and later)
API changes: https://j3d-core.dev.java.net/j3d1_4/proposed-changes.html.

Whether these plans for Version 1.4 bear fruit depends on the Java 3D developer com-
munity; Sun is involved mainly as a manager and adjudicator. The signs for the future
look bright since the community is involved in the bug fix release, Version 1.3.2.

It’s interesting to look at the future plans list for Project Looking Glass (https://lg3d.
dev.java.net/), which is built on top of Java 3D. It includes some of the Java 3D wish
list, a physics engine (perhaps using odejava, https://odejava.dev.java.net/), and a par-
ticle system.

Java 3D 1.5 (or perhaps 2.0) will take longer to arrive since major changes are
planned, such as pluggable renderers and extensibility. Athomas Goldberg, the head
of the Game Technologies Group, has remarked that JOGL and JOAL may come
into the picture at this stage.

The eventual release dates for Java 3D will probably be closely linked to those for
Java. J2SE 5.1 (code-named “Dragon Fly”) in the middle of 2005, Version 6 (“Mus-
tang”) in early 2006, Version 7 (Dolphin) in late 2007. Snapshot releases of the Mus-
tang project can be accessed at https://j2se.dev.java.net.

Alternatives to Java 3D
There are a large number of ways of programming in 3D with Java without employ-
ing Java 3D. I’ve divided them into three categories: Java bindings to OpenGL, scene
graph APIs, and game engine bindings.

Java Bindings to OpenGL
Several Java OpenGL bindings have been released over the years, but they tend to be
incomplete, contain bugs, lack support and documentation, and often disappear
suddenly. A (slightly out of date) list of Java bindings is maintained at the OpenGL
site, http://www.opengl.org/resources/java/. It includes links to JOGL, LWJGL, Java
3D, GL4Java, and a few older projects. I’ll describe only the active ones here.

GL4Java

GL4Java (http://gl4java.sourceforge.net/), known as “OpenGL for Java Technology,”
was one of the most popular OpenGL bindings until the arrival of JOGL. It can be
used with AWT and Swing and has links to OpenGL 1.3 and vendor extensions.

Lightweight Java Game Library (LWJGL)

LWJGL (http://www.lwjgl.org/) utilizes OpenGL 1.5 with vendor extensions. It works
with the latest versions of Java, so it can use the NIO and full-screen capabilities of

This is the Title of the Book, eMatter Edition

Alternatives to Java 3D | 403

J2SE 1.4. However, it doesn’t support AWT or Swing. LWJGL is quite small, as the
name suggests, so it is suitable for devices with limited resources.

The documentation for LWJGL is a little scanty though ports of the Nehe OpenGL
tutorials have started to appear; they’re at the end of the original Nehe tutorials (http://
nehe.gamedev.net).

JOGL

JOGL (https://jogl.dev.java.net/) is the most recent of the Java bindings for OpenGL,
and promoted by the Game Technologies Group at Sun. Like LWJGL, it supports
the latest versions of Java, OpenGL, and extensions. It differs in being integrated
with AWT and Swing, and it is considerably larger.

JOGL will be the starting point for the Java OpenGL reference binding being devel-
oped as part of Sun’s JSR 231 specification process (http://www.jcp.org/en/jsr/
detail?id=231). JSR 231 will become the official Java binding for OpenGL. A few
details about its status as of December 2004 is at http://www.javagaming.org/cgi-bin/
JGNetForums/YaBB.cgi?board=jogl;action=display;num=1102990415.

The amount of tutorial material on JOGL is growing. The JOGL Forum at java-
gaming.org is a rich information source (http://www.javagaming.org/cgi-bin/
JGNetForums/YaBB.cgi?board=jogl). One good JOGL introduction, by Gregory
Pierce, can be found at http://www.javagaming.org/cgi-bin/JGNetForums/YaBB.
cgi?board=jogl;action=display;num=1058027992. Another introductory article,
“Jumping into JOGL,” by Chris Adamson is at http://today.java.net/pub/a/today/
2003/09/11/jogl2d.html.

The eBook Learning Java Bindings for OpenGL (JOGL) (Kagi) by Gene Davis is avail-
able from http://www.genedavissoftware.com/books/jogl/. It starts with basic JOGL
examples, suitable for beginners. Several chapters and appendixes are free online.

All the Nehe OpenGL tutorials have been ported to JOGL and can be downloaded
from http://nehe.gamedev.net or http://pepijn.fab4.be/nehe/.

JOGL’s access to OpenGL and its extensions means it can utilize shading languages
for special effects like fish eyes and spherization, and it can generate various types of
shadow using textures. Java 3D 1.3.1. can mimic a few of these (see the section
“Add-ons for gaming”), and Java 1.4 will include a shader language. A crucial differ-
ence is that JOGL employs program code to affect the graphics pipeline dynami-
cally, whereas Java 3D mostly uses capability bits and get/set methods.

A posting to the Java Desktop 3D forum (http://www.javadesktop.org/forums/thread.
jspa?threadID=3222) describes the use of JOGL’s GLCanvas class to create a HUD
(heads-up display) within a Java 3D application. The canvas can be manipulated in
the pre- or post-rendering phases of Java 3D’s immediate mode.

This is the Title of the Book, eMatter Edition

404 | Chapter 14: Introducing Java 3D

Scene Graph APIs
The creation of scene graph APIs for Java is something of a growth area, aided by the
existence of lower-level OpenGL bindings. Most of the systems are open source.

Xith3D

Xith3D (http://xith.org) uses the same basic scene graph structure as Java 3D but can
directly call OpenGL operations. This means it supports functionality like shadow
volumes and vertex and fragment programs. This is the ideal situation for a 3D
graphics API, making Xith3D a strong contender as an alternative to Java 3D.

Since the high-level APIs of Xith3D and Java 3D are similar, porting Java 3D code
over to Xith3D is fairly straightforward. Versions of Xith3D run on top of JOGL or
LWJGL.

A good tutorial for Xith3D beginners is at http://xith.org/tiki-index.php?page=Docs.
There is a Xith3D forum at javagaming.org: http://www.javagaming.org/cgi-bin/
JGNetForums/YaBB.cgi.

Two problems with Xith3D are its restriction to OpenGL (with no DirectX version),
and the lack of scene graph thread safety.

OpenMind

The OpenMind API (http://sourceforge.net/projects/open-mind/) contains the expected
elements, including hierarchical scene management and object transforms, dynamic
cameras, lights, and fog. OpenMind is implemented on top of JOGL (it formerly used
GL4Java).

jME graphics engine

jME (http://www.mojomonkeycoding.com/) was inspired by the scene graph engine
described in 3D Game Engine Design (Morgan Kaufmann) by David H. Eberly (http://
www.magic-software.com/Books.html). Currently, jME is built on top of LWJGL, with
plans for JOGL support in the near future.

Jist3D

The alpha version of this engine will be released in 2005 (http://www.imilabs.com/). Many
of its features are described in Practical Java Game Programming (Charles River Media)
by Clingman, et al.

A key element of Jist3D is its utilization of JOGL, JOAL, and JInput. The rendering
engine uses JOGL to support the scene graph and includes utilities for working with
Java 3D graphs, a collision system, and 2D overlays.

This is the Title of the Book, eMatter Edition

Alternatives to Java 3D | 405

JiD

JiD (http://javaisdoomed.sourceforge.net) includes loaders for Quake 2 MD2 and 3D
Studio Max 3DS files. The implementation uses JOGL. The distribution includes
Escape, a Doom-like game.

Aviatrix3D

Aviatrix3D (http://aviatrix3d.j3d.org/) is a retained-mode Java scene graph API above
JOGL. Its tool set is aimed at data visualization rather than gaming and supports
CAVEs, domes, and HMDs.

Kahlua

Kahlua (http://www.igd.fhg.de/CP/kahlua/) is a Java wrapper for Open Inventor (http://
www.sgi.com/software/inventor/), a scene graph API available on the Unix/Linux and
Windows platforms.

jFree-D2

jFree-D2 (http://sourceforge.net/projects/jfreed2/) is a reincarnation of the open source
Java 3D implementation JFree-D, developed by Jean-Christophe Taveau in 1999. It
provides a workable (but incomplete) implementation of Java 3D on top of GL4Java.
Support for JOGL is planned in the future.

Game Engine Bindings
The following APIs emulate well-known game engines (e.g., Quake) or are Java
wrappers around existing engines.

Auriga3D

Auriga3D (http://www.auriga3d.org/) works with Quake3 maps. There are versions
on top of JOGL and LWJGL.

Jake2

Jake2 (http://www.bytonic.de/html/jake2.html) is a port of the GPL’d Quake2 game
engine. It uses JOGL for the graphics and JOAL for the 3D sound. In tests, it
achieves better than 85% of the speed of the original C:210 FPS compared to 245 FPS.

Ogre4J

Ogre4J (http://www.bytelords.de/cowiki/427.html) is a binding for the OGRE 3D
Engine (http://www.ogre3d.org/) using JNI. OGRE 3D supports Direct3D and
OpenGL and runs on all the main desktop platforms.

This is the Title of the Book, eMatter Edition

406 | Chapter 14: Introducing Java 3D

Jirr

Jirr (http://sourceforge.net/projects/jirr/) is a binding of the open source Irrlicht game
engine (http://irrlicht.sourceforge.net/), which is written in C++. Jirr is in the early
stages of development.

Odejava

Odejava (https://odejava.dev.java.net/) is a binding around the Open Dynamics
Engine (ODE), an industrial quality library for simulating articulated rigid body
dynamics. Typical applications include ground vehicles, legged creatures, and mov-
ing objects in VR environments. ODE is coded in C. The project contains tools for
linking Odejava into Xith3D, OpenMind, and jME. A Java 3D binding is currently
being developed as an offshoot of Project Looking Glass.

This is the Title of the Book, eMatter Edition

407

Chapter 15 CHAPTER 15

A 3D Checkerboard: Checkers3D

This chapter describes Checkers3D with a Java 3D example that creates a scene con-
sisting of a dark green and blue tiled surface with labels along the x- and z-axes, a
blue background, and a floating sphere lit from two different directions. The user
(viewer) can travel through the scene by moving the mouse.

The lefthand screenshot in Figure 15-1 shows the initial view; the picture on the right
shows the scene after the user has moved around a bit.

Checkers3D illustrates many of the common, and sometimes tricky, aspects of pro-
gramming with Java 3D. For example, the 3D scene is displayed using the Java 3D
Canvas3D class, which must be integrated with Java’s Swing components. All Java 3D
applications require a scene graph, and Checkers3D shows how to add basic shapes,
lighting (ambient and directional), and a background. The scene graph diagram acts
as a visual form of documentation, and a textual version of its information can be

Figure 15-1. Initial view, and later

This is the Title of the Book, eMatter Edition

408 | Chapter 15: A 3D Checkerboard: Checkers3D

generated easily, with the help of Daniel Selman’s Java3dTree package. (I’ll supply
details at the end of this chapter).

The floor and sphere utilize Java 3D’s QuadArray, Text2D, and Sphere geometry
classes: the floor is a series of quadrilaterals in a QuadArray, and labels are placed
along the main axes of the floor using Text2D objects. The sphere shows how a 3D
shape is colored, lit, and positioned in space. The user looks into the 3D world from
a viewpoint. You’ll see how it can be initially positioned, and how it can be moved
during execution by using Java 3D’s OrbitBehavior class.

Class Diagrams for Checkers3D
The class diagrams in Figure 15-2 show all the public and private data and methods
for the Checkers3D application.

Checkers3D is the top-level JFrame for the application. WrapCheckers3D is a JPanel

holding the scene graph, which is viewable via a Canvas3D object. CheckerFloor cre-
ates the subgraph for the floor (e.g., tiles, axes, etc.), with all the same colored tiles
represented by a single ColoredTiles object.

The source code for this example is in the Checkers3D/ directory.

Figure 15-2. Class diagrams for Checkers3D

This is the Title of the Book, eMatter Edition

Integrating Java 3D and Swing | 409

Integrating Java 3D and Swing
Checkers3D is a JFrame where GUI controls, such as Swing text fields and buttons,
would be placed if necessary. In this example, it creates an instance of WrapCheckers3D
(a JPanel) and places it in the center of a BorderLayout:

c.setLayout(new BorderLayout());
WrapCheckers3D w3d = new WrapCheckers3D(); // panel for 3D canvas
c.add(w3d, BorderLayout.CENTER);

The Canvas3D view onto the scene is created inside WrapCheckers3D:

public WrapCheckers3D()
{
 setLayout(new BorderLayout());
 // other initialization code

 GraphicsConfiguration config =
 SimpleUniverse.getPreferredConfiguration();
 Canvas3D canvas3D = new Canvas3D(config);
 add("Center", canvas3D);

 // other initialization code}

Some care must be taken when using Canvas3D since it’s a heavyweight GUI element
(a thin layer over an OS-generated window). Heavyweight components aren’t easily
combined with Swing controls, which are lightweight; the controls are mostly gener-
ated by Java. Problems are avoided if the Canvas3D object is embedded in a JPanel;
then the panel can be safely integrated with the rest of the Swing-built application.

There’s a detailed discussion of the issues related to combining
Canvas3D and Swing at j3d.org (http://www.j3d.org/tutorials/quick_fix/
swing.html).

Compared to applications in earlier chapters, there’s no update/draw animation
loop. This is unnecessary because Java 3D contains its own mechanism for monitor-
ing changes in the scene and initiating rendering. Here is the algorithm in
pseudocode form:

while(true) {
 process user input;
 if (exit request) break;
 perform behaviors;
 if (scene graph has changed)
 traverse scene graph and render;
}

Behaviors are scene graph nodes containing code that can influence other parts of the
graph, such as moving shapes or changing the lighting. They may be used for moni-
toring the graph, passing details to the non-3D parts of the application.

This is the Title of the Book, eMatter Edition

410 | Chapter 15: A 3D Checkerboard: Checkers3D

The details are more complicated than this pseudocode suggests for example, Java
3D uses multithreading to carry out parallel traversal and rendering. However, hav-
ing a general idea of the process will help you work through the code in the rest of
this chapter.

Scene Graph Creation
The scene graph is created by the constructor for WrapCheckers3D:

public WrapCheckers3D()
{
 // initialization code

 GraphicsConfiguration config =
 SimpleUniverse.getPreferredConfiguration();
 Canvas3D canvas3D = new Canvas3D(config);
 add("Center", canvas3D);
 canvas3D.setFocusable(true); // give focus to the canvas
 canvas3D.requestFocus();

 su = new SimpleUniverse(canvas3D);

 createSceneGraph();
 initUserPosition(); // set user's viewpoint
 orbitControls(canvas3D); // controls for moving the viewpoint

 su.addBranchGraph(sceneBG);
}

The Canvas3D object is initialized with a configuration obtained from
getPreferredConfiguration(); this method queries the hardware for rendering informa-
tion. Some older Java 3D programs don’t bother initializing a GraphicsConfiguration

object, using null as the argument to the Canvas3D constructor instead. This is bad pro-
gramming practice.

canvas3D is given focus so keyboard events will be sent to behaviors in the scene
graph. Behaviors are often triggered by key presses and releases, but they may be trig-
gered by timers, frame changes, and events generated by Java 3D internally. There
aren’t any behaviors in Checkers3D, so it’s not necessary to set the focus. I’ve left
these lines in since they’re needed in almost every other program we’ll consider.

The su SimpleUniverse object creates a standard view branch graph and the
VirtualUniverse and Locale nodes of the scene graph. createSceneGraph() sets up
the lighting, the sky background, the floor, and floating sphere; initUserPosition()
and orbitControls() handle viewer issues. The resulting BranchGroup is added to the
scene graph at the end of the method:

private void createSceneGraph()
{
 sceneBG = new BranchGroup();
 bounds = new BoundingSphere(new Point3d(0,0,0), BOUNDSIZE);

This is the Title of the Book, eMatter Edition

Scene Graph Creation | 411

 lightScene(); // add the lights
 addBackground(); // add the sky
 sceneBG.addChild(new CheckerFloor().getBG()); // add floor

 floatingSphere(); // add the floating sphere

 sceneBG.compile(); // fix the scene
} // end of createSceneGraph()

Various methods add subgraphs to sceneBG to build the content branch graph.
sceneBG is compiled once the graph has been finalized to allow Java 3D to optimize
it. The optimizations may involve reordering the graph and regrouping and combin-
ing nodes. For example, a chain of TransformGroup nodes containing different transla-
tions may be combined into a single node. Another possibility is to group all the
shapes with the same appearance properties together, so they can be rendered more
quickly.

bounds is a global BoundingSphere used to specify the influence of environment nodes
for lighting, background, and the OrbitBehavior object. The bounding sphere is
placed at the center of the scene and affects everything within a BOUNDSIZE units
radius. Bounding boxes and polytopes are available in Java 3D.

The scene graph by the end of WrapCheckers3D() is shown in Figure 15-3.

The “Floor Branch” node is my invention to hide some details until later. Missing
from Figure 15-3 is the view branch part of the scene graph.

Lighting the Scene
One ambient and two directional lights are added to the scene by lightScene(). An
ambient light reaches every corner of the world, illuminating everything equally.

Color3f white = new Color3f(1.0f, 1.0f, 1.0f);
// Set up the ambient light
AmbientLight ambientLightNode = new AmbientLight(white);
ambientLightNode.setInfluencingBounds(bounds);
sceneBG.addChild(ambientLightNode);

The color of the light is set, the ambient source is created along with bounds and
added to the scene. The Color3f() constructor takes Red/Green/Blue values between
0.0f and 1.0f (1.0f being “full-on”).

A directional light mimics a light from a distant source, hitting the surfaces of objects
from a specified direction. The main difference from an ambient light is the require-
ment for a direction vector.

Vector3f light1Direction = new Vector3f(-1.0f, -1.0f, -1.0f);
 // left, down, backwards
DirectionalLight light1 = new DirectionalLight(white, light1Direction);
light1.setInfluencingBounds(bounds);
sceneBG.addChild(light1);

This is the Title of the Book, eMatter Edition

412 | Chapter 15: A 3D Checkerboard: Checkers3D

The direction is the vector between (0, 0, 0) and (–1, –1, –1); the light can be imag-
ined to be multiple parallel lines with that direction, originating at infinity.

Point and spot lights are the other forms of Java 3D lighting. Point lights position the
light in space, emitting in all directions. Spot lights are focused point lights, aimed in
a particular direction.

The Scene’s Background
A background for a scene can be specified as a constant color (as shown here), a
static image, or a texture-mapped geometry such as a sphere:

Background back = new Background();
back.setApplicationBounds(bounds);
back.setColor(0.17f, 0.65f, 0.92f); // sky color
sceneBG.addChild(back);

Figure 15-3. Partial scene graph for Checkers3D

Virtual Universe

Locale

BG

Sphere
Group

TG Floor Branch

Material

Geometry Appearance

sceneBG

Ambient
Light

Directional
Light

Background

Shape3D

TriangleStripArray

Directional
Light

This is the Title of the Book, eMatter Edition

Floating Spheres | 413

Floating Spheres
Sphere is a utility class from Java 3D’s com.sun.j3d.utils.geometry package, a sub-
class of the Primitive class, which is a Group node with a Shape3D child (see
Figure 15-3). Its geometry is stored in a Java 3D TriangleStripArray, which specifies
the sphere as an array of connected triangles. I don’t have to adjust this geometry,
but the sphere’s appearance and position do require changes.

The Appearance node is a container for references of to much information, including
coloring, line, point, polygon, rendering, transparency, and texture attributes.

ColouringAttributes fixes the color of a shape and is unaffected by scene lighting.
For a shape requiring interaction between color and light, the Material component is
employed. For light to affect a shape’s color, three conditions must be met:

• The shape’s geometry must include normals.

• The shape’s Appearance node must have a Material component.

• The Material component must have enabled lighting with setLightingEnable().

The utility Sphere class can automatically creates normals, so the first condition is
easily satisfied.

Coloring the Spheres
The Java 3D Material component controls what color a shape exhibits when lit by
different kinds of lights:

Material mat = new Material(ambientColor, emissiveColor,
 diffuseColor, specularColor, shininess);

The ambient color argument specifies the shape’s color when lit by ambient light:
this gives the object a uniform color. The emissive color contributes the color that
the shape produces (as for a light bulb); frequently, this argument is set to black
(equivalent to off). The diffuse color is the color of the object when lit, with its inten-
sity depending on the angle the light beams make with the shape’s surface.

The diffuse and ambient colors are often set to be the same, which
matches the way real-world objects are colored when lit.

The intensity of the specular color parameter is related to how much the shape
reflects from its shiny areas. This is combined with the shininess argument, which
controls the size of the reflective highlights.

This is the Title of the Book, eMatter Edition

414 | Chapter 15: A 3D Checkerboard: Checkers3D

The specular color is often set to white, matching the specular color
produced by most objects in the real world.

In Checkers3D, there are two directional lights, which create two shiny patches on the
top of the floating sphere (see Figure 15-1). The floor tiles are unlit since their color
is set in the shape’s geometry (more on this later in the chapter).

The code in floatingSphere() that handles the sphere’s appearance is shown here:

Color3f black = new Color3f(0.0f, 0.0f, 0.0f);
Color3f blue = new Color3f(0.3f, 0.3f, 0.8f);
Color3f specular = new Color3f(0.9f, 0.9f, 0.9f); // near white

Material blueMat= new Material(blue, black, blue, specular, 25.0f);
blueMat.setLightingEnable(true);

Appearance blueApp = new Appearance();
blueApp.setMaterial(blueMat);

Positioning the Spheres
Positioning a shape is almost always done by placing its scene graph node below a
TransformGroup (see the sphere Group in Figure 15-3). A TransformGroup can be used
to position, rotate, and scale the nodes which lie beneath it, with the transforma-
tions defined with Java 3D Transform3D objects:

Transform3D t3d = new Transform3D();
t3d.set(new Vector3f(0,4,0)); // place at (0,4,0)
TransformGroup tg = new TransformGroup(t3d);
tg.addChild(new Sphere(2.0f, blueApp));
 // set the sphere's radius and appearance
 // and its normals by default
sceneBG.addChild(tg);

The set() method positions the sphere’s center at (0, 4, 0) and resets any previous
rotations or scalings. set() can be used to scale and rotate while resetting the other
transformations. The methods setTranslation(), setScale(), and setRotation()

only affect the given transformation.

Unlike some 3D drawing packages, the y-axis in Java 3D is in the vertical direction,
while the ground is being defined by the XZ plane, as shown in Figure 15-4.

The position of the sphere is Checkers3D is set to be (0, 4, 0), which places its center
four units above the XZ plane.

This is the Title of the Book, eMatter Edition

The Floor | 415

The Floor
The floor is made of tiles created with my ColouredTiles class, and axis labels made
with the Java 3D Text2D utility class. Figure 15-5 shows the floor branch, previously
hidden inside a “Floor Branch” box in Figure 15-3.

The floor subgraph is constructed with an instance of my CheckerFloor class and
made available via the getBG() method:

sceneBG.addChild(new CheckerFloor().getBG()); // add the floor

Figure 15-4. Axes in Java 3D

Figure 15-5. Floor branch of the scene graph

x-axis

y-axis

z-axis+

+

+

-

-

-

user

Geometry Appearance

Shape3D

QuadArray

Polygon
Attributes

Geometry Appearance

QuadArray

BG

TG

Text2D

Shape3D

ColouredTile

3 ColouredTiles, including
one for OrigMarker

21*2 axis labels

This is the Title of the Book, eMatter Edition

416 | Chapter 15: A 3D Checkerboard: Checkers3D

The CheckerFloor() constructor uses nested for loops to initialize two ArrayLists.
The blueCoords list contains all the coordinates for the blue tiles, and greenCoords

holds the coordinates for the green tiles. Once the ArrayLists are filled, they are
passed to ColouredTiles objects, along with the color that should be used to render
the tiles. A ColouredTiles object is a subclass of Shape3D, so can be added directly to
the floor’s graph:

floorBG.addChild(new ColouredTiles(blueCoords, blue));
floorBG.addChild(new ColouredTiles(greenCoords, green));

The red square at the origin (visible in Figure 15-1) is made in a similar way:

Point3f p1 = new Point3f(-0.25f, 0.01f, 0.25f);
Point3f p2 = new Point3f(0.25f, 0.01f, 0.25f);
Point3f p3 = new Point3f(0.25f, 0.01f, -0.25f);
Point3f p4 = new Point3f(-0.25f, 0.01f, -0.25f);

ArrayList oCoords = new ArrayList();
oCoords.add(p1); oCoords.add(p2);
oCoords.add(p3); oCoords.add(p4);

floorBG.addChild(new ColouredTiles(oCoords, medRed));

The square is centered at (0, 0) on the XZ plane and raised a little above the y-axis
(0.01 units) so it’s visible above the tiles.

Each side of the square is the length of 0.5 units. The four Point3f points in the
ArrayList are stored in a counterclockwise order. This is true for each group of four
points in blueCoords and greenCoords. Figure 15-6 shows the ordering of the square’s
points.

Figure 15-6. OrigMarker, viewed from above

+x

-z

0.5

p1 p2

p4 p3

-x

+z

(0,0)

This is the Title of the Book, eMatter Edition

The Floor | 417

The Colored Tiles
My ColouredTiles class extends Shape3D and defines the geometry and appearance of
tiles with the same color. The geometry uses a Java 3D QuadArray to represent the
tiles as a series of quadrilaterals (quads). The constructor is

QuadArray(int vertexCount, int vertexFormat);

The vertex format is an ORed collection of static integers, which specify the differ-
ent aspects of the quad to be initialized later, such as its coordinates, color, and nor-
mals. In ColouredTiles, the QuadArray plane is created using this line of code:

plane = new QuadArray(coords.size(),
 GeometryArray.COORDINATES | GeometryArray.COLOR_3);

The size() method returns the number of coordinates in the supplied ArrayList.
The coordinate and color data is supplied in createGeometry():

int numPoints = coords.size();
Point3f[] points = new Point3f[numPoints];
coords.toArray(points); // ArrayList-->array
plane.setCoordinates(0, points);

Color3f cols[] = new Color3f[numPoints];
for(int i=0; i < numPoints; i++)
 cols[i] = col;
plane.setColors(0, cols);

The order in which a quad’s coordinates are specified is significant. The front of a
polygon is the face where the vertices form a counterclockwise loop. Knowing front
from back is important for lighting and hidden face culling, and by default, only the
front face of a polygon will be visible in a scene. In this application, the tiles are ori-
ented so their fronts are facing upward along the y-axis.

It’s necessary to ensure that the points of each quad from a convex, planar polygon,
or rendering may be compromised. However, each quad in the coordinates array
doesn’t need to be connected or adjacent to the other quads, which is the case for
these tiles.

Since a quad’s geometry doesn’t include normals information, a Material node com-
ponent can’t be used to specify the quad’s color when lit. I could use a
ColoringAttributes, but a third alternative is to set the color in the geometry, as
done here (plane.setColors(0, cols);). This color will be constant, unaffected by
the scene lighting.

Once finalized, the Shape3D’s geometry is set with:

setGeometry(plane);

This is the Title of the Book, eMatter Edition

418 | Chapter 15: A 3D Checkerboard: Checkers3D

The shape’s appearance is handled by createAppearance(), which uses a Java 3D
PolygonAttribute component to switch off the culling of the back face.
PolygonAttribute can be employed to render polygons in point or line form (i.e., as
wire frames), and to flip the normals of back facing shapes:

Appearance app = new Appearance();
PolygonAttributes pa = new PolygonAttributes();
pa.setCullFace(PolygonAttributes.CULL_NONE);
app.setPolygonAttributes(pa);

Once the appearance has been fully specified, it’s fixed in the shape with

setAppearance(app);

The Floor’s Axis Labels
The floor’s axis labels are generated with the labelAxes() and makeText() methods
in CheckerFloor(). labelAxes() uses two loops to create labels along the x and z.
Each label is constructed by makeText() and then added to the floor’s BranchGroup

(see Figure 15-5):

floorBG.addChild(makeText(pt,""+i));

makeText() uses the Text2D utility class to create a 2D string of a specified color, font,
point size, and font style:

Text2D message = new Text2D(text, white, "SansSerif", 36, Font.BOLD);
 // 36 point bold Sans Serif

A Text2D object is a Shape3D object with a quad geometry (a rectangle), and appear-
ance given by a texture map (image) of the string, placed on the front face. By
default, the back face is culled; if the user moves behind an axis label, the object
becomes invisible.

The point size is converted to virtual-world units by dividing by 256. Generally, it’s a
bad idea to use too large a point size in the Text2D() constructor since the text may
be rendered incorrectly. Instead, a TransformGroup should be placed above the shape
and used to scale it to the necessary size.

The positioning of each label is done by a TransformGroup above the shape:

TransformGroup tg = new TransformGroup();
Transform3D t3d = new Transform3D();
t3d.setTranslation(vertex); // the position for the label
tg.setTransform(t3d);
tg.addChild(message);

setTranslation() only affects the position of the shape. The tg TransformGroup is
added to the floor scene graph.

This is the Title of the Book, eMatter Edition

Viewer Positioning | 419

Viewer Positioning
The scene graph in Figure 15-3 doesn’t include the view branch graph; that branch is
shown in Figure 15-7.

The branch is created by a call to the SimpleUniverse constructor in the
WrapCheckers3D() constructor:

su = new SimpleUniverse(canvas3D);

SimpleUniverse offers simplified access to the view branch graph via the
ViewingPlatform and Viewer classes, which are mapped to the graph (shown as dot-
ted rectangles in Figure 15-7).

ViewingPlatform is used in initUserPosition() to access the TransformGroup above
the ViewPlatform node:

ViewingPlatform vp = su.getViewingPlatform();
TransformGroup steerTG = vp.getViewPlatformTransform();

steerTG corresponds to the TG node in Figure 15-7. Its Transform3D component is
extracted and changed with the lookAt() and invert() methods:

Transform3D t3d = new Transform3D();
steerTG.getTransform(t3d);

Figure 15-7. The view branch graph

Virtual Universe

Locale

BG

TG

View

ViewPlatform

OrbitBehavior

Canvas3D

Viewing Platform

Viewer

This is the Title of the Book, eMatter Edition

420 | Chapter 15: A 3D Checkerboard: Checkers3D

t3d.lookAt(USERPOSN, new Point3d(0,0,0), new Vector3d(0,1,0));
t3d.invert();

steerTG.setTransform(t3d);

lookAt() is a convenient way to set the viewer’s position in the virtual world. The
method requires the viewer’s intended position, the point that she is looking at, and
a vector specifying the upward direction. In this application, the viewer’s position is
USERPOSN (the (0, 5, 20) coordinate); she is looking toward the origin (0, 0, 0), and
“up” is along the positive y-axis. This is illustrated by Figure 15-8.

invert() is required since the position is relative to the viewer rather than an object
in the scene.

Viewer Movement
The user is able to move through the scene by utilizing the Java 3D OrbitBehavior

utility class in the view graph. A combination of control keys and mouse button
presses move and rotate (or orbits) the viewer’s position.

The behavior is set up in orbitControls() in WrapCheckers3D:

OrbitBehavior orbit = new OrbitBehavior(c, OrbitBehavior.REVERSE_ALL);
orbit.setSchedulingBounds(bounds);
ViewingPlatform vp = su.getViewingPlatform();
vp.setViewPlatformBehavior(orbit);

The REVERSE_ALL flag ensures that the viewpoint moves in the same direction as the
mouse.

Numerous other flags and methods affect the rotation, translation,
and zooming characteristics, explained in the OrbitBehavior class
documentation.

Figure 15-8. lookAt() depicted graphically

(0,0,0)

(0,5,20)

y

z

x

This is the Title of the Book, eMatter Edition

Viewing the Scene Graph | 421

MouseRotate, MouseTranslate, and MouseZoom are similar behavior classes that appear
in many Java 3D examples; their principal difference from OrbitBehavior is that they
affect the objects in the scene rather than the viewer.

Most games, such as first-person shooters (FPS), require greater con-
trol over the viewer’s movements than these utility behaviors can offer,
so I’ll be implementing my own behaviors in later chapters.

Viewing the Scene Graph
This chapter has used scene graphs to illustrate the discussed coding techniques, and
scene graphs are a useful way of understanding (and checking) code.

I received help with my drawings by using Daniel Selman’s Java3dTree package. It
creates a JFrame holding a textual tree representation of the scene graph
(Figure 15-9).

The tree (a JTree object) is initially minimized, and branches can be examined by
clicking on the subfolder icons. Information about the currently selected node
appears in the bottom window. The package is available in j3dtree.jar as part of the
source code downloadable from http://www.manning.com/selman/ for Selman’s Java
3D Programming text.

Figure 15-9. Java3dTree representation of the Checkers3D scene graph

This is the Title of the Book, eMatter Edition

422 | Chapter 15: A 3D Checkerboard: Checkers3D

Augmenting code to generate the JTree is simple. WrapCheckers3D must import the
j3dtree package and declare a global variable for the JFrame tree display:

import com.sun.j3d.utils.behaviors.vp.*;

private Java3dTree j3dTree;

The WrapCheckers3D() constructor creates the j3dTree object:

public WrapCheckers3D()
{
 // other code
 su = new SimpleUniverse(canvas3D);

j3dTree = new Java3dTree(); // create a display tree for the SG

 createSceneGraph();
 initUserPosition();
 orbitControls(canvas3D);
 su.addBranchGraph(sceneBG);

j3dTree.updateNodes(su); // build the tree display window
}

After the scene graph has been completed, (i.e., at the end of the constructor), the
tree display is built with a single line:

j3dTree.updateNodes(su);

However, prior to this, the capabilities of the scene graph nodes must be adjusted
with:

j3dTree.recursiveApplyCapability(sceneBG);

This operation should be carried out after the content branch group (sceneBG) has
been completed, but before it is compiled or made live. In my code, this means add-
ing the line to createSceneGraph():

private void createSceneGraph()
{
 sceneBG = new BranchGroup();
 // other code to create the scene

 j3dTree.recursiveApplyCapability(sceneBG);

 sceneBG.compile();
}

Unfortunately, you can’t just call:

j3dTree.recursiveApplyCapability(su);

without generating errors because the SimpleUniverse() constructor has made the
ViewingPlatform live, which prevents further changes to its capabilities.

This is the Title of the Book, eMatter Edition

Viewing the Scene Graph | 423

Since only the capabilities in the content branch have been adjusted, the call to
updateNodes() will generate some warning messages when the view branch below the
Locale node is encountered.

Compilation and execution must include j3dtree.jar in the classpath. My preferred
approach is to do this via command line arguments:

javac -classpath "%CLASSPATH%;j3dtree.jar" *.java

java -cp "%CLASSPATH%;j3dtree.jar" Checkers3D

If typing the classpath repeatedly isn’t to your taste, command lines
like these can be hidden inside batch files or shell scripts.

The Java3dTree object is a textual representation of the scene, which means that I
had to draw the scene graph myself. But the plus side is that tree generation has neg-
ligible impact on the rest of the program.

Another solution is to use the Java 3D Scene Graph Editor (http://java3d.netbeans.org/
j3deditor_intro.html). This displays a graphical version of the scene graph but has the
downside that its installation and usage are complicated and the memory require-
ments may be severe on some machines.

This is the Title of the Book, eMatter Edition

424

Chapter 16CHAPTER 16

Loading and Manipulating
External Models

It’s possible to build complex geometries in Java 3D by using the GeometryArray class
or one of its subclasses (e.g., a QuadArray or TriangleStripArray). This amounts to
calculating 3D coordinates for yourself and ensuring they’re ordered correctly inside
the geometry objects. This is almost impossible to do manually for anything but the
simplest shapes (such as boxes or cones). It makes much more sense to create an
object using 3D modeling software and then load that object into your Java 3D appli-
cation at runtime. I’ll refer to objects as external models since their geometry and
appearance (e.g., their color and texture) are created outside of Java 3D.

This chapter describes two Java 3D programs that load external models, and then
details placing those models into the checkerboard scene (discussed in Chapter 15).
This illustrates many of the typical tasks a Java 3D program will perform: analyzing
the contents of a model, adjusting its appearance, and repositioning the model in a
scene.

LoaderInfo3D.java shows how a loaded object can be examined and its component
shapes manipulated to change color, transparency, texture, and other attributes.
Figure 16-1 shows two screenshots: the left one a robot with its original colors, the
right one the same model after being turned blue.

Loader3D.java, the other application examined in this chapter, shows how a loaded
model’s position, orientation, and size can be adjusted. This information can be
saved to a text file and applied to the model when it’s next loaded.

Figure 16-2 shows two screenshots: the one on the left is of a small castle that, when
first loaded, is half hidden below the checkered floor. The screenshot on the right is
after the castle has been moved, rotated, and scaled. I’ve moved the viewpoint back a
considerable distance so all of the model can be seen.

This is the Title of the Book, eMatter Edition

Loading and Manipulating External Models | 425

This chapter will discuss the following Java 3D techniques:

External model loading (using NCSA Portfolio)
Portfolio collects several loaders for different 3D file formats into a single, con-
venient package.

Shape modification
You’ll see five different modifications to a shape’s appearance: changing its
color, rendering the shape as a wireframe, setting a transparency level, wrapping
a texture around it, and modulating (combining) a texture with the shape’s
color.

Scene graph traversal
This is required by the shape modification code since a shape node has to be
found in the graph before its appearance can be changed.

Figure 16-1. A robot turned blue

Figure 16-2. A repositioned and scaled castle

This is the Title of the Book, eMatter Edition

426 | Chapter 16: Loading and Manipulating External Models

Integrating GUI controls with the Java 3D canvas
This follows on from the brief discussion at the start of Chapter 15 about the
care needed in combining Java 3D’s Canvas3D class with Swing components.
Loader3D uses several Swing components, as shown in Figure 16-2.

Shape positioning, scaling, and rotation
These operations are often required for shapes loaded from external models,
which may appear in the Java 3D scene in the wrong position, may be badly ori-
entated, or scaled incorrectly.

An Overview of LoaderInfo3D
The class diagrams for LoaderInfo in Figure 16-3 show only the classes’ public methods.

CheckerFloor and ColouredTile are unchanged from Chapter 15: CheckerFloor cre-
ates the floor using ColouredTile objects. LoaderInfo3D is the top-level JFrame for the
application and is similar to Checkers3D, except that it takes two arguments from the
command line (the name of the file to load and an adaptation number) and passes
them to WrapLoaderInfo3D:

java -cp "%CLASSPATH%;ncsa\portfolio.jar" LoaderInfo3D Coolrobo.3ds 0

This renders the robot model stored in Coolrobo.3ds in blue, as in Figure 16-1. The
classpath argument is used to include the loaders package stored in portfolio.jar.

The source code for this example can be found in LoaderInfo3D/
directory.

Figure 16-3. Class diagrams for LoaderInfo3D

This is the Title of the Book, eMatter Edition

An Overview of LoaderInfo3D | 427

You may be wondering about the mysterious adaptation number; it’s an integer rep-
resenting the appearance modification that should be applied to the model. The
meaning of the integer values are:

0 Makes the shape blue

1 Draws the shape in outline

2 Renders the shape almost transparent

3 Lays a texture over the shape

4 Makes the shape blue and adds a texture

Anything else
Makes no changes at all

WrapLoaderInfo3D creates the scene in a similar way to the WrapCheckers3D class in
Chapter 15. I always use a Wrap class to build the scene in the chapters on Java 3D.
WrapLoaderInfo3D performs two other tasks: examining the model and modifying the
shape according to the user’s supplied adaptation number.

The methods for WrapLoaderInfo3D are shown in Figure 16-4, grouped into three
categories:

Create Scene methods
These methods build the scene by adding the checkerboard floor, lights, back-
ground, and viewer’s OrbitBehavior. There are methods for loading the model
(loadModel() and calcScaleFactor()).

Examine Model methods
These methods traverse the model’s scene graph and save the collected informa-
tion into a text file. The information is about what shapes are present in the
loaded model (a model may be made from multiple shapes), together with geom-
etry and appearance details.

The details are sent to a text file rather than the screen because of the
quantity of information generated. Placing it in a text file makes it eas-
ier to examine later.

Change Model Shapes methods
These methods traverse the scene graph looking for Shape3D nodes and modify
them according to the adaptation number supplied on the command line. Once a
shape is found, it’s turned blue (makeBlue()), drawn in outline (drawOutline()),
made almost transparent (makeAlmostTransparent()), draped with a texture
(addTexture()), or turned blue and given a texture (makeBlue() and addTexture()).

This is the Title of the Book, eMatter Edition

428 | Chapter 16: Loading and Manipulating External Models

Loaders in Java 3D
Before WrapLoaderInfo3D can traverse or change the external model’s scene graph, the
model has to be loaded. Java 3D supports external model loading through its Loader

interface and the Scene class. Loader takes as input the model’s filename and flags for
enabling and disabling the loading of certain elements of the model, such as light
nodes, sound nodes, and view graphs.

Java 3D’s utilities package includes two subclasses of Loader aimed at particular file
formats: Lw3dLoader handles Lightwave 3D scene files, and ObjectFile processes
Wavefront OBJ files. A third subclass, LoaderBase, implements the Loader interface in
a generic way to encourage the building of loaders for other 3D formats through sub-
classing.

The Scene class uses a Loader object to extract details about a model, the most signifi-
cant being its BranchGroup, usually for the purpose of adding it to the application
scene. Information about other aspects of the model may be available, including the

Figure 16-4. WrapLoaderInfo3D methods

create scene

examine model

change model shapes

This is the Title of the Book, eMatter Edition

Loaders in Java 3D | 429

model’s light nodes, object names, viewpoints, and behavior nodes. However, not all
loaders supply this information, i.e., the relevant methods may return nothing.

There’s a wide range of Java 3D loaders for different file formats, written by third-
party developers. A good list is maintained at http://www.j3d.org/utilities/loaders.html.

Loaders specifically aimed at gaming are listed in Chapter 14.

In this and other chapters, I employ the loaders in the NCSA Portfolio package
(available from http://www.ncsa.uiuc.edu/~srp/Java3D/portfolio/ or at the web site for
this book: http://fivedots.coe.psu.ac.th/~ad/jg/portfolio.jar). Using a single ModelLoader

interface, the package supports many formats, including 3D Studio Max (3DS files),
AutoCAD (DXF), Digital Elevation Maps (DEMs), TrueSpace (COB), and VRML 97
(WRL). The drawbacks of Portfolio are its advanced age (the current version is 1.3,
from 1998) and its relatively simple support of the formats: often only the geometry
and shape colors are loaded, without textures, behaviors, or lights. Portfolio offers
more than just loaders, though, since it has interfaces for several kinds of input devices
and makes it easy to take snapshots of the 3D canvas and convert them into video clips.

Using NCSA Portfolio Loaders
The ModelLoader interface is used by WrapLoaderInfo3D in loadModel(). First, a Loader

object is obtained, which loads a Scene object. If this is successful, then a call to
getSceneGroup() extracts the model’s BranchGroup (into loadedBG).

Alternate Loaders
Inspector3ds is an up-to-date 3DS loader, developed by John Wright at Starfire
Research (http://www.starfireresearch.com). The loader handles geometry, materials,
textures, and normals.

The popular modeling package ac3d (http://www.ac3d.org) has a loader written by Jer-
emy Booth, available at http://www.newdawnsoftware.com/.

Programmers wishing to utilize a modern VRML loader should consider the Xj3D
loader (http://www.web3d.org), which is actively being developed and covers most of
the VRML 2.0 standard. The actual aim is to load X3D files, which extend VRML with
XML functionality.

For the artistically impaired (e.g., yours truly), many web sites offer 3D models. A good
starting point is the Google directory on 3D models http://directory.google.com/Top/
Computers/Software/Graphics/3D/Models/. One site with many free models is 3D Cafe
(http://www.3dcafe.com/asp/freestuff.asp).

This is the Title of the Book, eMatter Edition

430 | Chapter 16: Loading and Manipulating External Models

import ncsa.j3d.loaders.*; // Portfolio loaders
import com.sun.j3d.loaders.Scene;

private Scene loadedScene = null; // globals
private BranchGroup loadedBG = null;

public void loadModel(String fn)
{
 FileWriter ofw = null;
 System.out.println("Loading: " + fn);

 try {
 ModelLoader loader = new ModelLoader();
 loadedScene = loader.load(fn); // the model's scene
 if(loadedScene != null) {
 loadedBG = loadedScene.getSceneGroup(); // model's BG
 // code to manipulate the model
 }
 }
 catch(IOException ioe)
 { System.err.println("Could not find object file: " + fn); }
} // end of loadModel()

The compilation of the LoaderInfo3D classes requires portfolio.jar which contains the
Portfolio packages:

javac -classpath "%CLASSPATH%;ncsa\portfolio.jar" *.java

Displaying a Model
Once a model is loaded, it’s displayed inside the scene. This simple task is compli-
cated by the need to make sure that the model is positioned, oriented, and scaled so
the user can see all of it.

I’ve simplified the problem by making some assumptions about how the model
should be reoriented and scaled: a loaded model is always rotated clockwise around
the x-axis by 90 degrees and scaled to be no bigger than 10 world units across. I
don’t bother repositioning the model since all the examples I tested were located
close to the origin after they’d been scaled.

Why the rotation? Most of the models I’m using were created with 3D Studio Max,
which uses a different axis system from Java 3D. The axes in 3D Studio Max use the
XY plane as the floor, with the z-axis as the vertical; Java 3D treats the XZ plane as
the floor and the y-axis as the vertical. The difference can be seen by considering a
vector displayed in the two systems. The vertical vector (0, 0, 1) in 3D Studio Max
will point forward in Java 3D (see Figure 16-5).

This is the Title of the Book, eMatter Edition

Displaying a Model | 431

A model that’s upright in 3D Studio Max will be displayed face down when loaded
into a Java 3D scene. The solution? Rotate the model clockwise around the x-axis by
90 degrees to bring it back upright.

The rotation and the scaling operations are applied to the model via a
TransformGroup node placed between the model’s BranchGroup node (loadedBG in
Figure 16-6) and the sceneBG BranchGroup node (the top-level node of the scene).
Figure 16-6 shows the scene graph fragment for the model. In practice, the model
subgraph below loadedBG will be more complex than the one shown here.

Figure 16-5. The vector (0,0,1) in 3D Studio Max and Java 3D

Figure 16-6. Scene graph fragment for the loaded model

(0,0,1)

x+

y+

3D Studio Max Axes

z+

(0,0,1)

x+

y+

Java 3D Axes

z+

BG

TG

Material

Geometry Appearance

Shape3D

TriangleArray

BG

loaded
model

subgraph
loadedBG

tg

rotation and scaling
applied here

sceneBG

This is the Title of the Book, eMatter Edition

432 | Chapter 16: Loading and Manipulating External Models

The code that creates this graph is located in loadModel() and executed just after the
model has been loaded:

loadedBG = loadedScene.getSceneGroup(); // model's BG

Transform3D t3d = new Transform3D();
t3d.rotX(-Math.PI/2.0); // rotate
Vector3d scaleVec = calcScaleFactor(loadedBG); // scale
t3d.setScale(scaleVec);
TransformGroup tg = new TransformGroup(t3d);

tg.addChild(loadedBG);
sceneBG.addChild(tg); // add (tg->loadedBG) to scene

The code is simple since it applies a rotation to every loaded model, even those that
are correctly oriented.

The rotation operation is

t3d.rotX(-Math.PI/2.0);

This specifies a negative rotation of 90 degrees about the x-axis according to Java
3D’s righthand rule for rotations: place your closed right hand with its thumb point-
ing in the direction of the positive axis of interest, (the x-axis in this case) and your
fingers will be bent in the direction of a positive rotation (see Figure 16-7).

In this case, I want the model to rotate clockwise around the x-axis, which is a nega-
tive angle according to the righthand rule.

Scaling the Model
A model may become large when loaded into Java 3D’s coordinate space. This can
be corrected by using the object’s bounding box to calculate a suitable scaling fac-
tor. This approach is employed in calcScaleFactor():

private Vector3d calcScaleFactor(BranchGroup loadedBG)
{
 BoundingBox boundbox = new BoundingBox(loadedBG.getBounds());

Figure 16-7. Righthand, positive rotation for the x-axis

x+

y+

z+

This is the Title of the Book, eMatter Edition

Examining a Model’s Scene Graph | 433

 // obtain the upper and lower coordinates of the box
 Point3d lower = new Point3d();
 boundbox.getLower(lower);
 Point3d upper = new Point3d();
 boundbox.getUpper(upper);

 // calculate the maximum dimension
 double max = 0.0;
 if((upper.x - lower.x) > max)
 max = (upper.x - lower.x);

 if((upper.y - lower.y) > max)
 max = (upper.y - lower.y);

 if((upper.z - lower.z) > max)
 max = (upper.z - lower.z);

 double scaleFactor = 10.0/max;

 // limit the scaling so that a big model isn't scaled too much
 if(scaleFactor < 0.0005)
 scaleFactor = 0.0005;
 return new Vector3d(scaleFactor, scaleFactor, scaleFactor);
} // end of calcScaleFactor()

The scaling factor will leave the model at most 10 units wide, high, or deep, which is
comparable to the size of the floor (20 units square).

The scale factor reduction is constrained so a large model isn’t shrunk too much.
This problem occurs when one dimension of the model is large (for example, its
height), but the other dimensions are small. An unconstrained reduction applied to
the height will leave the width and depth so small that the model will be almost
invisible.

Examining a Model’s Scene Graph
After loading the model, WrapLoaderInfo3D’s next main task is to traverse the model’s
scene graph and report on its structure. Walking over the graph is easy due to the
parent-child relationship between the nodes and that all the nodes are subclasses of a
single superclass, SceneGraphObject. A simplified inheritance hierarchy is shown in
Figure 16-8.

As mentioned in Chapter 14, Leaf nodes are subclassed in various ways to obtain
Shape3D and environment nodes for lighting, backgrounds, sound, and so on. The
subclasses of Group include BranchGroup and TransformGroup, which may have their
own children (Group and/or Leaf nodes). NodeComponent objects are used to store
information in nodes, such as Geometry and Appearance attributes, and may be shared
between nodes.

This is the Title of the Book, eMatter Edition

434 | Chapter 16: Loading and Manipulating External Models

A simple algorithm for traversing a scene graph is shown here:

examineNode(node) {
 if the node is a Group {
 print Group info;
 for each child of the node
 examineNode(child); // recursive call
 }
 else if the node is a Leaf
 if the node is a Shape3D {
 examine its appearance;
 examine its geometry;
 }
 else print Leaf info
 }
 else print general node info;
}

This pseudocode is the heart of the examineNode() and examineShape3D() methods in
WrapLoaderInfo3D. The algorithm is simplified by concentrating on a few node types,
principally Shape3D, and by considering the graph as a tree. Shape3D details are often
the most important since they store the model’s geometry, and there’s little point
looking for environmental data since they are frequently not converted to Java 3D by
the loader.

examineShape3D() calls printAppearance() to examine the model’s appearance,
which is confined to reporting Java 3D ColouringAttributes and/or Material details.

Many other Appearance components could be considered, such as
point, line, and polygon characteristics and rendering attributes.

examineShape3D() calls examineGeometry() to examine the model’s geometry, which
checks out the possible subclasses of the Geometry object. Loaded models almost
always use a subclass of GeometryArray (e.g., TriangleArray, QuadArray), and
examineGeometry() reports the number of vertices in the array.

Figure 16-8. Some subclasses of SceneGraphObject

SceneGraphObject

Node Node Component

Leaf Group

extends

This is the Title of the Book, eMatter Edition

Adjusting a Model’s Shape Attributes | 435

examineShape3D() is made more complicated by dealing with the possibility that sev-
eral geometries may be assigned to a single shape.

Two useful methods for the traversal code are Object.getClass(), which returns the
class name of the object, and the infix operation instanceof that tests for member-
ship in a class (or superclass).

Graph Traversal Output
examineNode() is called from StoreGraphInfo(), which first sets up a FileWriter

object linked to the text file examObj.txt. The output of the traversal is redirected
into the file, as shown below (when a model containing three dolphins is examined):

Group: class javax.media.j3d.BranchGroup
3 children
 Leaf: class javax.media.j3d.Shape3D
 Material Object:AmbientColor=(0.7, 0.7, 0.7) EmissiveColor=(0.0, 0.0, 0.0)
 DiffuseColor=(0.3, 0.3, 0.3) SpecularColor=(1.0, 1.0, 1.0) Shininess=0.6
 LightingEnable=true ColorTarget=2
 Geometry: class javax.media.j3d.TriangleArray
 Vertex count: 1692

 Leaf: class javax.media.j3d.Shape3D
 Material Object:AmbientColor=(0.7, 0.7, 0.7) EmissiveColor=(0.0, 0.0, 0.0)
 DiffuseColor=(0.3, 0.3, 0.3) SpecularColor=(1.0, 1.0, 1.0) Shininess=0.6
 LightingEnable=true ColorTarget=2
 Geometry: class javax.media.j3d.TriangleArray
 Vertex count: 1692

 Leaf: class javax.media.j3d.Shape3D
 Material Object:AmbientColor=(0.7, 0.7, 0.7) EmissiveColor=(0.0, 0.0, 0.0)
 DiffuseColor=(0.3, 0.3, 0.3) SpecularColor=(1.0, 1.0, 1.0) Shininess=0.6
 LightingEnable=true ColorTarget=2
 Geometry: class javax.media.j3d.TriangleArray
 Vertex count: 1692

The three dolphins are represented by a BranchGroup with three Shape3D children.
These store TriangleArrays for each dolphin’s geometry and have the same Material

colors.

The on-screen rendering of the dolphins is shown in Figure 16-9.

Adjusting a Model’s Shape Attributes
After reporting on the model’s scene graph, WrapLoaderInfo3D’s last task is to modify the
model’s appearance according to the user’s supplied adaptation number. Many aspects
of a model can be easily changed once its individual Shape3D nodes are accessible. This

This is the Title of the Book, eMatter Edition

436 | Chapter 16: Loading and Manipulating External Models

can be done with a variant of the examineNode() pseudocode, concentrating only on
Leaf nodes that are Shape3Ds:

visitNode(node) {
 if the node is a Group {
 for each child of the node
 visitNode(child); // recursive call
 }
 else if the node is a Shape3D
 adjust the node's attributes;
}

This pseudocode is the basis of visitNode() in WrapLoaderInfo3D.

The manipulation of the shape’s attributes is initiated in adjustShape3D(), which
uses the adaptation number entered by the user to choose between six possibilities:

0 Makes the shape blue with makeBlue()

1 Draws the shape in outline with drawOutline()

2 Renders the shape almost transparent with makeAlmostTransparent()

3 Lays a texture over the shape with addTexture()

4 Makes the shape blue and adds a texture by calling makeBlue() and addTexture()

Anything else
Makes no changes at all

Figure 16-9. The dolphins modeldD

This is the Title of the Book, eMatter Edition

Adjusting a Model’s Shape Attributes | 437

Turning the Shape Blue
Figure 16-10 shows the rendering of the dolphins model after being turned blue.

The Material node used in makeBlue() is:

Material blueMat = new Material(black, black, blue, white, 20.0f);

The use of black as the ambient color (Color3f(0.0f, 0.0f, 0.0f)) means unlit parts
of the shape are rendered in black, which looks like shadow on the model. However,
the model doesn’t cast shadows onto other surfaces, such as the floor:

private void makeBlue(Shape3D shape)
{
 Appearance app = shape.getAppearance();
 Material blueMat = new Material(black, black, blue, white, 20.0f);
 blueMat.setLightingEnable(true);
 app.setMaterial(blueMat);
 shape.setAppearance(app);
}

The appearance is obtained from the shape, its material attribute changed, and then
the appearance component assigned back to the shape; only the attribute of interest
is modified.

Drawing a Shape in Outline
Figure 16-11 shows a VRML model of a box, cone, and sphere rendered in outline:

Figure 16-10. Blue dolphins

This is the Title of the Book, eMatter Edition

438 | Chapter 16: Loading and Manipulating External Models

The original colors of the three objects (yellow, red, blue) are still visi-
ble in their line colors.

The effect is achieved by setting the POLYGON_LINE mode in PolygonAttribute in
drawOutline():

private void drawOutline(Shape3D shape)
{
 Appearance app = shape.getAppearance();
 PolygonAttributes pa = new PolygonAttributes();
 pa.setCullFace(PolygonAttributes.CULL_NONE);
 pa.setPolygonMode(PolygonAttributes.POLYGON_LINE);
 app.setPolygonAttributes(pa);
 shape.setAppearance(app);
}

Culling is disabled so that the lines are visible from every direction.

Making a Shape Almost Transparent
Figure 16-12 shows a model of the gun rendered almost transparent.

This is done in makeAlmostTransparent() by setting the TransparencyAttributes of
the shape’s Appearance:

private void makeAlmostTransparent(Shape3D shape)
{
 Appearance app = shape.getAppearance();

Figure 16-11. Shapes in outline

This is the Title of the Book, eMatter Edition

Adjusting a Model’s Shape Attributes | 439

 TransparencyAttributes ta = new TransparencyAttributes();
 ta.setTransparencyMode(TransparencyAttributes.BLENDED);
 ta.setTransparency(0.8f); // 1.0f is totally transparent
 app.setTransparencyAttributes(ta);
 shape.setAppearance(app);
}

Various transparency mode settings affect how the original color of the shape is
mixed with the background pixels. For example, blended transparency (used here)
mixes the color of the transparent shape with the color of the background pixels.
Screen door transparency (TransparencyAttributes.SCREEN_DOOR) renders a mesh-like
pattern of pixels with the color of the transparent shape, leaving gaps where the
background pixels show through. More details can be found in the documentation
for the TransparencyAttributes class.

A comparison of the last three examples shows the general strategy for manipulating
a shape: create an attribute setting, and add it to the existing Appearance component
of the shape.

Adding a Texture to a Shape
Figure 16-13 shows a castle with a rock texture wrapped over it.

A quick look at Figure 16-13 reveals some of the texturing is unrealistic: clear stripes
of textures run down the walls. Once you understand how the texture is mapped, the
reasons for this striping will be clear.

Figure 16-12. Semi-transparent gun

This is the Title of the Book, eMatter Edition

440 | Chapter 16: Loading and Manipulating External Models

A texture is made in two stages. First, a TextureLoader object is created for the file
holding the texture image, then the texture is extracted from the object:

private Texture2D texture = null; // global

private void loadTexture(String fn)
{
 TextureLoader texLoader = new TextureLoader(fn, null);
 texture = (Texture2D) texLoader.getTexture();
 if (texture == null)
 System.out.println("Cannot load texture from " + fn);
 else {
 System.out.println("Loaded texture from " + fn);
 texture.setEnable(true);
 }
}

The call to setEnable() switches on texture mapping, which allows the texture to be
wrapped around a shape.

TextureLoader can handle JPEGs and GIFs (which are useful if transparency is
required), and it can be employed in conjunction with Java Advanced Imaging (JAI)
to load other formats, such as BMP, PNG, and TIFF files. The loader can include
various flags, such as one for creating textures at various levels of resolution for ren-
dering onto small areas. Aside from Textures, the loader can return ImageComponent2D

objects, the Java 3D format for images used in backgrounds and rasters.

Textures can be 2D (as shown here) or 3D: Texture3D objects are employed for volu-
metric textures, typically in scientific applications and visualization.

The if test in loadTexture() checks if the texture was successfully created. A com-
mon reason for the texture being null is that the source image’s dimensions are

Figure 16-13. Castle rock

This is the Title of the Book, eMatter Edition

Adjusting a Model’s Shape Attributes | 441

invalid. The image must be square, with its dimensions a power of two. Keeping this
in mind, I made the rock image’s size 256 × 256 pixels.

For a texture to be applied to a shape, three conditions must be met:

• The shape must have texture coordinates, either set through its geometry or
using a TexCoordGeneration object (as detailed in the next section).

• The shape’s appearance must have been assigned a Texture2D.

• The texture must be enabled (which was done in loadTexture()).

Texture coordinates

Texture2D coordinates are measured with (s, t) values that range between 0 and 1.
Texture mapping is the art of mapping (s, t) values (sometimes called texels) onto
geometry coordinates (x, y, z) to create a realistic looking effect.

One mapping approach is to tile the texture in one-by-one patches over the geome-
try’s surface. However, tiling may create excessive repetition of the pattern, and after
the geometry has been scaled down for the Java 3D world, the texture’s details may
be too small to see.

A more flexible mapping approach is to utilize a TexCoordGeneration object, which
lets the programmer define equations stating how geometry coordinates (x, y, z) val-
ues are converted into texels (s, t). The simplest equations are linear, of these forms:

• s = (x*planeS.xc) + (y*planeS.yc) + (z*planeS.zc) + (planeS.w)

• t = (x*planeT.xc) + (y*planeT.yc) + (z*planeT.zc) + (planeT.w)

planeS and planeT are vectors that contain the xc, yc, zc, and w constants, which
define the equations. Specifying these equations can be tricky, so I’ll use a simple
technique based on the bounding box for the shape.

Figure 16-14 shows a shape’s bounding box, with its upper and lower points high-
lighted. The upper point contains the maximum x, y, and z values, and the lower
point has the minima. Texture mapping becomes a matter of mapping the (x, y, z)
coordinates of the box to the (s, t) coordinates of the texture.

The height and width of the bounding box is easily calculated:

• height = ymax – ymin
• width = x

max
 – x

min

Two simple equations for s and t are then given:

• s = x/width – x
min

/width

• t = y/height – ymin/height

This is expressed in vector form:

• planeS = [1/width, 0, 0, –x
min

/width]

• planeT = [0, 1/height, 0, –y
min

/height]

This is the Title of the Book, eMatter Edition

442 | Chapter 16: Loading and Manipulating External Models

Unfortunately, the z-coordinate isn’t used in the equations. I’ll explain
what this means in a moment.

This bounding box algorithm is implemented in stampTexCoords():

private TexCoordGeneration stampTexCoords(Shape3D shape)
{
 BoundingBox boundBox = new BoundingBox(shape.getBounds());
 Point3d lower = new Point3d();
 Point3d upper = new Point3d();
 boundBox.getLower(lower); boundBox.getUpper(upper);

 double width = upper.x - lower.x;
 double height = upper.y - lower.y;
 Vector4f planeS = new Vector4f((float)(1.0/width), 0.0f, 0.0f,
 (float)(-lower.x/width));
 Vector4f planeT = new Vector4f(0.0f, (float)(1.0/height), 0.0f,
 (float)(-lower.y/height));

 // generate texture coordinates
 TexCoordGeneration texGen = new TexCoordGeneration();
 texGen.setPlaneS(planeS);
 texGen.setPlaneT(planeT);

 return texGen;
} // end of stampTexCoords()

The (s, t) equations are encoded as two Java 3D Vector4f objects: planeS and planeT.
They’re used to initialize a TexCoordGeneration object, which becomes the return
result of the method.

Figure 16-14. From bounding box to texture

lower = (xmin, ymin, zmin)

upper = (xmax, ymax, zmax)

x

y

z

width

(0,0)

(1,1)

t

Bounding Box for the Model

Texture
Coordinates

map (x, y, z) to (s, t) s

he
ig

ht

This is the Title of the Book, eMatter Edition

Adjusting a Model’s Shape Attributes | 443

A tendency to strip

Figure 16-13 shows stripes of textures running down the castle walls. However, this
orientation is due to the model being rotated 90 degrees clockwise around the x-axis.
In fact, the stripes are running along the z-axis of the model.

This z-striping is the visible consequence of not using the z-coordinate in the (s, t)
equations. It means that (x, y, z) coordinates with the same (x, y) value but different
z-values will all map to the same (s, t) texel.

Applying the texture to the shape

The texture is applied to the shape by the addTextureGA() method, which has four
main duties:

• To switch off face culling so the texture appears on all sides of the shape

• To generate a TexCoordGeneration object, using stampTexCoords()

• To modulate the texture mode so the underlying color and texture are combined

• To assign the texture to the shape, done by calling setTexture()

Here is the code:

private void addTextureGA(Shape3D shape)
{
 Appearance app = shape.getAppearance();

 // make shape two-sided, so texture appears on both sides
 PolygonAttributes pa = new PolygonAttributes();
 pa.setCullFace(PolygonAttributes.CULL_NONE);
 app.setPolygonAttributes(pa);

 // generate texture coords
 app.setTexCoordGeneration(stampTexCoords(shape));

 // modulate texture with color and lighting of underlying surface
 TextureAttributes ta = new TextureAttributes();
 ta.setTextureMode(TextureAttributes.MODULATE);
 app.setTextureAttributes(ta);

 // apply texture to shape
 if (texture != null) { // loaded at start, from adjustShapes()
 app.setTexture(texture);
 shape.setAppearance(app);
 }
} // end of addTextureGA()

The modulation task utilizes a Java 3D TextureAttributes object to control how the
texture is combined with the surface colors of the shape.

This is the Title of the Book, eMatter Edition

444 | Chapter 16: Loading and Manipulating External Models

There are four texture modes:

REPLACE

The texture replaces any shape color.

MODULATE

The texture and color are combined (as here).

DECAL

The transparent areas of the texture aren’t drawn onto the shape.

BLEND

A varying mix of texture and color is possible.

The MODULATE mode is often used to combine an underlying Material with a texture,
which allows lighting and shading effects to be seen alongside the texture.
Figure 16-15 shows the dolphins models turned blue and with a texture.

This effect should be compared with the purely blue dolphins of
Figure 16-10.

An Overview of Loader3D
Like LoaderInfo3D, Loader3D loads an external model with the Porfolio loader but it
is mostly concerned with how the model can be moved, rotated, and scaled once it’s
loaded.

Figure 16-15. Textured, blue dolphins

This is the Title of the Book, eMatter Edition

An Overview of Loader3D | 445

The model is displayed in a 3D canvas on the lefthand side of the application, and a
series of buttons (and a text field) on the right allow the model to be manipulated.
Details of the model’s new configuration can be saved to a text file, which can be
loaded with the model next time, so the model begins with the given location, orien-
tation, and size.

The class diagrams for the Loader3D application are shown in Figure 16-16; only the
public methods are shown.

The CheckerFloor and ColouredTile classes are the same as in previous examples.

The earlier Java 3D examples have simple GUIs: basically just a Java 3D Canvas3D

object embedded in a JPanel, with mouse actions to move the viewpoint. Loader3D
manages a more complicated GUI and send the user’s input to WrapLoader3D, which
passes it onto PropManager. PropManager is in charge of altering the model’s position,
orientation, and scale.

PropManager will play a prominent role in several later chapters, when I want to load
a model into a scene.

The code for these classes is located in the Loader3D/ directory.

Figure 16-16. Class diagrams for Loader3D

This is the Title of the Book, eMatter Edition

446 | Chapter 16: Loading and Manipulating External Models

Using Loader3D
Loader3D can be called in two ways:

java -cp "%CLASSPATH%;ncsa\portfolio.jar Loader3D" <filename>

or:

java -cp "%CLASSPATH%;ncsa\portfolio.jar Loader3D" –c <filename>

The application searches the models/ subdirectory for the filename and loads the file.
If the –c option is included, Loader3D will attempt to load the text file replaceable
Coords.txt, which contains translation, rotation, and scaling values (called coords
data) that should be applied to the model.

Figure 16-17 shows the Coolrobo.3ds model initially loaded into the application.

Figure 16-18 shows the model after it has been moved, rotated, and scaled in various
ways.

The user’s viewpoint has been moved in Figures 16-17 and 16-18 to make the images
bigger on-screen. The changes to the robot can be observed by comparing the model
to the red square in both figures, which is centered at (0, 0) on the XZ plane.

The bottom half of the GUI pane in Figure 16-18 shows the current configuration:
the (x, y, z) position is (–1.9, 3.9, 0), which is the distance of the model’s center from
its starting point. The rotation values are (0, 70, 0), which means a 70-degree posi-
tive rotation around the y-axis. The model has been scaled by a factor of 2.594.

Figure 16-17. Coolrobo.3ds first loaded

This is the Title of the Book, eMatter Edition

Using Loader3D | 447

When the Save Coords button is pressed, the current coords data is saved to a text
file in the subdirectory models/. The contents of the file generated for Coolrobo.3ds
(CoolroboCoords.txt) are:

Coolrobo.3ds
-p –1.9 3.9 0
-r 3333333
-s 2.594

The –p line gives the (x, y, z) translation, the –r line contains a series of rotation num-
bers (explained later), and the –s value is for scaling.

The methods defined in Loader3D are given in Figure 16-19.

Loader3D creates its GUI control panel with initGUI(). actionPerformed() handles
the various GUI events triggered by pressing buttons and typing in the text field.
Depending on the user request, actionPerformed() calls movePosn(), rotate(),
scale(), or saveCoordsFile() in the WrapLoader3D class to request changes to the
model’s position, rotation, scaling, or to save its coords data.

Figure 16-18. Coolrobo.3ds after manipulation

Figure 16-19. Loader3D methods

This is the Title of the Book, eMatter Edition

448 | Chapter 16: Loading and Manipulating External Models

Here is a fragment of the method:

// globals
// constants for specifying moves and rotations
private static final int X_AXIS = 0;
private static final int Y_AXIS = 1;
private static final int Z_AXIS = 2;
private static final int INCR = 0;
private static final int DECR = 1;

private WrapLoader3D w3d; // the loader canvas

public void actionPerformed(ActionEvent e)
{
 if (e.getSource() == saveBut) // save coord info
 w3d.saveCoordFile();
 else if (e.getSource() == xPosLeftBut) // an X move
 w3d.movePos(X_AXIS, DECR);
 else if (e.getSource() == xPosRightBut)
 w3d.movePos(X_AXIS, INCR);
 else if (e.getSource() == yPosLeftBut) // a Y move
 w3d.movePos(Y_AXIS, DECR);
 else if (e.getSource() == yPosRightBut)
 w3d.movePos(Y_AXIS, INCR);
 ...
 // more branches dealing with a Z move, X rotation,
 // Y rotation, Z rotation, and scaling

 showPosInfo(); // update on-screen display
 showRotInfo();
 showScale();
}

At the end of actionPerformed(), showPosInfo(), showRotInfo(), and showScale()

communicate with WrapLoader3D to obtain the current coords data and to update the
GUI display. For example, here’s showPosInfo():

// global
private JTextField xyzTF;

private void showPosInfo()
{
 Vector3d loc = w3d.getLoc(); // get coords data
 xyzTF.setText("(" + df.format(loc.x) + ", " +
 df.format(loc.y) + ", " + df.format(loc.z) + ")");
}

This is the Title of the Book, eMatter Edition

Creating the Scene | 449

Creating the Scene
As with previous Wrap classes, WrapLoader3D creates the scene (the checkerboard, the
lights, the background, the mouse controls and viewpoint). It offers methods that
Loader3D can call to set and get the model’s coordinates.

Figure 16-20 shows the methods defined in WrapLoader3D.

The public methods pass requests sent from the GUI through to a PropManager

object, propMan:

// global
private PropManager propMan;

public void movePos(int axis, int change)
{ propMan.move(axis, change); }

PropManager manipulates the model. WrapLoader3D is acting as a facade, hiding imple-
mentation details from the application’s GUI layer. This coding approach allows
WrapLoader3D to carry out its own checking on the GUI inputs though it currently
doesn’t do that.

Figure 16-20. WrapLoader3D methods

PropManager object

PropManager access methods

scene creation methods

This is the Title of the Book, eMatter Edition

450 | Chapter 16: Loading and Manipulating External Models

The PropManager object is created in WrapLoader3D’s constructor:

propMan = new PropManager(filename, hasCoordsInfo);

The call includes the model’s filename and a Boolean indicating if a coords datafile is
available.

The top-level TransformGroup for the model is accessed in createSceneGraph():

sceneBG.addChild(propMan.getTG());

Managing the Model
Figure 16-21 shows PropManager’s methods.

Figure 16-21. PropManager methods

3. Return TG for the model

4. Process GUI requests

1. Load a model

2. Process a “coords” file

Support methods for moving
and rotating a model.

Debugging methods

This is the Title of the Book, eMatter Edition

Building the Model’s Scene Graph | 451

There are four main tasks carried out by a PropManager object (indicated in
Figure 16-21 with the same numbering scheme):

1. It loads the specified model, scales to a standard size, and rotates the model if
it’s been saved as a 3D Studio Max (3DS) file.

2. It loads a coords datafile if requested and applies the translations, rotations, and
scaling values in that file to the model.

3. It makes the top-level TransformGroup for the model available.

In this program, the subgraph is added to the scene by WrapLoader3D.

4. At runtime, the PropManager object accepts commands to modify the model’s
position, orientation, and size, causing alterations to the model’s scene graph.

In this application, these commands come from the GUI, via
WrapLoader3D.

Building the Model’s Scene Graph
Figure 16-22 shows the scene graph after dolphins.3ds has been loaded (the three dol-
phins model). The PropManager object creates the long branch shown on the right of
the figure, consisting of a chain of four TransformGroup nodes and a BranchGroup with
three Shape3D children. The loaded model was translated into the BranchGroup and its
children (each dolphin in dolphins.3ds is represented by a Shape3D node).

PropManager utilizes four TransformGroups to deal with different aspects of the
model’s configuration:

moveTG

Handles the translations

rotTG

For rotations

scaleTG

For scaling

objBoundsTG

Carries out the scaling and possible rotation of the model when it’s first loaded

This is the Title of the Book, eMatter Edition

452 | Chapter 16: Loading and Manipulating External Models

The reason for this separation is to process distinct operations in different nodes in
the graph. This reduces the overall complexity of the coding because I can take
advantage of the hierarchy of local coordinate systems used by the TransformGroup

nodes.

A TransformGroup’s local coordinate system means it always starts at (0, 0, 0) with no
rotation or scaling. However, when Java 3D renders the node into the virtual world,
it must obtain its global coordinates (i.e., its virtual world position). It does this by
calculating the combined effects of all the ancestor TransformGroup nodes operations
upon the node.

For example, if the moveTG node is moved to coordinate (1, 5, 0) from its starting
point of (0, 0, 0), then all the TransformGroup nodes below it in the scene graph are
repositioned as well. Java 3D generates this effect at render time but, as far as the
child nodes are concerned, they are still at (0, 0, 0) in their local coordinate systems.

Figure 16-22. Scene graph for loaded dolphins

Virtual Universe

Locale

BG

Floor Branch moveTG

Ambient
Light

Directional
Light

BackgroundDirectional
Light

TG

Shape3DShape3D Shape3D

rotTG

scaleTG

objBoundsTG

sceneBG

sceneGroup

TG

TG

TG

BG

This is the Title of the Book, eMatter Edition

Building the Model’s Scene Graph | 453

This mechanism greatly simplifies the programmer’s task of writing TransformGroup

transformations. For instance, a rotation of 70 degrees around the y-axis for rotTG is
applied in its local coordinate system, so it is a straightforward rotation around the
center. If the transformations of its parent (grandparent, great-grandparent, etc.) had
to be taken into account, then the rotation operation would be much more compli-
cated since the code would need to undo all the transformations, rotate around the
center, and then apply the transformations again. The advantage of splitting the
translation and rotation effects so the translation component (in moveTG) is above the
rotation (in rotTG) is that rotational changes only apply to rotTG and its children.

For instance, a positive rotation of 90 degrees around the y-axis turns the XZ plane
so the x- and z-axes are pointing in new directions. Subsequently, if a child of rotTG
moves two units in the positive x direction, it will appear on screen as a 2-unit move
in the negative z direction!

Fortunately, since moveTG is above rotTG, the axes’ changes made by rotTG don’t trou-
ble moveTG: an x direction move applied to moveTG is always carried out along the x-axis
as expected by the user.

Loading the Model
The scene graph is created in PropManager’s loadFile(). First, the model is loaded
with ModelLoader, and its BranchGroup is extracted into the sceneGroup variable. The
chain of four TransformGroups are then created. The following code snippet shows
the creation of objBoundsTG and scaleTG, and how scaleTG is linked to objBoundsTG:

// create a transform group for the object's bounding sphere
TransformGroup objBoundsTG = new TransformGroup();
objBoundsTG.addChild(sceneGroup);

// resize loaded object's bounding sphere (and maybe rotate)
String ext = getExtension(fnm);
BoundingSphere objBounds = (BoundingSphere) sceneGroup.getBounds();
setBSPosn(objBoundsTG, objBounds.getRadius(), ext);

// create a transform group for scaling the object
scaleTG = new TransformGroup();
scaleTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
scaleTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
scaleTG.addChild(objBoundsTG); // link TGs

The capability bits of scaleTG (and rotTG and moveTG) must be set to
allow these nodes to be adjusted after the scene has been made live.

Included in the code fragment is the call to setBSPosn(). It scales the model so its
bounding sphere has a unit radius; this avoids problems with the model being too
big or small.

This is the Title of the Book, eMatter Edition

454 | Chapter 16: Loading and Manipulating External Models

This is a variant of the bounding box technique used in LoaderInfo3D.

If the file extension is .3ds, then the model is rotated –90 degrees around the x-axis
to compensate for the axes differences between 3DS and Java 3D, as outlined earlier.

Loading and Applying the Coords Data
The coords datafile requires parsing to extract its translation, rotation, and scaling
values. getFileCoords() opens the file and reads in lines of text. These are passed to
setCurrentPosn(), setCurrentRotation(), or setCurrentScale() depending on the
character following the - at the start of a line.

setCurrentPosn() extracts the (x, y, z) values and calls doMove() with the values
packaged as a Vector3d object. doMove() adds the translation to the current value:

private void doMove(Vector3d theMove)
{ moveTG.getTransform(t3d); // get current posn from TG
 chgT3d.setIdentity(); // reset change TG
 chgT3d.setTranslation(theMove); // setup move
 t3d.mul(chgT3d); // 'add' move to current posn
 moveTG.setTransform(t3d); // update TG
}

chgT3d is a global Transform3D and is reinitialized before use by setting
it to be an identity matrix.

The addition of the new translation is done using multiplication since I’m dealing
with matrices inside the Transform3D objects.

setCurrentScale() is similar in that it extracts a single value and then calls scale()

to apply that value to the scene graph:

public void scale(double d)
{ scaleTG.getTransform(t3d); // get current scale from TG
 chgT3d.setIdentity(); // reset change Trans
 chgT3d.setScale(d); // set up new scale
 t3d.mul(chgT3d); // multiply new scale to current one
 scaleTG.setTransform(t3d); // update the TG
 scale *= d; // update scale variable
}

The coding style of scale() is the same as doMove().

This is the Title of the Book, eMatter Edition

Building the Model’s Scene Graph | 455

Handling Rotation
Dealing with rotation is more complicated due to the mathematical property that
rotations about different axes are noncommutative. For example, a rotation of 80
degrees around the x-axis followed by 80 degrees about the z-axis (see Figure 16-23)
produces a different result if carried out in the opposite order (see Figure 16-24).

Though the GUI displays are too small to read in the figures, they show the rotation
values to be (80, 0, 80).

Figure 16-23. Rotation order: x-axis rotation then z-axis

Figure 16-24. Rotation order: z-axis rotation then x-axis

This is the Title of the Book, eMatter Edition

456 | Chapter 16: Loading and Manipulating External Models

This rotation property means that the coords datafile cannot store the rotation infor-
mation as three total rotations. Storing the order in which the rotations were carried
out is necessary. The solution to this problem relies on a simplification of the user
interface: a click of a rotation button always results in a rotation of 10 degrees (nega-
tive or positive, around the x-, y-, or z-axes). Then the user’s rotation commands can
be represented by a sequence of rotation numbers, which must be executed in
sequence order to duplicate the desired final orientation. The rotation numbers
range between 1 and 6:

1 Positive ROT_INCR around the x-axis

2 Negative ROT_INCR around the x-axis

3 Positive ROT_INCR around the y-axis

4 Negative ROT_INCR around the y-axis

5 Positive ROT_INCR around the z-axis

6 Negative ROT_INCR around the z-axis

ROT_INCR is a constant defined in PropManager (10 degrees).

This approach means that the rotation information for Figure 16-23 is encoded as:

-r 1111111155555555

Figure 16-24 is represented by:

-r 5555555511111111

The eight 1s mean 80 degrees around the x-axis, and the eight 5s mean 80 degrees
around the z-axis.

This representation has the drawback that it may lead to long strings, but this is
unlikely considering the application. Usually, a model only needs turning through 90
or 180 degrees along one or perhaps two axes. However, if the user makes lots of
adjustments to the rotation, they are all stored; in that case, it’s probably better to
exit the application and start over.

An advantage of the representation is the simple way that the sequence can be modi-
fied manually through editing the coords datafile in a text editor. This holds true for
the position and scaling data, which can be changed to any value.

Applying the rotation

The sequence of rotation numbers is extracted form the coords datafile in
PropManager’s setCurrentRotation(). The method calls rotate() to carry out a rota-
tion for each rotation number.

rotate() calls doRotate() to change the scene graph and one of storeRotateX(),
storeRotateY(), or storeRotateZ() to record the rotation in an ArrayList of rotation

This is the Title of the Book, eMatter Edition

Building the Model’s Scene Graph | 457

numbers and to update the total rotations for the x-, y-, or z-axes. The doRotate()

method is shown here:

private void doRotate(int axis, int change)
{
 double radians = (change == INCR) ? ROT_AMT : -ROT_AMT;
 rotTG.getTransform(t3d); // get current rotation from TG
 chgT3d.setIdentity(); // reset change Trans
 switch (axis) { // setup new rotation
 case X_AXIS: chgT3d.rotX(radians); break;
 case Y_AXIS: chgT3d.rotY(radians); break;
 case Z_AXIS: chgT3d.rotZ(radians); break;
 default: System.out.println("Unknown axis of rotation"); break;
 }
 t3d.mul(chgT3d); // 'add' new rotation to current one
 rotTG.setTransform(t3d); // update the TG
}

The coding style is similar to doMove() and scale(): the existing Tranform3D value is
extracted from the TransformGroup node, updated to reflect the change and then
stored back in the node.

Making the Model Available
As Figure 16-22 shows, the top level of the model’s scene graph is the moveTG

TransformGroup. This can be accessed by calling getTG():

public TransformGroup getTG()
{ return moveTG; }

The one subtlety here is that the moveTG, rotTG, and scaleTG nodes will almost cer-
tainly be modified after the model’s graph has been added to the scene. This means
that their capability bits must be set to permit runtime access and change when the
nodes are created:

// create a transform group for scaling the object
scaleTG = new TransformGroup();
scaleTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
scaleTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
scaleTG.addChild(objBoundsTG);

// create a transform group for rotating the object
rotTG = new TransformGroup();
rotTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
rotTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
rotTG.addChild(scaleTG);

// create a transform group for moving the object
moveTG = new TransformGroup();
moveTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
moveTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
moveTG.addChild(rotTG);

This is the Title of the Book, eMatter Edition

458 | Chapter 16: Loading and Manipulating External Models

Modifying the Model’s Configuration at Runtime
User requests to move, rotate, scale, or save the coords data are passed from the GUI
in Loader3D through WrapLoader3D to the PropManager object. The relevant methods
are move(), rotate(), scale(), and saveCoordFile().

I’ve described rotate() and scale(); they’re employed when the coords data are
being applied to the model. move()’s main purpose is to translate the data supplied
by the GUI (an axis and direction) into a vector, which is passed to doMove(|).

saveCoordFile() is straightforward, but relies on global variables holding the current
configuration information.

Another aspect of Loader3D’s GUI is that it displays the current configuration. This is
achieved by calling getLoc(), getRotations(), and getScale() in PropManager via
WrapLoader3D. For example, in Loader3D:

// global
private WrapLoader3D w3d;

private void showPosInfo()
{ Vector3d loc = w3d.getLoc();
 xyzTF.setText("(" + df.format(loc.x) + ", " +
 df.format(loc.y) + ", " + df.format(loc.z) + ")");
}

In WrapLoader3D:

// global
private PropManager propMan;

public Vector3d getLoc()
{ return propMan.getLoc(); }

In PropManager:

public Vector3d getLoc()
{ moveTG.getTransform(t3d);
 Vector3d trans = new Vector3d();
 t3d.get(trans);
 return trans;
}

This is the Title of the Book, eMatter Edition

459

Chapter 17 CHAPTER 17

Using a Lathe to Make Shapes

I’ve run up against the lack of useful shapes in Java 3D many times: there’s only so
much that can be done with the Box, Cone, Cylinder, and Sphere classes. One way of
getting past this limitation is to use Java 3D’s GeometryArray (or one of its sub-
classes) to specify a geometry in terms of separate arrays of positional coordinates,
colors, normals, and texture coordinates. This is pretty daunting, and I like to avoid
it if possible.

An alternative to this low-level shape building is to follow the approach outlined in
Chapter 16: create the shape in a 3D modeling package and load it into Java 3D. The
drawback is that you need to learn the modeling software. Most of these packages
have so many bells and whistles that it’s hard to get what you need done.

This chapter describes a compromise between the complexity of Java 3D
GeometryArrays and the loading of ready-made models. The edge of a shape is
defined in terms of straight lines and simple curves. This edge (or lathe curve) is
rotated around the y-axis to create a 3D volume, called a lathe shape. This approach,
often called surface or sweep revolution, is packaged up in a LatheShape3D class.

Color or texture information can be added easily. A lathe shape is pink by default,
but this can be changed to a different color or texture. In both cases, the shape will
reflect light (i.e., a shape’s faces always have normals). A color is defined using two
Color3f objects: one for ambient illumination (typically a dark hue) and the other for
diffuse lighting.

A mix of two colors generally makes the shape look more realistic than
using just one.

A texture is wrapped around the shape starting from the middle of the shape’s back
(the side facing away from the camera position), continuing counterclockwise around

This is the Title of the Book, eMatter Edition

460 | Chapter 17: Using a Lathe to Make Shapes

the front, and ending back where it started. The texture is stretched in the y-direction,
ensuring it covers the shape vertically.

Figure 17-1 shows a selection of LatheShape3D objects.

LatheShape3D was designed with Chapter 20 in mind, where I will
describe how to animate an articulated moveable figure. LatheShape3D
is ideal for creating body parts, such as arms, legs, and a torso.

This chapter illustrates the following features:

A shape’s lathe curve employs Hermite curves
Hermite curves are used to represent the curve sequences inside a lathe curve. I
chose Hermite curves since they’re simple to specify and (after making a few
assumptions about the shape) can be generated automatically.

A lathe shape is created using surface revolution
A QuadArray shape is made by revolving a lathe curve around the y-axis. This was
low-level shape creation, but done by the code rather than myself (the way I like it).

Texture coordinate calculation
The calculation of texture coordinates (s, t) is based on the shape’s (x, y, z) coor-
dinates, without using a Java 3D TexCoordGeneration object (TexCoordGeneration
was introduced in Chapter 16). It’s possible to automate these calculations after
making some simple assumptions about how the texture should be wrapped
over a shape.

Figure 17-1. LatheShape3D objects

This is the Title of the Book, eMatter Edition

Class Diagrams for Lathe3D | 461

Normals calculated with Java 3D utilities
Normals are generated for the quadrilaterals (quads) in the QuadArray with the
aid of Java 3D’s GeometryInfo and NormalGenerator classes. This allows the shape
to reflect light without having to do the hard work of generating the normals.

Subclassing of shapes
LatheShape3D can be subclassed to modify the surface revolution. In other words,
the 3D volume doesn’t need to be created solely from a circular rotation around
the y-axis, and the path can be elliptical or stranger (as you’ll see).

Class Diagrams for Lathe3D
Figure 17-2 shows the class diagrams for the Lathe3D application. The class names, as
well as the public and protected methods, are shown.

Much of this Lathe3D application is scenery to show off various lathe
shapes.

Lathe3D is the top-level JFrame and similar to earlier examples: It’s the application
window holding a 3D canvas made by WrapLathe3D. WrapLathe3D sets up the 3D
world like previous wrap classes: it creates the checkerboard, the lights, back-
ground, and mouse controls. The only change is a large method called
addLatheShapes() that makes multiple calls to LatheShape3D (and its subclasses) to

Figure 17-2. Class diagrams for Lathe3D

This is the Title of the Book, eMatter Edition

462 | Chapter 17: Using a Lathe to Make Shapes

create the shapes shown in Figure 17-1. CheckerFloor and ColouredTiles are
unchanged from previous chapters. LatheShape3D creates a shape using a LatheCurve

object to create the lathe curve. The subclasses of LatheShape3D (EllipseShape3D and
RhodoneaShape3D) are examples showing how the rotation path employed by
LatheShape3D can be modified.

The code for these classes can be found in Lathe3D/.

Creating the Scene
The novel parts of the scene creation carried out by WrapLathe3D are located in
addLatheShapes(), which generates the lathe shapes on the checkerboard:

TextureLoader texLd3 = new TextureLoader("textures/water.jpg", null);
Texture waterTex = texLd3.getTexture();

double xsIn15[] = {0, 0.1, 0.7, 0};
double ysIn15[] = {0, 0.1, 1.5, 2};
LatheShape3D ls2 = new LatheShape3D(xsIn15, ysIn15, waterTex);
displayLathe(ls2, -3.5f, -5.0f, "drip");

This particular bit of code produces the water globule, shown in Figure 17-3.

The coordinates for the lathe curve are supplied as two arrays: one for the x-values
and one for the y-values. Figure 17-4 shows the four coordinates plotted against the
x- and y-axes.

Figure 17-3. Water globule

This is the Title of the Book, eMatter Edition

Creating the Scene | 463

These coordinates are ordered by increasing the y-value, indicated by
the numbered circles in the figure.

The x- and y-values must be greater than or equal to 0, and the first y-value must be 0.
These restrictions simplify the calculation of the shape’s height, which is used when
mapping a texture over the shape’s surface. Since the shape always starts at 0 on the
y-axis, and there are no negative values, the shape’s height is the largest y-value. An
x-value may use a negative sign, but this has a special meaning (explained below).

displayLathe() positions the shape at a given (x, z) location, 1.5 units above the XZ
plane (the floor of the scene). The shape’s label is displayed as a Text2D object, a lit-
tle below the shape:

private void displayLathe(LatheShape3D ls, float x, float z, String label)
{
 // position the LatheShape3D object
 Transform3D t3d = new Transform3D();
 t3d.set(new Vector3f(x, 1.5f, z));
 TransformGroup tg1 = new TransformGroup(t3d);
 tg1.addChild(ls);
 sceneBG.addChild(tg1);

 // position the label for the shape
 Text2D message = new Text2D(label, white, "SansSerif", 72, Font.BOLD);
 t3d.set(new Vector3f(x-0.4f, 0.75f, z));
 TransformGroup tg2 = new TransformGroup(t3d);
 tg2.addChild(message);
 sceneBG.addChild(tg2);
}

Figure 17-4. Coordinates for the water globule

1
X

1

2

Y

0

1

2

3

(0, 0)

(0.1, 0.1)

(0.7, 1.5)

(0, 2)

0

This is the Title of the Book, eMatter Edition

464 | Chapter 17: Using a Lathe to Make Shapes

Due to the ordering of the coordinates, the base of a lathe shape is its origin (most
Java 3D utilities have their origins at their centers).

displayLathe() shows that a LatheShape3D instance can be used in the same way as a
Shape3D object due to LatheShape3D being a subclass of Shape3D.

Shapes with Curves and Lines
A LatheShape3D object can be built from a lathe curve made up of curve segments and
straight lines as illustrated by the cup in Figure 17-5.

By the way, it’s possible to create lathe shapes purely from straight
lines if you want. Those are pretty boring, so I’ve boogied on down to
more interesting shapes.

The code for this shape is:

TextureLoader texLd10 = new TextureLoader("textures/swirled.jpg", null);
Texture swirledTex = texLd10.getTexture();

double xsIn2[] = {-0.001, -0.7, -0.25, 0.25, 0.7, -0.6, -0.5};
double ysIn2[] = { 0, 0, 0.5, 1, 2.5, 3, 3};
LatheShape3D ls3 = new LatheShape3D(xsIn2, ysIn2, swirledTex);
displayLathe(ls3, -1.0f, -5.0f, "cup");

This code fragment (and the others in this section) come from
addLatheShapes() in WrapLathe3D.

Figure 17-5. A cup with curves and straight edges

This is the Title of the Book, eMatter Edition

Creating the Scene | 465

A confusing aspect of this fragment is the use of negative x-values, especially the
starting value of –0.001. A plot of these points should ignore the negative signs,
resulting in Figure 17-6. This hack will be explained momentarily.

Points with negative x-values are represented by squares in the figure. Dotted lines
have been added to indicate the curve segments or straight lines between the points.

The LatheCurve class (which LatheShape3D utilizes) can link points together with
curves or lines. If a coordinate has a negative x-value, then a straight line is drawn
from it to the next point in the sequence; otherwise, a curve is created. Once this
choice about the next segment has been made, any negative sign is discarded.

The negative sign labeling is admittedly a bit confusing but keeps the specification of
the shape’s coordinates simple without the need to introduce additional data struc-
tures or classes. The drawback is shown in Figure 17-6: how can you make a coordi-
nate with an x-value equal to 0 be treated as negative and, therefore, result in a
straight line being drawn? The solution is to use a small negative x-value (–0.001).
This leaves a tiny hole in the base of the cup when the shape is rotated, but the hole
is too little to be visible.

Figure 17-6. Coordinates for a cup

X

1

Y

3

(0.001, 0) (0.7, 0)

(0.25, 1)

(0.6, 3)3

(0.25, 0.5)

4

0 1

2

2

5

(0.5, 3)

6

(0.7, 2.5)

1

This is the Title of the Book, eMatter Edition

466 | Chapter 17: Using a Lathe to Make Shapes

Shapes with Colors
Figure 17-5 shows the texture is rendered on both sides of the lathe shape. If no tex-
ture is supplied (or the texture loading stage fails, returning null), then the shape will
be rendered in pink. This approach is seen in two of the examples from Figure 17-1:
the egg and the flower.

I like pink because it is a good default color for limbs. The moveable
figure in Chapter 20 is constructed from LatheShape3D shapes, so I’m
preparing the groundwork in advance with this coloring.

The shape coloring can be changed by supplying two Color3f objects: one for ambi-
ent lighting and the other for diffuse illumination. Often, the ambient color is a
darker version of the diffused one. The saucer example uses brown and then a darker
brown as in Figure 17-7.

The code that creates the saucer is:

Color3f brown = new Color3f(0.3f, 0.2f, 0.0f);
Color3f darkBrown = new Color3f(0.15f, 0.1f, 0.0f);

double xsIn10[] = {0, 0.75, 0.9, 0.75, 0};
double ysIn10[] = {0, 0.23, 0.38, 0.53, 0.75};
LatheShape3D ls14 = new LatheShape3D(xsIn10, ysIn10, darkBrown, brown);
displayLathe(ls14, 6.0f, 5.0f, "saucer");

Figure 17-7. Brown saucer

This is the Title of the Book, eMatter Edition

Creating the Scene | 467

Different Curve Rotations
LatheShape3D rotates each point in the lathe curve around the y-axis, marking out a
circular path back to the point’s starting position. However, it’s possible to subclass
LatheShape3D to modify the path. EllipseShape3D sends the points in an elliptical
orbit, and RhodoneaShape3D makes the points trace the outlines of petals.

Figure 17-8 shows two shapes: the LatheShape3D object at the back of the picture is a
rotation of a single straight line in a circular orbit covered with a texture of the letter
“R.” The object in the foreground is an EllipseShape3D object made with the same
line but forming an ellipse. The same “R” texture dresses the shape.

Here’s the code that creates these shapes:

TextureLoader texLd1 = new TextureLoader("textures/r.gif", null);
Texture rTex = texLd1.getTexture();

double xsIn3[] = {-1, -1}; // straight line
double ysIn3[] = {0, 1};

LatheShape3D ls5 = new LatheShape3D(xsIn3, ysIn3, rTex);
displayLathe(ls5, 6.0f, -5.0f, "round R");

EllipseShape3D ls6 = new EllipseShape3D(xsIn3, ysIn3, rTex);
displayLathe(ls6, 6.0f, 0, "oval R");

These examples show that the texture is stretched over a shape, rather than being
tiled (i.e., repeatedly applied to the shape like a wallpaper stencil). The left side of
the texture is attached to the middle of the back of the shape and wrapped around it

Figure 17-8. Circular and elliptical Rs

This is the Title of the Book, eMatter Edition

468 | Chapter 17: Using a Lathe to Make Shapes

in a counterclockwise direction. The texture is stretched in the vertical direction to
cover the shape from its base (at y == 0) to its maximum height. The decision to
stretch the texture over the shape means the texture image should contain all the
detail for the shape.

The Lathe Curve
LatheCurve takes two arrays of x- and y-values as input, and creates two new arrays
of x- and y-values representing the curve. The difference between the two pairs of
arrays is the addition of interpolated points in the second group to represent curve
segments. This change is illustrated by Figure 17-9, where the input arrays have 3 points,
but the lathe curve arrays have 13.

If all the input points became the starting and ending coordinates for curve segments,
then the size of the output arrays would be (<number of points> – 1)*(<STEP> + 1) +

1, where STEP is the number of introduced interpolation points.

Unfortunately, the sizes of the output arrays is a more complicated matter since
points connected by straight lines don’t require any additional points. The size calcu-
lation is implemented in countVerts(), which checks the sign of each x value in the
input array (xsIn[]) to decide on the number of output points:

private int countVerts(double xsIn[], int num)
{
 int numOutVerts = 1;
 for(int i=0; i < num-1; i++) {
 if (xsIn[i] < 0) // straight line starts here
 numOutVerts++;
 else // curve segment starts here
 numOutVerts += (STEP+1);
 }
 return numOutVerts;
}

Figure 17-9. Interpolating curves

3 input points

X

Y

13 output points

X

Y

curve interpolation

This is the Title of the Book, eMatter Edition

The Lathe Curve | 469

Specifying Curve Segments
A crucial problem is how to interpolate the curve segment. Possible methods include
Bezier interpolation and B-splines. I use Hermite curves: a curve segment is derived
from the positions and tangents of its two endpoints. Hermite curves are simple to
calculate and can be generated with minimal input from the user. For a given curve
segment, four vectors are required:

P0 The starting point of the curve segment

T0 The tangent at P0, analogous to the direction and speed of the curve at that posi-
tion

P1 The endpoint of the curve segment

T1 The tangent at P1

Figure 17-10 illustrates the points and vectors for a typical curve.

The longer a tangent vector, the more the curve is “pulled” in the direction of the
vector before it begins to move towards the endpoint. Figure 17-11 shows this effect
as tangent T0 is made longer.

Four blending functions control the interpolations:

• fh1(t) = 2t3 – 3t2 + 1

• fh2(t) = -2t3 + 3t2

• fh3(t) = t3 – 2t2 + t

• fh4(t) = t3 – t2

Blending functions specify how the intervening points and tangents between the start-
ing and ending points and tangents are calculated as functions of an independent vari-
able t. As t varies from 0 to 1, fh1(t) and fh2(t) control the transition from P0 to P1;

Figure 17-10. Hermite curve data

T1

P1

P0
T0

This is the Title of the Book, eMatter Edition

470 | Chapter 17: Using a Lathe to Make Shapes

fh3(t) and fh4(t) manage the transition from T0 to T1. The resulting x- and y-values
are calculated like so:

• x = fh1(t)*P0.x + fh2(t)*P1.x + fh3(t)*T0.x + fh4(t)*T1.x

• y = fh1(t)*P0.y + fh2(t)*P1.y + fh3(t)*T0.y + fh4(t)*T1.y

Implementation
The Hermite curve interpolation points are calculated in makeHermite() in
LatheCurve. The points are placed in xs[] and ys[], starting at index position
startPosn. The P0 value is represented by x0 and y0, P1 by x1 and y1. The tangents
are two Point2d objects, t0 and t1:

private void makeHermite(double[] xs, double[] ys, int startPosn,
 double x0, double y0, double x1, double y1,
 Point2d t0, Point2d t1)
{
 double xCoord, yCoord;
 double tStep = 1.0/(STEP+1);
 double t;

Figure 17-11. How lengthening the tangent vector T0 affects a curve

Blending Functions and Hermite Curves
You may be wondering where the blending functions come from. The math is straight-
forward and can be found in any good computer graphics textbook, for example, Foley
and Van Dam (Addison-Wesley). I don’t discuss it here as this is meant to be a jovial
gaming pandect rather than a graphics tome.

A good online explanation on Hermite curve interpolation can be found at http://
www.cubic.org/~submissive/sourcerer/hermite.htm, written by Nils Pipenbrinck. A
Java applet, coded by Lee Holmes, allows the user to play with natural splines, Bezier
curves, and Hermite curves and is located at http://www.leeholmes.com/projects/
grapher/.

T1

P1

P0 T0

T1

P1

P0 T0

This is the Title of the Book, eMatter Edition

The Lathe Curve | 471

 if (x1 < 0) // next point is negative to draw a line, make it
 x1 = -x1; // +ve while making the curve

 for(int i=0; i < STEP; i++) {
 t = tStep * (i+1);
 xCoord = (fh1(t) * x0) + (fh2(t) * x1) +
 (fh3(t) * t0.x) + (fh4(t) * t1.x);
 xs[startPosn+i] = xCoord;

 yCoord = (fh1(t) * y0) + (fh2(t) * y1) +
 (fh3(t) * t0.y) + (fh4(t) * t1.y);
 ys[startPosn+i] = yCoord;
 }

 xs[startPosn+STEP] = x1;
 ys[startPosn+STEP] = y1;
}

The loop increments the variable t in steps of 1/(STEP+1), where STEP is the number
of interpolated points to be added between P0 and P1. The division is by (STEP+1)

since the increment must include P1. The loop does not add P0 to the arrays since it
will have been added as the endpoint of the previous curve segment or straight line.

The Java equivalents of the blending functions are shown here:

private double fh1(double t)
{ return (2.0)*Math.pow(t,3) - (3.0*t*t) + 1; }

private double fh2(double t)
{ return (-2.0)*Math.pow(t,3) + (3.0*t*t); }

private double fh3(double t)
{ return Math.pow(t,3) - (2.0*t*t) + t; }

private double fh4(double t)
{ return Math.pow(t,3) - (t*t); }

All this code allows me to flesh out the data points supplied by the user, but it
requires each data point to have an associated tangent. Where do these tangents
come from?

Calculating the Tangents
A tangent is required for each point in the input sequence. The aim is to reduce the
burden on the user as much as possible, so LatheCurve is capable of generating all the
tangents by itself.

The first and last tangents of a curve are obtained by making some assumptions
about a typical shape. The primary aim is to make limb-like shapes, which are
defined by curves starting at the origin, curving out to the right and up, and ending
by curving back to the left to finish on the y-axis. This kind of shape is convex, with
its starting tangent pointing to the right and the last tangent going to the left.

This is the Title of the Book, eMatter Edition

472 | Chapter 17: Using a Lathe to Make Shapes

Both tangents should have a large magnitude to ensure the curve is suitably rounded
at the bottom and top. These assumptions are illustrated in Figure 17-12.

The code that handles all of this is located in LatheCurve’s constructor:

Point2d startTangent =
 new Point2d((Math.abs(xsIn[1]) - Math.abs(xsIn[0]))*2, 0);

Point2d endTangent =
 new Point2d((Math.abs(xsIn[numVerts-1]) -
 Math.abs(xsIn[numVerts-2]))*2, 0);

The xsIn[] array stores the user’s x-values, and numVerts is the size of the array. The
use of Math.abs() around the x-values is to ignore any negative signs due to the
points being used to draw straight lines. The tangents are then each multiplied by 2
to pull the curve outwards making it more rounded.

The intermediate tangents can be interpolated from the data points, using the Catmull-
Rom spline equation:

Ti = 0.5 * (Pi+1 – Pi-1)

This grandiose equation obtains a tangent at point i by combining the data points on
either side of it, at points i-1 and i+1. setTangent() implements this:

private void setTangent(Point2d tangent, double xsIn[], double ysIn[], int i)
{
 double xLen = Math.abs(xsIn[i+1]) - Math.abs(xsIn[i-1]);
 double yLen = ysIn[i+1] - ysIn[i-1];
 tangent.set(xLen/2, yLen/2);
}

Figure 17-12. Typical lathe curve with tangents

last point

first point

last tangent

first tangent

lathe curve

This is the Title of the Book, eMatter Edition

The Lathe Curve | 473

Building the Entire Curve
The for loop in makeCurve() iterates through the input points (stored in xsIn[] and
ysIn[]) building new arrays (xs[] and ys[]) for the resulting curve:

private void makeCurve(double xsIn[], double ysIn[],
 Point2d startTangent, Point2d endTangent)
{
 int numInVerts = xsIn.length;
 int numOutVerts = countVerts(xsIn, numInVerts);
 xs = new double[numOutVerts]; // seq after adding extra pts
 ys = new double[numOutVerts];

 xs[0] = Math.abs(xsIn[0]); // start of curve is initialised
 ys[0] = ysIn[0];
 int startPosn = 1;

 // tangents for the current curve segment between two points
 Point2d t0 = new Point2d();
 Point2d t1 = new Point2d();

 for (int i=0; i < numInVerts-1; i++) {
 if (i == 0)
 t0.set(startTangent.x, startTangent.y);
 else // use previous t1 tangent
 t0.set(t1.x, t1.y);

 if (i == numInVerts-2) // next point is the last one
 t1.set(endTangent.x, endTangent.y);
 else
 setTangent(t1, xsIn, ysIn, i+1); // tangent at pt i+1

 // if xsIn[i] < 0 then use a line to link (x,y) to next pt
 if (xsIn[i] < 0) {
 xs[startPosn] = Math.abs(xsIn[i+1]);
 ys[startPosn] = ysIn[i+1];
 startPosn++;
 }
 else { // make a Hermite curve
 makeHermite(xs, ys, startPosn, xsIn[i], ysIn[i],
 xsIn[i+1], ysIn[i+1], t0, t1);
 startPosn += (STEP+1);
 }
 }
} // end of makeCurve()

The loop responds differently if the current x-value is positive or negative. If it’s neg-
ative, the coordinates will be copied over to the output arrays unchanged (to repre-
sent a straight line). If the x-value is positive, then makeHermite() will be called to
generate a series of interpolated points for the curve. This is the place where the neg-
ative number hack is implemented: if a coordinate has a negative x-value, then a

This is the Title of the Book, eMatter Edition

474 | Chapter 17: Using a Lathe to Make Shapes

straight line will be drawn from it to the next point in the sequence; otherwise, a
curve will be created.

The two tangents, t0 and t1, are set for each coordinate. Initially, t0 will be the start-
ing tangent, and then it will be the t1 value from each previous calculation. At the
end, t1 will be assigned the endpoint tangent.

The new arrays of points, and the maximum height (largest y-value), are made acces-
sible through public methods:

public double[] getXs()
{ return xs; }

public double[] getYs()
{ return ys; }

public double getHeight()
{ return height; }

The Lathe Shape
A LatheShape3D object first creates a lathe curve using the points supplied by the user
and then decorates it with color or a texture. The choice between color and texture is
represented by two constructors:

public LatheShape3D(double xsIn[], double ysIn[], Texture tex)
{ LatheCurve lc = new LatheCurve(xsIn, ysIn);
 buildShape(lc.getXs(), lc.getYs(), lc.getHeight(), tex);
}

public LatheShape3D(double xsIn[], double ysIn[],
 Color3f darkCol, Color3f lightCol)
// two colors required: a dark and normal version of the color
{ LatheCurve lc = new LatheCurve(xsIn, ysIn);
 buildShape(lc.getXs(), lc.getYs(), lc.getHeight(),
 darkCol, lightCol);
}

Both versions of buildShape() call createGeometry() to build a QuadArray for the
shape. Then the four-argument version of buildShape() lays down a texture, and the
five-argument version calls createAppearance() to add color.

Creating the Geometry
createGeometry() passes the lathe curve coordinates to surfaceRevolve(), which
returns the coordinates of the resulting shape. The coordinates are used to initialize a
QuadArray, complete with normals (to reflect light) and texture coordinates if a tex-
ture is going to be wrapped around the shape:

private void createGeometry(double[] xs, double[] ys, boolean usingTexture)
{
 double verts[] = surfaceRevolve(xs, ys);

This is the Title of the Book, eMatter Edition

The Lathe Shape | 475

 // use GeometryInfo to compute normals
 GeometryInfo geom = new GeometryInfo(GeometryInfo.QUAD_ARRAY);
 geom.setCoordinates(verts);

 if (usingTexture) {
 geom.setTextureCoordinateParams(1, 2); // set up tex coords
 TexCoord2f[] texCoords = initTexCoords(verts);
 correctTexCoords(texCoords);
 geom.setTextureCoordinates(0, texCoords);
 }

 NormalGenerator norms = new NormalGenerator();
 norms.generateNormals(geom);

 setGeometry(geom.getGeometryArray()); // back to geo array
}

The calculation of the normals is carried out by a NormalGenerator object, which
requires that the coordinates be stored in a GeometryInfo object.

setTextureCoordinatesParams() specifies how many texture coordinate sets will be
used with the geometry and specifies their dimensionality (Java 3D offers 2D, 3D,
and 4D texture coordinates). The actual texture coordinates are calculated by
initTexCoords() and added to the geometry with setTextureCoordinates().

You’ll encounter NormalGenerator again, as well as other geometry util-
ities, in Chapter 26.

You Say You Want a Revolution
surfaceRevolve() generates the shape’s coordinates by revolving the lathe curve
clockwise around the y-axis in angle increments specified by ANGLE_INCR. This results
in NUM_SLICES columns of points around the y-axis:

private static final double ANGLE_INCR = 15.0;
 // the angle turned through to create a face of the solid
private static final int NUM_SLICES = (int)(360.0/ANGLE_INCR);

The coordinates in adjacent slices are organized into quadrilaterals (quads). Each
quad is specified by four points, with a point represented by three floats (for the x-,
y-, and z-values). The points are organized in counterclockwise order so the quad’s
normal is facing outward.

Figure 17-13 shows how two quads are defined. Each point is stored as three floats.

The surfaceRevolve() method is shown here:

private double[] surfaceRevolve(double xs[], double ys[])
{
 checkCoords(xs);
 double[] coords = new double[(NUM_SLICES) * (xs.length-1) *4*3];

This is the Title of the Book, eMatter Edition

476 | Chapter 17: Using a Lathe to Make Shapes

 int index=0;
 for (int i=0; i < xs.length-1; i++) {
 for (int slice=0; slice < NUM_SLICES; slice++) {
 addCorner(coords, xs[i], ys[i],slice,index); // bottom right
 index += 3;

 addCorner(coords, xs[i+1],ys[i+1],slice,index); // top right
 index += 3;

 addCorner(coords, xs[i+1],ys[i+1],slice+1,index); //top left
 index += 3;

 addCorner(coords, xs[i],ys[i],slice+1,index); // bottom left
 index += 3;
 }
 }
 return coords;
}

The generated coordinates for the shape are placed in the coords[] array.
surfaceRevolve()’s outer loop iterates through the coordinates in the input arrays,
which are stored in increasing order. The inner loop creates the corner points for all
the quads in each slice clockwise around the y-axis. This means that the quads are
built a ring at a time, starting at the bottom of the shape and working up.

addCorner() rotates an (x, y) coordinate around to the specified slice and stores its
(x, y, z) position in the coords[] array:

private void addCorner(double[] coords, double xOrig, double yOrig,
 int slice, int index)
{ double angle = RADS_DEGREE * (slice*ANGLE_INCR);

Figure 17-13. Quads creation

P0

P1

P2

P0'

P1'

P2'

quad 1

quad 2

ANGLE_INCR

quad 1 = {P0, P1, P1', P0'}

quad 2 = {P1, P2, P2', P1'}

slice 1

slice 2

This is the Title of the Book, eMatter Edition

The Lathe Shape | 477

 if (slice == NUM_SLICES) // back at start
 coords[index] = xOrig;
 else
 coords[index] = xCoord(xOrig, angle); // x

 coords[index+1] = yOrig; // y

 if (slice == NUM_SLICES)
 coords[index+2] = 0;
 else
 coords[index+2] = zCoord(xOrig, angle); // z
}

The x- and z-values are obtained by treating the original x-value (xOrig) as a hypote-
nuse at the given angle and projecting it onto the x- and z-axes (see Figure 17-14).

The xCoord() and zCoord() methods are simple:

protected double xCoord(double radius, double angle)
{ return radius * Math.cos(angle); }

protected double zCoord(double radius, double angle)
{ return radius * Math.sin(angle); }

These methods carry out a mapping from Polar coordinates (radius, angle) to Carte-
sian ones (x, y). Since the radius argument (xOrig) never changes, the resulting coor-
dinates will always be a fixed distance from the origin and, therefore, be laid out
around a circle. These methods are protected, so it’s possible to override them to
vary the effect of the radius and/or angle.

The algorithm in surfaceRevolve() and addCorner() comes from the
SurfaceOfRevolution class by Chris Buckalew, which is part of his
FreeFormDef.java example (see http://www.csc.calpoly.edu/~buckalew/
474Lab6-W03.html).

Creating Texture Coordinates
In Chapter 16, a TexCoordGeneration object mapped (s, t) values onto geometry coor-
dinates (x, y, z). Unfortunately, the simplest TexCoordGeneration form only supports
planar equations for the translation of (x, y, z) into s and t. Planar equations can

Figure 17-14. Obtaining new x- and z-values

angle

xOrig

X

Z

This is the Title of the Book, eMatter Edition

478 | Chapter 17: Using a Lathe to Make Shapes

produce repetitive patterns on a shape, especially shapes with flat areas. These prob-
lems can be avoided if the mapping from (x, y, z) to (s, t) is quadratic or cubic, but
the design of the equation becomes harder. In those cases, it’s arguably simpler to
calculate s and t directly (as in this chapter) without utilizing the TexCoordGeneration

class.

The s value 0 is mapped to the shape’s back face and increased in value around the
edge of the shape in a counterclockwise direction until it reaches the back face again
when it equals 1. t is given the value 0 at the base of the shape (where y equals 0) and
increased to 1 until it reaches the maximum y-value. This has the effect of stretching
the texture vertically.

Figure 17-15 shows the s mapping applied to a circle, from a viewpoint looking
down toward the XZ plane.

Figure 17-15 gives a hint of how to calculate s: its value at a given (x, z) coordinate
can be obtained from the angle that the point makes with the z-axis. This will range
between π and –π (see Figure 17-16), which is converted into a value between 0 and 1.

Figure 17-15. The s mapping from above

Figure 17-16. From point to angle

X

Z

0

increasing S value

1

0.5

0.25
shape

0.75

z

x

X

Z

0

π/2−π/2

angle

tan(angle) = x/z (x,z)

π−π

This is the Title of the Book, eMatter Edition

The Lathe Shape | 479

Here’s the code for initTexCoords() that makes all this happen:

private TexCoord2f[] initTexCoords(double[] verts)
{
 int numVerts = verts.length;
 TexCoord2f[] tcoords = new TexCoord2f[numVerts/3];

 double x, y, z;
 float sVal, tVal;
 double angle, frac;

 int idx = 0;
 for(int i=0; i < numVerts/3; i++) {
 x = verts[idx]; y = verts[idx+1]; z = verts[idx+2];

 angle = Math.atan2(x,z); // -PI to PI
 frac = angle/Math.PI; // -1.0 to 1.0
 sVal = (float) (0.5 + frac/2); // 0.0f to 1.0f

 tVal = (float) (y/height); // 0.0f to 1.0f; uses height

 tcoords[i] = new TexCoord2f(sVal, tVal);
 idx += 3;
 }
 return tcoords;
}

The texture coordinates are stored in an array of TexCoord2f objects, each object
holding a (s, t) pair. The angles for the shape’s vertices are obtained by calling Math.

atan2(), and their range of values (π to –π) is scaled and translated to (0 to 1).

A Thin Problem
The mapping described in the last subsection has a flaw, which occurs in any quad
spanning the middle of the shape’s back face. Figure 17-17 shows the round R exam-
ple, with this problem visible as a thin R stretched down the middle of the shape’s
back. In short, there are two Rs, when there should only be one. The extra letter is
also reversed when viewed from the back (remember that I’m placing the texture on
the outside surface of the shape). Figure 17-17 should be compared with the round R
example in Figure 17-8, rendered after the flaw was fixed.

The same effect is apparent in all the other texture-wrapped shapes (although some
shapes and textures make it harder to see). The problem is that the quads which
span the middle of the back face have coordinates at angles on either side of the –z-
axis. An example shows the problem in Figure 17-18.

This is the Title of the Book, eMatter Edition

480 | Chapter 17: Using a Lathe to Make Shapes

P0 and P1 have angles near to –π and, therefore, s values close to 0; P0' and P1' have
angles closer to π and, therefore, s values closer to 1. Consequently, the s compo-
nent of the texture will be drawn in its entirety in that one quad, as seen in
Figure 17-17.

The solution is something of a hack. Each quad generates four TexCoord2f objects
corresponding to the order of the coordinates of the quad (P0, P1, P1', P0'). In cor-
rectly textured quads, the s value for P0 is greater than P0', and P1 is greater than
P1'. This is due to the surfaceRevolve() method rotating points clockwise around
the y-axis. In incorrectly textured quads, the reverse is true: P0 is less than P0' and P1
is less than P1'.

Figure 17-17. An extra R

Figure 17-18. The incorrect s mapping

looking along the -z axis from the origin

P0

P1

P0'

P1'

S values close to 0 S values close to 1

π−π

This is the Title of the Book, eMatter Edition

The Lathe Shape | 481

In correctTexCoords(), every group of four TexCoord2f objects is examined for this
condition, and the offending textured coordinates for P0 and P1 are adjusted to be
greater than those for P0' and P1'. The code to take care of this is:

private void correctTexCoords(TexCoord2f[] tcoords)
{
 for(int i=0; i < tcoords.length; i=i+4) {
 if((tcoords[i].x < tcoords[i+3].x) &&
 (tcoords[i+1].x < tcoords[i+2].x)) { // should not increase
 tcoords[i].x = (1.0f + tcoords[i+3].x)/2 ; // between x & 1.0
 tcoords[i+1].x = (1.0f + tcoords[i+2].x)/2 ;
 }
 }
}

Making an Appearance
The createAppearance() method has two versions. One of them colors the shape
with two colors: one for the light’s ambient component and the other for diffuse illu-
mination. This is achieved with a Material object:

Appearance app = new Appearance():

Material mat = new Material(darkCol, black, lightCol, black, 1.0f);
 // sets ambient, emissive, diffuse, specular, shininess
mat.setLightingEnable(true); // lighting switched on
app.setMaterial(mat);
setAppearance(app);

The other createAppearance() method sets the texture and uses a white Material

object. The texture is combined with the color using the MODULATE mode (see
Chapter 16 for more details on modulation), which allows lighting and shading
effects to be blended with the texture:

Appearance app = new Appearance();

// mix the texture and the material color
TextureAttributes ta = new TextureAttributes();
ta.setTextureMode(TextureAttributes.MODULATE);
app.setTextureAttributes(ta);

Material mat = new Material(); // set a default white material
mat.setSpecularColor(black); // no specular color
mat.setLightingEnable(true);
app.setMaterial(mat);

app.setTexture(tex);

setAppearance(app);

This is the Title of the Book, eMatter Edition

482 | Chapter 17: Using a Lathe to Make Shapes

Subclassing the Lathe Shape
Figure 17-2 shows that LatheShape3D can be subclassed. The aim is to override its
xCoord() and zCoord() methods, which control the shape of the path made by the
lathe curve when it’s rotated. These methods appear in LatheShape3D as shown here:

protected double xCoord(double radius, double angle)
{ return radius * Math.cos(angle); }

protected double zCoord(double radius, double angle)
{ return radius * Math.sin(angle); }

radius is the x-value of the point being rotated around the y-axis, and angle is the
angle of rotation currently being applied. xCoord() and zCoord() return the new x-
and z-values after the rotation has been applied.

An Elliptical Shape
An ellipse resembles a circle stretched in one direction. Another (more formal) way
of characterizing the ellipse is that its points all have the same sum of distances from
two fixed points (called the foci).

The line that passes through the foci is called the major axis, and is the longest line
through the ellipse. The minor axis is the line that passes through the center of the
ellipse, perpendicular to the major axis. The semi-major axis is half the length of the
major axis: it runs from the center of the ellipse to its edge. There’s also a semi-
minor axis (half of the minor axis). See Figure 17-19 for illustrations of all of these
concepts.

Figure 17-20 shows an ellipse with a semi-major axis of 4 and a semi-minor axis of
length 2.

Figure 17-19. Elements of an ellipse

major axis

minor axis

the grey dots are the foci

semi-minor
axis

semi-major axis

X

Y

This is the Title of the Book, eMatter Edition

Subclassing the Lathe Shape | 483

The semi-major and semi-minor axes can be used to calculate the (x, y) coordinates
of the ellipse:

x = semiMajorAxis * cos(angle)
y = semiMinorAxis * sin(angle)

In the case of the ellipse in Figure 17-20, these calculations would result in the
following:

x = 4 * cos(angle)
y = 2 * sin(angle)

The y equation can be rephrased by writing the semi-minor axis value as a scale fac-
tor applied to the semi-major axis number:

x = 4 * cos(angle)
y = 0.5 * 4 * sin(angle)

The scale factor is 0.5 since 0.5 × 4 is 2, the semi-minor axis value. This means that
the semi-minor axis is half the length of the semi-major, as illustrated by
Figure 17-20.

I’ve been talking about x and y equations, but now it’s time to change the axes. A
lathe shape is made by rotating a lathe curve over the floor (the XZ plane). This
means that my ellipses are drawn on the x- and z-axes, not the x- and y-axes. As a
consequence, the y equation becomes the z equation:

z = 0.5 * 4 * sin(angle)

The x and z equations use the semi-major axis number (4). Is there a way of obtain-
ing this from the radius value supplied as an argument to the xCoord() and zCoord()

methods? Yes, when the angle is 0, the x-value is the semi-major axis, which is the
radius:

radius = semiMajorAxis * cos(0), so radius = semiMajorAxis.

This means I can use the radius as a replacement for the semi major axis value in the
x and z equations. The equations become:

x = radius * cos(angle)

z = scaleFactor * radius * sin(angle)

Figure 17-20. Another ellipse

X

Y

2

-2

4-4

This is the Title of the Book, eMatter Edition

484 | Chapter 17: Using a Lathe to Make Shapes

The x equation is the same as the xCoord() method in LatheShape3D, so doesn’t need
to be overridden. The zCoord() method does need changing and becomes the follow-
ing in the EllipseShape3D class:

protected double zCoord(double radius, double angle)
{ return 0.5 * radius * Math.sin(angle); }

The scale factor is set to 0.5, which makes the semi-minor axis half the semi-major
axis, which can be confirmed by examining the oval R example in Figure 17-8.

A weakness of this approach is that the user cannot set the scale factor via a parame-
ter of EllipseShape3D’s constructor. The reason is that the xCoord() and zCoord()

methods are called (indirectly) by the LatheShape3D constructor, so must be fully
specified before any code in the EllipseShape3D constructor is executed. In other
words, the scale factor (e.g., 0.5) must be hardwired into the EllipseShape3D class as
a constant in zCoord().

The armor example uses EllipseShape3D:

double xsIn9[] = {-0.01, 0.5, -1, -1.2, 1.4, -0.5, -0.5, 0};
double ysIn9[] = {0, 0, 1.5, 1.5, 2, 2.5, 2.7, 2.7};

EllipseShape3D ls13 = new EllipseShape3D(xsIn9, ysIn9, plateTex);
displayLathe(ls13, 3.0f, 5.0f, "armour");

Figure 17-21 shows the rendering of armor.

A Rhodonea Shape
A rhodonea curve resembles the petals of a rose. The simplest way to define one is
with an equation using polar coordinates:

r = a * cos(k*angle)

Figure 17-21. The armor ellipse

This is the Title of the Book, eMatter Edition

Subclassing the Lathe Shape | 485

This lays down a curve with k or 2k petals, depending if k is an odd or even integer. a
is the amplitude, affecting the length of the petals. Some examples of rhodonea
curves with different k values are given in Figure 17-22.

Once r is obtained for a given angle, it can be translated to Cartesian coordinates
with:

x = r * cos(angle)
y = r * sin(angle)

I store the initial x value in radius, which is the length of the first petal when the
angle is 0:

radius = a * cos(0), so radius = a

The rhodonea equation then becomes:

r = radius * cos(k*angle)

In the RhodoneaShape3D class, k is set to be 4, and xCoord() and yCoord() must be
overridden:

protected double xCoord(double radius, double angle)
{ double r = radius * Math.cos(4 * angle); // 8 petals
 return r * Math.cos(angle);
}

protected double zCoord(double radius, double angle)
{ double r = radius * Math.cos(4 * angle);
 return r * Math.sin(angle);
}

RhodoneaShape3D is used in the flower example, which is defined as:

double xsIn3[] = {-1, -1};
double ysIn3[] = {0, 1};

RhodoneaShape3D ls7 = new RhodoneaShape3D(xsIn3, ysIn3, null);
displayLathe(ls7, 3.0f, 0, "flower");

A vertical straight line of unit length is rotated and then colored pink. The resulting
curve is shown in Figure 17-23.

Figure 17-22. Some rhodonea curves

k = 2 k = 3 k = 4 k = 5

This is the Title of the Book, eMatter Edition

486 | Chapter 17: Using a Lathe to Make Shapes

The curve is rather rough due to the ANGLE_INCR setting in LatheShape3D (15 degrees
between each slice). If this is reduced to 5 degrees, the result will be more pleasing
(see Figure 17-24).

The drawback of reducing the ANGLE_INCR value is the increase in the
number of vertices generated for each shape.

Figure 17-23. A rough RhodoneaShape3D shape

Figure 17-24. A smoother RhodoneaShape3D shape

This is the Title of the Book, eMatter Edition

487

Chapter 18 CHAPTER 18

3D Sprites

In this chapter, I’ll develop a Sprite3D class, which can be subclassed to create differ-
ent kinds of sprites. The user’s sprite (a robot) and a chasing sprite (a hand) are
shown in action in Figure 18-1 sharing the checkerboard with some scenery (a palm
tree and castle) and obstacles (the red poles).

Features illustrated by the Tour3D application include:

Sprite behavior
The sprites are controlled by Behavior subclasses.

A third-person camera
A simple third-person camera automatically adjusts the user’s viewpoint as the
user’s sprite moves around the scene. The camera can be zoomed in and out by
keyboard controls.

Figure 18-1. 3D sprites in action

This is the Title of the Book, eMatter Edition

488 | Chapter 18: 3D Sprites

Obstacles
The scene contains obstacles that a sprite can’t pass through. (They’re repre-
sented by cylinders in Figure 18-1.) Sprites are prevented from moving off the
checkered floor.

Collision detection
Collision detection between a sprite and the obstacles is implemented by bounds
checking.

Scenery configuration
A “tour” text file loaded at start time contains obstacle and scenery information.
The scenery models (e.g., the castle and the palm tree in this example) are
loaded with PropManager objects.

A background image
The scene’s background is drawn using a scaled JPEG.

Full-screen display
The application is configured to be full-screen.

Class Diagrams for Tour3D
Figure 18-2 shows class diagrams for Tour3D. Only class names are shown here, to
reduce the complexity of the diagram.

Figure 18-2. Class diagrams for Tour3D

This is the Title of the Book, eMatter Edition

Creating the Scene | 489

Tour3D is the top-level JFrame for the application. WrapTour3D creates the 3D scene
and is similar to earlier Wrap classes in that it creates the checkered floor and sets up
the lighting. This version loads the scenery and obstacles and creates the sprites.

PropManager is unchanged from the class in the Loader3D application in Chapter 16.
CheckerFloor and ColouredTiles are the same classes as in previous examples. The
Obstacles class is new: it stores information about the scene’s obstacles.

The sprites are subclasses of Sprite3D. The robot is an instance of TourSprite, and
the hand is an AlienSprite object. TourSprite is controlled by TouristControls, and
TimeBehavior updates AlienSprite. TouristControls and TimeBehavior are subclasses
of Java 3D’s Behavior class.

The code for the Tour3D example can be found in the Tour3D/ directory.

Creating the Scene
Figure 18-3 shows the methods defined in WrapTour3D.

WrapTour3D sets up the checkered floor and lights (similar to previous Wrap
classes). However, addBackground() uses a scaled image, and there are three new
methods: makeScenery(), addTourist(), and addAlien(). These methods are called
by createSceneGraph() to add scenery, obstacles, and sprites to the scene.

The application’s scene graph is shown in Figure 18-4. Its details will be explained in
subsequent sections.

Figure 18-3. WrapTour3D methods

This is the Title of the Book, eMatter Edition

490 | Chapter 18: 3D Sprites

Adding a Background Image
A Java 3D Background node can use a solid color, an image, or a geometric shape (e.g.,
a sphere or a box) with an image rendered onto it. Here, the application utilizes a pic-
ture of a hazy sky, 400 × 400 pixels in size, stored in bigSky.jpg:

TextureLoader bgTexture = new TextureLoader("models/bigSky.jpg", null);
Background back = new Background(bgTexture.getImage());
back.setImageScaleMode(Background.SCALE_FIT_MAX); // fit the display

Figure 18-4. Scene graph for the Tour3D scene

Virtual Universe

Locale

BG

Time Behavior

Ambient
Light

Directional
Light

Background

Directional
Light

sceneBG

TG

Switch

Tourist Controls

Floor Branch

moveTG

rotTG

scaleTG

objBoundsTG

moveTG

rotTG

scaleTG

objBoundsTG

BG and
shape(s)

BG and
shape(s)

castle.cob

Palm.dxf

Coolrobo.3ds

TG

Switch

hand1.obj

TG TG TG

Group

cy
lin

de
r

cy
lin

de
r

cy
lin

de
r

represents the
obstacles

moveTG

rotTG

scaleTG

objBoundsTG

BG and
shape(s)

moveTG

rotTG

scaleTG

objBoundsTG

BG and
shape(s)

This is the Title of the Book, eMatter Edition

Creating the Scene | 491

back.setApplicationBounds(bounds);
sceneBG.addChild(back);

The image is loaded as a texture and then converted to ImageComponent2D form for the
Background object. Java 3D 1.3 added several scaling modes to Background; the one
employed here scales the image to fit the display window. This can cause significant
distortion, which is why I haven’t used a detailed image (haze looks pretty much the
same even after being distorted).

Another scaling mode is Background.SCALE_REPEAT, which tiles the image over the dis-
play area. This avoids the distortion caused by scaling but introduces repetition and
joins between the tiles. With careful design, tile edges can be hidden, and if the
image is large, the repetition will be less obvious.

A drawback of using a background image is it remains stationary in the background
even when the viewpoint moves. Chapter 25 (about the mysterious maze) shows a
way around this by using a shape as the background and placing a texture over it. As
the user moves around, she sees different parts of the geometry and, therefore, differ-
ent parts of the background. Chapter 27 (on terrain generation) places stars in the
sky with the same technique.

Full-Screen Display
There are two approaches to making a full-screen application in Java 3D: the display
window’s dimensions can be set to match those of the monitor or full-screen exclu-
sive mode (FSEM) can be deployed. These techniques were explained in Chapter 4,
in the context of 2D Java games.

When writing a Java 3D application, which technique is preferable? In terms of
speed, the two are similar since Java 3D passes most graphics processing to OpenGL
or DirectX.

One advantage of using FSEM is control over screen resolution. A minor disadvan-
tage is that FSEM interacts poorly with Swing components, minor because most
full-screen games don’t utilize Swing controls. Another limitation is that
GraphicsDevice.isFullScreenSupported() may return false (e.g., on some versions
of Unix). On systems where FSEM is unavailable, FSEM will appear to work by fall-
ing back to using a full-size window.

In this chapter, I’ll use a fixed-size window that fills the screen and grapple with
FSEM in the next chapter.

The resizing of the display window requires three pieces of code. In the Tour3D class,
the menu bars and other JFrame decoration must be turned off:

setUndecorated(true);

In WrapTour3D, the panel must be resized to fill the monitor:

setPreferredSize(Toolkit.getDefaultToolkit().getScreenSize());

This is the Title of the Book, eMatter Edition

492 | Chapter 18: 3D Sprites

A full-screen application with no menu bar raises the question of how to terminate
the program. The usual approach is to add a KeyAdapter anonymous class to the win-
dow that has keyboard focus, which is the Canvas3D object in this application:

canvas3D.setFocusable(true);
canvas3D.requestFocus();

canvas3D.addKeyListener(new KeyAdapter() {
// listen for Esc, q, end, Ctrl-c on the canvas to
// allow a convenient exit from the full screen configuration
 public void keyPressed(KeyEvent e)
 { int keyCode = e.getKeyCode();
 if ((keyCode == KeyEvent.VK_ESCAPE) ||
 (keyCode == KeyEvent.VK_Q) ||
 (keyCode == KeyEvent.VK_END) ||
 ((keyCode == KeyEvent.VK_C) && e.isControlDown())) {
 win.dispose();
 System.exit(0); // exit() isn't sufficient usually
 }
 }
});

Catching KeyEvents in WrapTour3D doesn’t preclude their use in other parts of the
application. As you’ll see, the TouristControls class utilizes KeyEvents to govern the
movement of the robot sprite and to adjust the user’s viewpoint.

The unusual aspect of my coding is the Window.dispose() call, applied to win, a refer-
ence to the top-level JFrame created in Tour3D. This is preferable to shutting things
down with exit() only; a call to exit() kills the application but often fails to clear
the application’s image from the monitor.

Adding Scenery and Obstacles
Tour3D makes a distinction between scenery and obstacles: scenery comes from exter-
nal models (e.g., the castle, palm tree) and is loaded via PropManager objects. Obsta-
cles are red columns generated by the code, requiring only a (x, z) location to
position them on the floor.

A crucial attribute of scenery is its intangibility: the robot and hand sprites can move
right through it if they wish. In contrast, a sprite is disallowed from passing through
an obstacle.

Scenery and obstacle data are read from a text file whose name is supplied on the
command line when Tour3D is started. For example, the following call uses the ctour.
txt tour file:

java -cp %CLASSPATH%;ncsa\portfolio.jar Tour3D ctour.txt

The extension of the classpath is to utilize the loaders in the NCSA Portfolio package.

This is the Title of the Book, eMatter Edition

Creating the Scene | 493

The format of a tour file is simple: each line contains the filename of a model or a
sequence of coordinates for positioning obstacles. The sequences are prefixed by -o

to make them easy to find when the data are read in.

The ctour.txt file used to decorate the scene in Figure 18-1 contains:

Castle.cob
-o (4,4) (6,6)
Palm.dxf
-o (-2,3)

Any number of coordinates can be in an -o sequence; two –o lines are in ctour.txt as
an example.

Alternatively, the three points could be listed on a single –o line.

The obstacle coordinates are passed to the Obstacle object, which creates the neces-
sary data structures, including the three on-screen red cylinders.

The model filenames are assumed to be located in the models/ subdirectory and to
come with coord datafiles for positioning them in the scene. Coord datafiles were
introduced in Chapter 16, and they’re generated by the Loader3D application as a
loaded model that is translated, rotated, and scaled. These details can be stored in a
coord datafile for the model and utilized later by the PropManager class in Loader3D

when the model is loaded. PropManager is being reused in Tour3D to place a correctly
positioned, rotated, and sized model in the scene. The loading of the tour file is done
by makeScenery() in WrapTour3D. Here’s the relevant code fragment from that
method:

obs = new Obstacles(); // initialise Obstacle object
PropManager propMan;
... // other nonrelevant code

BufferedReader br = new BufferedReader(new FileReader(tourFile));
String line;
while((line = br.readLine()) != null) {
 if (line.startsWith("-o")) // save obstacle info
 obs.store(line.substring(2).trim());
 else { // load scenery
 propMan = new PropManager(line.trim(),true);
 sceneBG.addChild(propMan.getTG()); // add to scene
 }
}
br.close();
sceneBG.addChild(obs.getObsGroup()); // add obs to scene

A PropManager object creates a scene graph branch containing a chain of
TransformGroups. In Figure 18-4, the chains above the BranchGroups for the castle and

This is the Title of the Book, eMatter Edition

494 | Chapter 18: 3D Sprites

palm tree are drawn as rectangles. A chain of TransformGroups may be considered too
much overhead for loading a model, but the overhead (and the chain) can be
removed fairly easily: PropManager must be extended with a method which switches
off the capability bits in the TransformGroups:

moveTG.clearCapability(TransformGroup.ALLOW_TRANSFORM_READ);
moveTG.clearCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

This should be done before the branch is added to the main scene and compiled.
Compilation will optimize the chain away to a single TransformGroup since Java 3D
will notice that none of the chain’s nodes can be transformed at runtime. However, I
haven’t made these coding changes since I prefer to leave PropManager unchanged
from its first appearance in Chapter 16.

Obstacles
The Obstacle object created by makeScenery() maintain three types of information:

• A 2D array of Booleans called obs, which indicates if a particular (x, z) location is
occupied by an obstacle

• A 2D array of Java 3D BoundingSphere objects called obsBounds, which specifies
the influence of an obstacle at a given (x, z) location

• A Group node called obsGroup, which holds the cylinders representing the obstacles

A class diagram for Obstacles is given in Figure 18-5.

Figure 18-5. Class diagram for Obstacles

This is the Title of the Book, eMatter Edition

The Basic 3D Sprite | 495

The coding of the class is simplified by restricting the obstacles to integer positions
on the checkerboard, which permits array-based data structures and algorithms to be
employed.

A given (x, z) coordinate is checked for obstacles with nearObstacle(), called by the
sprites from the Sprite3D class. It returns false if the supplied position is outside the
floor area or too near an obstacle. Nearness testing is done by determining if a
bounding sphere centered at the coordinate intersects with any of the bounding
spheres in obsBounds:

BoundingSphere bs = new BoundingSphere(pos, radius);
for (int z=0; z <= FLOOR_LEN; z++)
 for(int x=0; x <= FLOOR_LEN; x++)
 if (obs[z][x]) { // does (x,z) have an obstacle?
 if (obsBounds[z][x].intersect(bs))
 return true;
 }
return false;

The bounding sphere is created using Java 3D’s BoundingSphere class and is defined
by a center point and radius. The bounding spheres for the obstacles are generated as
their coordinates are read in from the tour file and stored in the obsBounds[] array. I
utilize BoundingSphere’s intersect() method, which returns true if two bounding
volumes intersect.

The algorithm given above is exhaustive in that it tests every obstacle against the
supplied position (pos). It might be more efficient to use the pos value to limit the
number of obstacles considered, but then I would have to store the obstacle informa-
tion in a more structured, ordered form. That seems overly complicated for this
example.

Each obstacle is displayed as a red cylinder and placed below a TransformGroup to ori-
ent it on screen, as shown in the scene graph in Figure 18-4. The TransformGroup

moves the cylinder upward by HEIGHT/2, so its base is resting on the floor at the (x, z)
coordinate specified for that obstacle in the tour file.

The Basic 3D Sprite
Sprite3D is the base class for creating 3D sprites. The TourSprite subclass is used to
create the user’s robot sprite, and AlienSprite is a subclass of TourSprite for the
alien hand.

TourSprite is controlled by TouristControls, which monitors user key presses and
can adjust the sprite’s position or the user’s viewpoint as needed. AlienSprite is peri-
odically updated by the TimeBehavior class to make the alien hand chase the user’s
sprite.

This is the Title of the Book, eMatter Edition

496 | Chapter 18: 3D Sprites

Figure 18-6 shows the public methods of the Sprite3D and Behavior classes and the
relationships between them.

Sprite3D represents a model able to move about the XZ plane, rotate around the y-
axis, and detect obstacles and floor boundaries. The sprite can be made inactive,
which will cause it to disappear from the scene.

The constructor for Sprite3D utilizes PropManager to load the model representing the
sprite. It then adds a Switch node and TransformGroup above the model’s graph. The
result can be seen in the branches for the robot (Coolrobo.3ds) and alien hand
(hand1.obj) in Figure 18-4. Here is the relevant code:

PropManager propMan = new PropManager(fnm, true);

visSwitch = new Switch(); // for sprite visibility
visSwitch.setCapability(Switch.ALLOW_SWITCH_WRITE);
visSwitch.addChild(propMan.getTG()); // add obj to switch
visSwitch.setWhichChild(Switch.CHILD_ALL); // make visible

objectTG = new TransformGroup(); // for sprite moves
objectTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
objectTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
objectTG.addChild(visSwitch); // add switch to TG

Figure 18-6. Sprite3D and Behavior classes

This is the Title of the Book, eMatter Edition

The Basic 3D Sprite | 497

The objectTG node is made available to the application’s scene via getTG(), which is
called by WrapTour3D.

Visibility
The Switch node is used to control the image branch’s visibility. This is done in the
setActive() method of Sprite3D:

public void setActive(boolean b)
{ isActive = b;
 if (!isActive)
 visSwitch.setWhichChild(Switch.CHILD_NONE); //make invisible
 else if (isActive)
 visSwitch.setWhichChild(Switch.CHILD_ALL); // make visible
}

In Java 3D, the visibility of a model can be controlled in at least three ways:

• Use setWhichChild() on a Switch above the model (as here).

• Use setVisible() on the model’s rendering attributes.

• Use Java 3D TransparencyAttributes, as detailed in the LoaderInfo3D application
in the section “Making a Shape Almost Transparent” in Chapter 16.

The overhead of manipulating rendering or transparency attributes can be high and
will continue to produce an overhead during rendering. A Switch node placed above
the model in the scene graph means that rendering doesn’t need to visit the model at
all when the Switch node is set to CHILD_NONE, a clear gain in efficiency.

Another advantage of Switch is it can be placed above Group nodes to control the visi-
bility of subgraphs in the scene. The subgraph might be a group of shapes (e.g., a
group of soldiers) who should all disappear at the same time when zapped by a laser.
Attribute approaches only apply to individual Shape3D nodes.

Movement and Rotation
The addition of another TransformGroup to a model’s scene branch (labeled as TG in
Figure 18-4) is for coding simplicity. It means that a Sprite3D object can be moved
and rotated without the code having to delve into the graph structure returned by
PropManager’s getTG().

A sprite can be moved with setPosition() and moveBy() and can be rotated with
doRotateY(). These methods affect the objectTG TransformGroup, which corresponds
to the TG node above each model in Figure 18-4.

The movement and rotation methods affect the same TransformGroup so that rota-
tions will influence movement. For example, when a sprite moves “forward,” it will
move forward according to the direction it is currently facing. In other words, the

This is the Title of the Book, eMatter Edition

498 | Chapter 18: 3D Sprites

sprite’s rotation affects its movement. doMove() makes the sprite move by the dis-
tance specified in a vector:

private void doMove(Vector3d theMove)
// move the sprite by the amount in theMove
{
 objectTG.getTransform(t3d);
 toMove.setTranslation(theMove); // overwrite previous trans
 t3d.mul(toMove);
 objectTG.setTransform(t3d);
}

The Transform3D objects t3d and toMove are declared globally and created in the con-
structor of Sprite3D for efficiency reasons. The alternative would be to create a
Transform3D object inside doMove() each time it was called. This would generate a lot
of temporary objects over time, which would need to be garbage collected, causing
the application to slow down while the objects were removed by the JVM.

doRotateY() is similar to doMove() and uses another global Transform3D object called
toRot:

public void doRotateY(double radians)
// rotate the sprite by radians around its y-axis
{
 objectTG.getTransform(t3d);
 toRot.rotY(radians); // overwrite previous rotation
 t3d.mul(toRot);
 objectTG.setTransform(t3d);
}

Obstacle and Boundary Detection
The sprite should not pass through obstacles or move off the floor. This behavior is
achieved by utilizing a Obstacles object, called obs. A reference to obs is passed into
the sprite at creation time and used in moveBy(). moveBy() is the public movement
method for the sprite and accepts a (x, z) step:

public boolean moveBy(double x, double z)
// Move the sprite by offsets x and z, but only if within
// the floor and there is no obstacle nearby.
{
 if (isActive()) {
 Point3d nextLoc = tryMove(new Vector3d(x, 0, z));
 if (obs.nearObstacle(nextLoc, radius*OBS_FACTOR)) // ask Obstacles object
 return false;
 else {
 doMove(new Vector3d(x,0,z));
 return true;
 }
 }
 else // not active
 return false;
}

This is the Title of the Book, eMatter Edition

The Basic 3D Sprite | 499

moveBy() calculates its next position by calling tryMove(), which is almost the same
as doMove() except that it does not adjust the position of objectTG. The possible new
location, nextLoc, is passed to Obstacles’s nearObstacle() for testing. If the new
location is acceptable, the step will be made by calling doMove().

This approach nicely separates the issues of obstacle and boundary detection from
the sprite, placing them in the Obstacles class. Another aim was to implement this
form of collision detection without utilizing features in Java 3D.

Java 3D can be employed for collision detection in two main ways:

• Java 3D can generate an event when one shape intersects with another, which is
processed by a Behavior object. The drawback is that such events only occur
once the shapes have intersected. What is required is an event just before the
shapes intersect.

• Java 3D picking can query whether moving the user’s viewpoint will result in a
collision with an object in the scene. Picking is a technique for selecting shapes
inside the scene by shooting a line (or cone) from the viewer’s location, through
the mouse position, into the scene. When the line intersects with a shape in the
scene, the shape’s been picked. This approach is suitable for first-person games
where the viewpoint represents the player. Tour3D is the beginnings of a third-
person game, where the viewer is distinct from the player (the robot). I’ll return
to this picky question when I look at first-person games in Chapter 24.

Updating the Sprite
A comparison of Sprite (the 2D sprite class from Chapter 11) and Sprite3D high-
lights an important difference between the 2D and 3D games programming styles.
The 2D games all use an update redraw cycle, with timer calculations to control the
cycle’s frequency. Sprite3D has no redraw method, and no explicit timer control of
its redraw rate.

The difference is due to the high-level nature of Java 3D’s scene graph. Java 3D con-
trols graph rendering, so it handles redraws, including their frequency. At the pro-
gramming level, you only have to change the scene (e.g., by adjusting the objectTG

node) and let Java 3D do its thing. If you do want direct control, you can switch
from Java 3D’s default retained mode to immediate mode, but I won’t explore that
approach here. Immediate mode allows the programmer to specify when a scene
should be rendered, but it’s also the programmer’s responsibility to manage the ren-
dering scene data, which is a considerable amount of work.

This is the Title of the Book, eMatter Edition

500 | Chapter 18: 3D Sprites

The User’s Touring Sprite
TourSprite subclasses Sprite3D to specify the movement step and rotation amounts
of the user’s sprite. Here are the relevant methods:

private final static double MOVERATE = 0.3;
private final static double ROTATE_AMT = Math.PI / 16.0;

public TourSprite(String fnm, Obstacles obs)
{ super(fnm, obs); }

public boolean moveForward()
{ return moveBy(0.0, MOVERATE); }

public void rotClock()
{ doRotateY(-ROTATE_AMT); } // clockwise

TourSprite doesn’t contain any behavior code to specify when the move and rotation
methods should be called and is placed in a separate Behavior class (TouristControls
for TourSprite). Behavior classes are explained after the next section.

The Alien Sprite
A TimeBehavior object drives AlienSprite's chasing behavior by calling AlienSprite’s
update() method periodically. update() uses the alien’s and robot’s current posi-
tions to calculate a rotation that makes the alien turn to face the robot. Then the
alien moves toward the robot. Once the alien is sufficiently close to the robot, an
exciting message is printed to standard output (this is, after all, just a demo).

update() is defined as follows:

public void update()
// called by TimeBehaviour to update the alien
{ if (isActive()) {

headTowardsTourist();
 if (closeTogether(getCurrLoc(), ts.getCurrLoc()))
 System.out.println("Alien and Tourist are close together");
 }
}

headTowardsTourist() rotates the sprite then attempts to move it forward:

private void headTowardsTourist()
{
 double rotAngle = calcTurn(getCurrLoc(), ts.getCurrLoc());
 double angleChg = rotAngle-currAngle;
 doRotateY(angleChg); // rotate to face tourist
 currAngle = rotAngle; // store new angle for next time
 if (moveForward())
 ;
 else if (moveLeft())
 ;

This is the Title of the Book, eMatter Edition

The Alien Sprite | 501

 else if (moveRight())
 ;
 else if (moveBackward())
 ;
 else
 System.out.println("Alien stuck!");
}

AlienSprite extends TourSprite and uses the movement and rotation methods
defined in that class.

A complication with the chasing behavior is how to deal with obstacles. If a move is
blocked by an obstacle, then the move method (i.e., moveForward(), moveLeft())
returns false. headTowardsTourist() tries each method until one succeeds. This may
lead to the sprite moving about in an inefficient manner due to the lack of any path
planning, but this behavior is satisfactory (and fast) in a scene with few obstacles.

Path planning using the A* algorithm is described in the 2D context in
Chapter 13.

calcTurn() deals with seven possible positional relationships between the alien and
the robot, which can be understood by referring to Figure 18-7.

The alien begins by facing along the positive z-axis, toward the user’s viewpoint. The
rotation (stored in rotAngle) is calculated relative to that starting angle so the rotation

Figure 18-7. Possible angles between the alien and robot

23

14

alienLoc

-z

-x +x

+z
xDiff

rotAngle zDiff

touristLoc

This is the Title of the Book, eMatter Edition

502 | Chapter 18: 3D Sprites

change from the previous orientation can be obtained by subtraction. The start of
headTowardsTourist() contains this code:

double rotAngle = calcTurn(getCurrLoc(), ts.getCurrLoc());
double angleChg = rotAngle-currAngle;
doRotateY(angleChg); // rotate to face tourist
currAngle = rotAngle; // store new angle for next time

The tourist may be in any of the four quadrants marked in Figure 18-7, it may be on
the positive or negative x-axes (i.e., with a zero z value), or may be at the same spot
as the alien; altogether, there are seven possibilities.

A positive rotation around the y-axis is counterclockwise.

The possibilities for rotAngle are shown in Table 18-1.

These choices are encoded in calcTurn() as a series of if tests after calculating xDiff

and zDiff (the x-axis and z-axis distances between the two sprites).

The calculations for quadrants (1) and (4) and quadrants (2) and (3) could be com-
bined since the signs of the x and z locations are implicit in the values for xDiff and
zDiff.

Behaviors in Java 3D
A Behavior object is used to monitor events occurring in a Java 3D application, such
as key presses, the rendering of frames, the passage of time, the movement of the
user’s viewpoint, Transform3D changes, and collisions. These events, called wakeup
criteria, activate the Behavior object so it can carry out specified tasks.

Table 18-1. Positions for the robot relative to the alien

Quadrant x loc z loc rotAngle

(1) +ve +ve arctan x/z

(2) +ve –ve pi + arctan x/–z

(3) –ve –ve pi + arctan –x/–z

(4) –ve +ve arctan –x/z

On the +x axis +ve 0 pi/2

On the –x axis –ve 0 –pi/2

Same spot 0 0 0

This is the Title of the Book, eMatter Edition

Behaviors in Java 3D | 503

A typical Behavior subclass has the following format:

public class FooBehavior extends Behavior
{
 private WakeupCondition wc; // what will wake the object
 // other global variables

 public FooBehavior(...)
 { // initialise globals
 wc = new ... // create the wakeup criteria
 }

 public void initialize()
 // register interest in the wakeup criteria
 { wakeupOn(wc); }

 public void processStimulus(Enumeration criteria)
 {
 WakeupCriterion wakeup;
 while (criteria.hasMoreElements()) {
 wakeup = (WakeupCriterion) criteria.nextElement();
 // determine the type of criterion assigned to wakeup;
 // carry out the relevant task;
 }
 wakeupOn(wc); // reregister interest
 } // end of processStimulus()

} // end of FooBehavior class

A subclass of Behavior must implement initialize() and processStimulus().
initialize() should register the behavior’s wakeup criteria, but other initialization
code can be placed in the constructor for the class. processStimulus() is called by
Java 3D when an event (or events) of interest to the behavior is received. Often,
processStimulus() being called is enough to decide what task should be carried out,
e.g., TimeBehavior. In more complex classes, the events passed to the object must be
analyzed. For example, a key press may be the wakeup condition, but the code will
need to determine which key was pressed.

A common error when implementing processStimulus() is to forget to
re-register the wakeup criteria at the end of the method:

wakeupOn(wc); // reregister interest

If this is skipped, the behavior won’t be triggered again.

This is the Title of the Book, eMatter Edition

504 | Chapter 18: 3D Sprites

A WakeupCondition object can be a combination of one or more WakeupCriterion.
There are many subclasses of WakeupCriterion, including:

WakeupOnAWTEvent

For AWT events such as key presses and mouse movements. WakeupOnAWTEvent is
used in TouristControls.

WakeupOnElapsedFrames

An event can be generated after a specified number of renderings. This criterion
should be used with care since it may result in the object being triggered many
times per second.

WakeupOnElapsedTime

An event can be generated after a specified time interval. WakeupOnElapsedTime is
used in TimeBehavior.

Another common mistake when using Behaviors is to forget to specify a scheduling
volume (or region) with setSchedulingBounds(). A Behavior node is only active (and
able to receive events) when the user’s viewpoint intersects a Behavior object’s sched-
uling volume. If no volume is set, then the Behavior will never be triggered.

Controlling the Touring Sprite
The TouristControls object responds to key presses by moving the robot sprite or by
changing the user’s viewpoint. As the sprite moves, the viewpoint is automatically
adjusted so the sprite and viewpoint stay a fixed distance apart. This is a simple form
of third-person camera.

What’s a Third-Person Camera?
A third-person camera is a viewpoint that semiautomatically or automatically tracks
the user’s sprite as it moves through a game. This is difficult to automate since the
best vantage point for a camera depends on the sprite’s position and orientation and
on the location of nearby scenery and other sprites, as well as the focal point for the
current action. A common solution is to offer the player a selection of several cameras.

Tour3D is simpler: the camera stays at a certain distance from the sprite, offset along
the positive z-axis. This distance is maintained as the sprite moves forward, back-
ward, left, and right. The only permitted adjustment to the camera is a zoom capabil-
ity that reduces or increases the offset. Though this approach is simple, it is quite
effective. The coding can be extended to support more complex changes in the cam-
era’s position and orientation.

This is the Title of the Book, eMatter Edition

Controlling the Touring Sprite | 505

As an added bonus, having a camera means that I no longer need to
use Java 3D’s OrbitBehavior class.

Setting Up TouristControls
The TourSprite and TouristControls are created and linked inside addTourist() in
WrapTour3D:

private void addTourist()
{
 bob = new TourSprite("Coolrobo.3ds", obs); // sprite
 bob.setPosition(2.0, 1.0);
 sceneBG.addChild(bob.getTG());

 ViewingPlatform vp = su.getViewingPlatform();
 TransformGroup viewerTG = vp.getViewPlatformTransform();
 // TransformGroup for the user's viewpoint

 TouristControls tcs = new TouristControls(bob, viewerTG);
 // sprite's controls
 tcs.setSchedulingBounds(bounds);
 sceneBG.addChild(tcs);
}

The TouristControls object (tcs) requires a reference to the TourSprite (called bob)
to monitor and change its position, and a reference to the user’s viewpoint
TransformGroup (viewerTG) to move the viewpoint in line with the TourSprite’s
position.

The WakeupCondition for TouristControls is an AWT key press, which is specified in
the constructor:

keyPress = new WakeupOnAWTEvent(KeyEvent.KEY_PRESSED);

The key press is then registered in initialize():

wakeupOn(keyPress);

processStimulus() checks that the criterion is an AWT event and responds to key
presses:

public void processStimulus(Enumeration criteria)
{ WakeupCriterion wakeup;
 AWTEvent[] event;

 while(criteria.hasMoreElements()) {
 wakeup = (WakeupCriterion) criteria.nextElement();
 if(wakeup instanceof WakeupOnAWTEvent) { // is it AWT?
 event = ((WakeupOnAWTEvent)wakeup).getAWTEvent();
 for(int i = 0; i < event.length; i++) { // many events

This is the Title of the Book, eMatter Edition

506 | Chapter 18: 3D Sprites

 if(event[i].getID() == KeyEvent.KEY_PRESSED)
processKeyEvent((KeyEvent)event[i]); // do something

 }
 }
 }
 wakeupOn(keyPress); // re-register
}

All the testing and iteration through the event[] array leads to a call to
processKeyEvent(), which reacts to the key press.

Keys Understood by TouristControls
The user sprite can move in four directions: forward, backward, left, and right; it can
also rotate left or right around the y-axis. The down, up, left, and right arrow keys
cover forward, backward, rotate left, and rotate right. The Alt key combined with the
left and right arrows support left and right movement (a sort of sidestepping).

One subtlety here is the choice of keys to denote direction. The down arrow key is
most natural for representing forward when the sprite is facing out of the world,
along the +z axis but is less appealing when the sprite has been rotated by 180 degrees
and is facing into the scene. For this reason, it may be better to use letter keys such as
f, b, l, and r for movement; however, I’m not convinced that letters are easier to
remember (e.g., does r mean reverse or right?). The arrow keys have the advantage of
being placed together on the keyboard.

The viewpoint can be zoomed in and out along the z-axis; those two operations are
activated by the i and o keys.

processKeyEvent()’s definition is shown here:

private void processKeyEvent(KeyEvent eventKey)
{ int keyCode = eventKey.getKeyCode();
 if(eventKey.isAltDown())
 altMove(keyCode);
 else
 standardMove(keyCode);

 viewerMove();
}

Every key has a unique key code constant; each is listed at length in the documentation
for the KeyEvent class. Checking for modifier keys, such as alt and shift, can be done
by testing the KeyEvent object, e.g., see the isAltDown() test in processKeyEvent().

standardMove() calls the relevant methods in the TourSprite (called bob) depending
on which key is pressed:

if(keycode == forwardKey)
 bob.moveForward();
else if(keycode == backKey)
 bob.moveBackward();

This is the Title of the Book, eMatter Edition

Controlling the Touring Sprite | 507

forwardKey and backKey (and others) are constants defined in TouristControls:

private final static int forwardKey = KeyEvent.VK_DOWN;
private final static int backKey = KeyEvent.VK_UP;

Viewpoint Initialization
The initial positioning of the user’s viewpoint is done in TouristControls in the
setViewer() method:

private void setViewer()
{ bobPosn = bob.getCurrLoc(); // start location for bob
 viewerTG.getTransform(t3d);
 t3d.lookAt(new Point3d(bobPosn.x, HEIGHT, bobPosn.z + ZOFFSET),
 new Point3d(bobPosn.x, HEIGHT, bobPosn.z),
 new Vector3d(0,1,0));
 t3d.invert();
 viewerTG.setTransform(t3d);
}

Transform3D.lookAt() specifies the viewer’s position, the point being looked at, and
the up direction. The coordinates are obtained from the TourSprite’s original posi-
tion. The viewpoint is raised HEIGHT units up the y-axis and ZOFFSET units away down
the positive z-axis to give an overview of the robot.

It’s important that the vector between the user’s viewpoint and the sprite is at right
angles to the XY plane. This means that a translation applied to the sprite will have
the same effect when applied to the viewpoint. This issue is a consequence of the
translation and rotation components of the viewer being applied to a single
TransformGroup.

Moving the Camera
The camera is moved by viewerMove(), which is called at the end of processKeyEvent()
after the sprite’s position or orientation has been altered.

viewerMove() obtains the new position of the sprite and calculates the translation rel-
ative to the previous position. This translation is then applied to the viewer:

private void viewerMove()
{ Point3d newLoc = bob.getCurrLoc();
 Vector3d trans = new Vector3d(newLoc.x - bobPosn.x,
 0, newLoc.z - bobPosn.z);
 viewerTG.getTransform(t3d);
 toMove.setTranslation(trans);
 t3d.mul(toMove);
 viewerTG.setTransform(t3d);
 bobPosn = newLoc; // save for next time
}

Figure 18-8 shows two screenshots of Tour3D with the sprite in different locations
and orientations, but the viewpoint is in the same relative position in both pictures.

This is the Title of the Book, eMatter Edition

508 | Chapter 18: 3D Sprites

Zooming the Camera
Camera zooming is achieved by adjusting the z-axis distance between the viewpoint
and the sprite. When the user presses i or o, shiftViewer() is called inside
standardMove():

// other key processing in standardMove()
else if(keycode == inKey) // letter 'i'
shiftViewer(-ZSTEP);

else if(keycode == outKey) // letter 'o'
shiftViewer(ZSTEP);

ZSTEP is set to be 1.0. shiftViewer() moves the TransformGroup by the required
amount along the z-axis:

private void shiftViewer(double zDist)
{ Vector3d trans = new Vector3d(0,0,zDist);
 viewerTG.getTransform(t3d);
 toMove.setTranslation(trans);
 t3d.mul(toMove);
 viewerTG.setTransform(t3d);
}

Figure 18-9 shows the result of pressing i five times. Compare the viewpoint’s posi-
tion with the images in Figure 18-8 to see the effect of zooming.

Rotating the Camera
The TouristControls class doesn’t support viewpoint rotation, but it’s interesting to
discuss the issues involved in implementing some form of rotation.

Figure 18-8. Sprite movement affects the viewpoint

This is the Title of the Book, eMatter Edition

Controlling the Touring Sprite | 509

The first problem is to make sure that the rotations and translations applied to the sprite
are echoed by the same rotations and translations of the viewpoint. If the viewpoint
rotates by a different amount, then the sprite’s translations will have a different
effect on the viewpoint since it will be facing in a different direction. This echoing is
best implemented by duplicating the Sprite3D methods for translation and rotation
inside TouristControls. The coding will require some modifications since the view-
point is facing toward the sprite, so its notions of forward, backward, left, and right
are different.

Even if the rotations of the sprite and viewpoint are always aligned, problems will
still occur. For instance, a 180-degree rotation of the sprite will cause a 180-degree
rotation of the viewpoint, and the viewpoint will now be facing away from the sprite.
This is a result of rotating the sprite and the viewpoint around their own centers, and
the rotation of the viewpoint must use the sprite’s position as its center of rotation.

Figure 18-10 shows the desired viewpoint rotation after the sprite has rotated 30
degrees.

In coding terms, this requires the viewpoint TransformGroup to be translated to the
sprite’s position, rotated, and then translated back. The translation back will be the
negative of the first translation since the viewpoint’s coordinate system will have
been changed by the rotation.

A more fundamental question still remains: does rotation give the user a better view
of the sprite? Unfortunately, the answer is “maybe.” The problem is that the rota-
tion may move the viewpoint inside a piece of scenery or otherwise block the view in
some way. One solution is to offer the user several alternative viewpoints, in the
hope that at least one of them will be useful. You’ll learn how to implement multiple
viewpoints in the Maze3D application in Chapter 25.

Figure 18-9. A closer view of the sprite

This is the Title of the Book, eMatter Edition

510 | Chapter 18: 3D Sprites

Updating the Alien Sprite
TimeBehavior acts as a Timer-like object for calling the update() method in
AlienSprite every 500 milliseconds. The two are linked together by WrapTour3D in its
addAlien() method:

private void addAlien()
{
 AlienSprite al = new AlienSprite("hand1.obj", obs, bob); // alien
 al.setPosition(-6.0, -6.0);
 sceneBG.addChild(al.getTG());

 TimeBehavior alienTimer = new TimeBehavior(500, al); // alien's controls
 alienTimer.setSchedulingBounds(bounds);
 sceneBG.addChild(alienTimer);
}

The TimeBehavior class is simpler than TouristControls since its processStimulus()

method being called is enough to trigger the call to update():

public class TimeBehavior extends Behavior
{
 private WakeupCondition timeOut;
 private AlienSprite alien;

 public TimeBehavior(int timeDelay, AlienSprite as)
 { alien = as;
 timeOut = new WakeupOnElapsedTime(timeDelay);
 }

 public void initialize()
 { wakeupOn(timeOut); }

Figure 18-10. Viewpoint rotation

sprite

viewpoint

30 degs

This is the Title of the Book, eMatter Edition

Updating the Alien Sprite | 511

 public void processStimulus(Enumeration criteria)
 { alien.update(); // ignore criteria
 wakeupOn(timeOut); // re-register
 }
}

The wakeup criterion is an instance of WakeupOnElapsedTime.

This is the Title of the Book, eMatter Edition

512

Chapter 19CHAPTER 19

Animated 3D Sprites

This chapter and the next deal with sprite animation. The Sprite3D class of
Chapter 18 possesses a rudimentary kind of animation, allowing the entire sprite to
be moved over the XY plan and rotated around the y-axis. The kind of animation
we’ll be discussing here allows parts of the figure to move; for example, to have a
robot wave its arms, jump, or turn its head.

There are three common animation approaches:

• Keyframe animation

• Figure articulation

• Figure articulation with skinning

Keyframe animation is similar to the technique used in the 2D Sprite class from
Chapter 11. However, instead of using a sequence of 2D images, a sequence of 3D
models is used. Each model is represented by the same figure but is positioned
slightly differently; rapid switching between the models creates the illusion of sprite
movement. Poses can be organized into an animation sequence, so, for example,
walking is represented by a sequence of different leg positions. A sequence is typi-
cally triggered by the user pressing a key (e.g., the down arrow, to move the sprite
forward) or by other external events. A simple keyframe animation system is devel-
oped in this chapter.

Figure articulation represents a figure (or any articulated model) as a series of inter-
connected components. These components typically represent the limbs of a figure
and can be moved and rotated. The movement of one limb affects the limbs con-
nected to it, usually through the process of forward or inverse kinematics. Figure
articulation with forward kinematics is detailed in Chapter 20.

Figure articulation with skinning extends the articulation technique by layering a
mesh (skin) over the limbs (bones). As limbs move, the mesh is automatically moved
and distorted to keep the components covered. Links and further information on
skinning are provided in Chapter 20.

This is the Title of the Book, eMatter Edition

Class Diagrams for AnimTour3D | 513

Keyframe Animation in This Chapter
The main example in this chapter, AnimSprite3D, loads several models, representing
different positions for the sprite, including standing and walking poses. The poses
are organized into an animation sequence managed by an Animator object.

This application runs in a medium-sized window. At the end of the
chapter, though, you’ll see how to modify it to use Full-Screen Exclu-
sive Mode (FSEM), and you’ll learn how to modify the display mode
for the monitor with FSEM.

Figure 19-1 contains two screenshots: the image on the left shows the sprite (a “stick
child”) walking, and the right hand image has the sprite punching.

The application in this chapter does not include a chasing alien sprite,
scenery, or any obstacles. However, these could be added by using the
techniques described in Chapter 18.

Class Diagrams for AnimTour3D
Figure 19-2 shows the class diagrams for the classes in the AnimTour3D application.
Only the class names are shown to reduce the amount of detail.

AnimTour3D is the top-level JFrame for the application. WrapAnimTour3D creates the 3D
scene and is similar to the earlier Wrap classes in that it creates the checkered floor
and lighting. It loads the stick child sprite and sets up the sprite’s controlling behav-
iors. PropManager is unchanged from the class in the Loader3D application in
Chapter 16. CheckerFloor and ColouredTiles are unchanged from previous examples.

Figure 19-1. A walking and punching sprite

This is the Title of the Book, eMatter Edition

514 | Chapter 19: Animated 3D Sprites

KeyBehavior and Animator are subclasses of Behavior. KeyBehavior is triggered by key
presses, like those used in the Tour3D from Chapter 18. It responds by requesting that
the Animator object adds animation sequences to its animation schedule. Animator

wakes up periodically and processes the next animation in its schedule, thereby alter-
ing the sprite.

The code for this application is in AnimTour3D/.

Creating the Scene
Figure 19-3 shows all the methods in WrapAnimTour3D Class.

Figure 19-2. Class diagrams for AnimTour3D

Figure 19-3. WrapAnimTour3D methods

This is the Title of the Book, eMatter Edition

The Animated 3D Sprite | 515

The Scene-creation Code In WrapAnimTour3D is almost identical to previous Wrap

classes with the exception of the addTourist() method. It sets up the sprite, the
KeyBehavior, and Animator objects, and links them together as shown in the applica-
tion’s class diagram (see Figure 19-2):

private void addTourist()
{ // sprite
 AnimSprite3D bob = new AnimSprite3D();
 bob.setPosition(2.0, 1.0);
 sceneBG.addChild(bob.getTG());

 // viewpoint TG
 ViewingPlatform vp = su.getViewingPlatform();
 TransformGroup viewerTG = vp.getViewPlatformTransform();

 // sprite's animator
 Animator animBeh = new Animator(20, bob, viewerTG);
 animBeh.setSchedulingBounds(bounds);
 sceneBG.addChild(animBeh);

 // sprite's input keys
 KeyBehavior kb = new KeyBehavior(animBeh);
 kb.setSchedulingBounds(bounds);
 sceneBG.addChild(kb);
} // end of addTourist()

The AnimSprite3D object is responsible for loading the multiple models that repre-
sent the sprite’s various poses. Animator is in charge of adjusting the user’s viewpoint
and so is passed the ViewingPlatform’s TransformGroup node. The Animator is set to
wake up every 20 milliseconds through the first argument of its constructor.

The scene graph for the application is shown in Figure 19-4. Since there’s no alien
sprite, scenery, or obstacles, it’s simpler than the scene graph in Chapter 18.

The Animated 3D Sprite
Figure 19-5 shows the visible methods of AnimSprite3D.

The interface of this class is almost identical to Sprite3D (from the Tour3D applica-
tion in Chapter 18). The setPosition(), moveBy(), and doRotateY() operations
adjust the position and orientation of the sprite, isActive() and setActive() relate
to the sprite’s activity (i.e., whether it is visible on the screen or not), getCurrLoc()
returns the sprite’s position, and getTG() returns its top-level TransformGroup.

The only new method is setPose(), which takes a pose name as an argument and
changes the displayed model accordingly. Its implementation is explained later in
this section.

This is the Title of the Book, eMatter Edition

516 | Chapter 19: Animated 3D Sprites

Figure 19-4. Scene graph for the application

Figure 19-5. The public methods of AnimSprite3D

Virtual Universe

Locale

BG
KeyBehavior

Ambient
Light

Directional
Light

Background

Directional
Light

sceneBG

TG

Switch

Animator

Floor Branch

moveTG

rotTG

scaleTG

objBoundsTG

BG and
shape(s)

Models used to represent
the stick child

objectTG

imSwitch

moveTG

rotTG

scaleTG

objBoundsTG

BG and
shape(s)

This is the Title of the Book, eMatter Edition

The Animated 3D Sprite | 517

Loading the Poses
The choice of models is hardwired into AnimSprite3D, which makes things simpler
than having to deal with arbitrary input. The names of the models are predefined in
the poses[] array:

private final static String poses[] =
 {"stand", "walk1", "walk2", "rev1", "rev2", "rotClock",
 "rotCC", "mleft", "mright", "punch1", "punch2"};

The names in poses[] are used by loadPoses() to load the same-named 3D Studio
Max files using PropManager. The loaded models (the different sprite poses) are
attached to the scene using a Java 3D Switch node:

private void loadPoses()
{ PropManager propMan;

 imSwitch = new Switch(Switch.CHILD_MASK);
 imSwitch.setCapability(Switch.ALLOW_SWITCH_WRITE);

 maxPoses = poses.length;
 for (int i=0; i < maxPoses; i++) {
 propMan = new PropManager(poses[i] + ".3ds", true);
 imSwitch.addChild(propMan.getTG()); // add obj to switch
 }

 visIms = new BitSet(maxPoses); // bitset used for switching
 currPoseNo = STAND_NUM; // sprite standing still
 setPoseNum(currPoseNo);
}

The Switch node (imSwitch) is shown in the scene graph in Figure 19-4. It’s a child of
the objectTG TransformGroup, which is used for positioning and rotating the sprite.
The purpose of the Switch node is to allow the sprite to strike up a different pose by
choosing one from the selection hanging below the Switch.

imSwitch is created with the CHILD_MASK value, which permits pose switching to be
carried out using a Java 3D BitSet object (visIms). The bits of the BitSet are mapped
to the children of the Switch: bit 0 corresponds to child 0, bit 1 to child 1, and so on.
BitSet offers various methods for clearing bits and setting them.

The bit manipulation is hidden inside the setPoseNum() method, which takes as its
input the bit index that should be turned on in imSwitch:

private void setPoseNum(int idx)
{ visIms.clear();
 visIms.set(idx); // show child with index idx
 imSwitch.setChildMask(visIms);
 currPoseNo = idx;
}

This is the Title of the Book, eMatter Edition

518 | Chapter 19: Animated 3D Sprites

The model stored in the idx position below the Switch node is made visible when
setChildMask() is called.

The runtime adjustment of the Switch requires its write capability to be turned on.

Where Did These Models Come From?
I created the models using Poser (http://www.curiouslabs.com), which specializes in
3D figure creation and animation and includes a range of predefined models, poses,
and animation sequences. Poser fans should check out the collection of links in the
Google directory: http://directory.google.com/Top/Computers/Software/Graphics/3D/
Animation_and_Design_Tools/Poser/. I used one of Poser’s existing figures, the stick
child, and exported different versions of it in various standard poses to 3DS files.
Poser animation sequences weren’t utilized; each file only contains a single figure.

Though I used Poser, any 3D modeling tool would be fine. MilkShape
3D, for example, is a good shareware product (http://www.swissquake.ch/
chumbalum-soft/ms3d/).

The models were loaded into the Loader3D application (developed in Chapter 16) to
adjust their position and orientation. Poser exports 3DS models orientated with
the XZ plane as their base, which means that the model is lying flat on its back when
loaded into Loader3D.

Each 3DS file is about 20 KB due to the choice of a simple model.

Setting a Pose
A sprite’s pose is changed by calling setPose(), which takes a pose name as its input
argument. The method determines the index position of that name in the poses[]

array and calls setPoseNum():

public boolean setPose(String name)
{ if (isActive()) {
 int idx = getPoseIndex(name);
 if ((idx < 0) || (idx > maxPoses-1))
 return false;
 setPoseNum(idx);
 return true;
 }
 else
 return false;
}

This is the Title of the Book, eMatter Edition

The Animated 3D Sprite | 519

The code is complicated by the need to check for sprite activity. An inactive sprite is
invisible, so there’s no point changing its pose.

The use of a name as the setPose() argument means that the caller
must know the pose names used in poses[]. The alternative would be
to use the child index position in the Switch node, which is harder to
remember.

Sprite Activity
Sprite activity can be toggled on and off by calls to setActive() with a Boolean
argument:

public void setActive(boolean b)
{ isActive = b;
 if (!isActive) {
 visIms.clear();
 imSwitch.setChildMask(visIms); // display nothing
 }
 else if (isActive)
 setPoseNum(currPoseNo); // make visible
}

This approach requires a global integer, currPoseNo, which records the index of the
current pose. It’s used to make the sprite visible after a period of inactivity.

Floor Boundary Detection
The movement and rotation methods in AnimSprite3D are unchanged from Sprite3D

except in the case of the moveBy() method. The decision not to use obstacles means
there’s no Obstacle object available for checking if the sprite is about to move off the
floor. This is remedied by a beyondEdge() method, which determines if the sprite’s
(x, z) coordinate is outside the limits of the floor:

public boolean moveBy(double x, double z)
// move the sprite by an (x,z) offset
{ if (isActive()) {
 Point3d nextLoc = tryMove(new Vector3d(x, 0, z));
 if (beyondEdge(nextLoc.x) || beyondEdge(nextLoc.z))
 return false;

else {
 doMove(new Vector3d(x, 0, z));
 return true;
 }
 }
 else // not active
 return false;} // end of moveBy()

This is the Title of the Book, eMatter Edition

520 | Chapter 19: Animated 3D Sprites

private boolean beyondEdge(double pos)
{ if ((pos < -FLOOR_LEN/2) || (pos > FLOOR_LEN/2))
 return true;
 return false;
}

Controlling the Sprite
The sprite’s movements are controlled by key presses, caught by a KeyBehavior

object. KeyBehavior is a version of the TouristControls class of Chapter 18 but with-
out the key processing parts. What remains is the testing of the key press to decide
which method of the Animator class to call. standardMove() shows how a key press
(actually its key code) is converted into different calls to the Animator object (called
animBeh):

private void standardMove(int keycode)
{ if(keycode == forwardKey)
 animBeh.moveForward();
 else if ... // more if-tests of keycode
 ...
 else if(keycode == activeKey)
 animBeh.toggleActive();
 else if(keycode == punchKey)
 animBeh.punch();
 else if(keycode == inKey)
 animBeh.shiftInViewer();
 else if(keycode == outKey)
 animBeh.shiftOutViewer();
}

The activeKey key code, the letter a, is used for toggling the sprite’s activity. When
the sprite is active, it’s visible in the scene and can be affected by key presses. When
it’s inactive, the sprite is invisible and nothing affects it (apart from the a key).

The punchKey key code (the letter p) sets the sprite into punching pose, as illustrated
by the righthand image in Figure 19-1.

Animating the Sprite
Figure 19-6 shows the visible methods in Animator.

Animator performs three core tasks:

• It adds animation sequences to its schedule in response to calls from the
KeyBehavior object.

• It periodically removes an animation operation from its schedule and executes it.
The execution typically changes the sprite’s position and pose. A removal is trig-
gered by the arrival of a Java 3D WakeupOnElapsedTime event.

• It updates the user’s viewpoint in response to calls from KeyBehavior.

This is the Title of the Book, eMatter Edition

Animating the Sprite | 521

Adding an Animation Sequence
The majority of the public methods in Animator (rotClock(), rotCounterClock(),
moveLeft(), moveRight(), punch(), moveForward(), moveBackwards(), and toggleAc-

tive()) execute in a similar way when called by the KeyBehavior object. They add a
predefined animation sequence to a schedule (which is implemented as an ArrayList

called animSchedule):

public void moveForward()
{ addAnims(forwards); }

forwards is an array of strings, which represents the animation sequence for moving
the sprite forward one step:

private final static String forwards[] = {"walk1", "walk2", "stand"};

"walk1", "walk2", and so forth are the names of the 3DS files holding the sprite’s pose
This correspondence is used to load the models when AnimTour3D starts.

A requirement of an animation sequence is that it ends with "stand". One reason for
this is that a sequence should end with the model in a neutral position, so the next
sequence can follow on smoothly from the previous one. The other reason is the
Animator object uses "stand" to detect the end of a sequence.

addAnims() adds the sequence to the end of animSchedule and increments seqCount,
which stores the number of sequences currently in the schedule:

synchronized private void addAnims(String ims[])
{ if (seqCount < MAX_SEQS) { // not too many animation sequences
 for(int i=0; i < ims.length; i++)
 animSchedule.add(ims[i]);
 seqCount++;
 }
}

Figure 19-6. Public methods in the Animator class

This is the Title of the Book, eMatter Edition

522 | Chapter 19: Animated 3D Sprites

The maximum number of sequences in the schedule at any time is restricted to
MAX_SEQS. This ensures that a key press (or, equivalently, an animation sequence)
isn’t kept waiting too long in the schedule before being processed. This would hap-
pen if the user pressed a key continuously, causing a long schedule to form.

By limiting the number of sequences, the Animator briefly ignores key presses when
the waiting animation sequence gets too long. However, once the animation
sequence gets smaller (after some of it has been processed), key presses will be
accepted.

addAnims() is synchronized so it’s impossible for the animSchedule to be read while
being extended.

Processing an Animation Operation
The Animator constructor creates a WakeupCondition object based on the time delay
passed to it from WrapAnimTour3D:

public Animator(int td, AnimSprite3D b, TransformGroup vTG)
{ timeDelay = new WakeupOnElapsedTime(td);
 // the rest of Animator's initialization
}

This condition is registered in initialize() so processStimulus() will be called
every td milliseconds:

public void processStimulus(Enumeration criteria)
{ // don't bother looking at the criteria
 String anim = getNextAnim();
 if (anim != null)

doAnimation(anim);
 wakeupOn(timeDelay);
}

processStimulus() is short since there’s no need to examine the wake-up criteria.
Since it’s been called is enough because a call occurs every td milliseconds.

getNextAnim() wants to remove an animation operation from animSchedule. How-
ever, the ArrayList may be empty, so the method can return null:

synchronized private String getNextAnim()
{ if (animSchedule.isEmpty())
 return null;
 else {
 String anim = (String) animSchedule.remove(0);
 if (anim.equals("stand")) // end of a sequence
 seqCount--;
 return anim;
 }
}

getNextAnim() is synchronized to enforce mutual exclusion on animSchedule. If the
retrieved operation is "stand", then the end of an animation sequence has been

This is the Title of the Book, eMatter Edition

Animating the Sprite | 523

reached, and seqCount is decremented. My defense of this wonderful design is that
"stand" performs two useful roles: it signals the end of a sequence (as here), and
changes the sprite pose to a standing position, which is a neutral stance before the
next sequence begins.

doAnimation() can process an animation operation (represented by a String) in two
ways: the operation may trigger a transformation in the user’s sprite (called bob),
and/or cause a change to the sprite’s pose. In addition, it may be necessary to update
the user’s viewpoint if the sprite has moved:

private void doAnimation(String anim)
{ /* Carry out a transformation on the sprite.
 Note: "stand", "punch1", "punch2" have no transforms
 */
 if (anim.equals("walk1") || anim.equals("walk2")) // forward
 bob.moveBy(0.0, MOVERATE/2); // half a step
 else if (anim.equals("rev1") || anim.equals("rev2")) // back
 bob.moveBy(0.0, -MOVERATE/2); // half a step
 else if (anim.equals("rotClock"))
 bob.doRotateY(-ROTATE_AMT); // clockwise rot
 else if (anim.equals("rotCC"))
 bob.doRotateY(ROTATE_AMT); // counterclockwise rot
 else if (anim.equals("mleft")) // move left
 bob.moveBy(-MOVERATE,0.0);
 else if (anim.equals("mright")) // move right
 bob.moveBy(MOVERATE,0.0);
 else if (anim.equals("toggle")) {
 isActive = !isActive; // toggle activity
 bob.setActive(isActive);
 }

 // update the sprite's pose, except for "toggle"
 if (!anim.equals("toggle"))
 bob.setPose(anim);

 viewerMove(); // update the user's viewpoint
} // end of doAnimation()

The first part of doAnimation() specifies how an animation operation is translated
into a sprite transformation. One trick is shown in the processing of the forward and
backwards sequences. These sequences are defined as:

private final static String forwards[] = {"walk1","walk2","stand"};
private final static String backwards[] = {"rev1","rev2","stand"};

The forwards sequence is carried out in response to the user pressing the down
arrow. What happens? The sequence is made up of three poses ("walk1", "walk2",
and "stand"), so the sequence will be spread over three activations of
processStimulus(). This means that the total sequence will take 3*<time delay> to
be evaluated, which is about 60 ms. Multiple steps forward are achieved by adding
multiple copies of the forward sequence to the Animator’s scheduler list.

This is the Title of the Book, eMatter Edition

524 | Chapter 19: Animated 3D Sprites

The punching animation sequence is defined as:

private final static String punch[] =
 {"punch1", "punch1", "punch2", "punch2", "stand"};

Since "punch1" and "punch2" appear twice, they will be processed twice by
processStimulus(), which means their effects will last for 2*<time delay>. Conse-
quently, the poses will be on the screen for twice the normal time, suggesting that
the sprite is holding its stance.

Updating the User’s Viewpoint
Animator uses the viewpoint manipulation code developed in TouristControls (in
Chapter 18). As a sprite moves, the viewpoint sticks with it, staying a constant dis-
tance away unless the user zooms the viewpoint in or out.

The initial viewpoint is set up in Animator’s constructor via a call to setViewer(),
which is the same method as in TouristControls.

The new problem with Animator is when to update the viewpoint. It shouldn’t be
updated until the animation operation (e.g., "walk1") is executed. For that reason,
the viewpoint update method, viewerMove(), is called at the end of doAnimation().

The final aspects of viewpoint adjustment are the keys i and o, which zoom the view-
point in and out. The keys are immediately processed in Animator by shiftViewer(),
which changes the viewpoint based on the sprite’s current position:

public void shiftInViewer()
{ shiftViewer(-ZSTEP); } // move viewer negatively on z-axis

public void shiftOutViewer()
{ shiftViewer(ZSTEP); }

private void shiftViewer(double zDist)
// move the viewer inwards or outwards
{ Vector3d trans = new Vector3d(0,0,zDist);
 viewerTG.getTransform(t3d);
 toMove.setTranslation(trans);
 t3d.mul(toMove);
 viewerTG.setTransform(t3d);
}

The shift operations aren’t scheduled like the other sprite movement commands. As
a consequence, the Animator changes the viewpoint immediately, even if a large num-
ber of sprite movement key presses precede the i or o keys. This behavior may be dis-
concerting to a user since the viewpoint seems to change too soon before earlier
sprite moves have been carried out.

An obvious question is why do I support this strange behavior? Why not schedule
the viewpoint zooming along with the sprite animation? The answer is to illustrate
that viewpoint and sprite changes can be separated.

This is the Title of the Book, eMatter Edition

A Full-Screen Version of the Application | 525

Full-Screen Exclusive Mode (FSEM)
FSEM was introduced back in J2SE 1.4 as a way of switching off Java’s windowing
system and allowing direct drawing to the screen. The principal reason for this is
speed, an obvious advantage for games. Secondary benefits include the ability to con-
trol the bit depth and size of the screen (its display mode). Advanced graphics tech-
niques such as page flipping and stereo buffering are often only supported by display
cards when FSEM is enabled.

FSEM was discussed in the context of 2D games in Chapter 4. The code described in
this section uses passive rendering, which means that Java 3D is left in control of
when to render to the screen.

An excellent Java tutorial on FSEM is at http://java.sun.com/docs/
books/tutorial/extra/fullscreen/, which includes good overviews of top-
ics like passive and active rendering, page flipping, and display modes.
A few examples include the useful CapabilitiesTest.java program,
which allows you to test your machine for FSEM support.

A Full-Screen Version of the Application
The AnimTourFS application is essentially AnimTour3D, but with the original AnimTour3D
and WrapAnimTour3D classes replaced by a single new class, AnimTourFS. AnimTourFS

contains the new FSEM-related code. The rest of the classes are unchanged, as
Figure 19-7 shows.

Application invocation must include the option -Dsun.java2d.noddraw=true:

java -cp %CLASSPATH%;ncsa\portfolio.jar -Dsun.java2d.noddraw=true AnimTourFS

The nodraw property switches off the use of Window’s DirectDraw for drawing AWT
elements and off-screen surfaces. This avoids a problem which first appeared when
using the OpenGL version of Java 3D 1.3 with J2SE 1.4 and DirectX 7.0. Version
numbers have moved on since then, so you may want to see what happens without
the nodraw option.

Creating the Full-Screen Scene
Figure 19-8 shows all the methods in the AnimTourFS class and should be compared
with Figure 19-3, which lists the methods in the old WrapAnimTour3D class.

main() is new; all the other changes are inside the AnimTourFS() constructor (with
the addition of some new private global variables).

This is the Title of the Book, eMatter Edition

526 | Chapter 19: Animated 3D Sprites

FSEM works poorly with Swing components, so AnimTourFS() uses a Frame object as
the top-level window and embeds the Canvas3D GUI inside it:

private Frame win; // global, required at quit time

GraphicsConfiguration config =
 SimpleUniverse.getPreferredConfiguration();

win = new Frame("AnimTourFS", config); // use SU's preference
win.setUndecorated(true) ;
 // no menu bar, borders, etc. or Swing components
win.setResizable(false); // fixed size display

Canvas3D canvas3D = new Canvas3D(config); // set up canvas3D
win.add(canvas3D);

Figure 19-7. Class diagrams for AnimTourFS

Figure 19-8. Methods in AnimTourFS

This is the Title of the Book, eMatter Edition

A Full-Screen Version of the Application | 527

The graphics configuration of the Frame is set to the one preferred by Java 3D. FSEM
likes a fixed-size window with no decoration.

FSEM is handled through a GraphicsDevice object representing the screen, which is
accessed via a GraphicsEnvironment reference. There may be several GraphicsDevice
objects for a machine if, for example, it uses dual monitors. However, for the normal
single-monitor system, the getDefaultScreenDevice() method is sufficient:

private GraphicsDevice gd; // global

GraphicsEnvironment ge =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
gd = ge.getDefaultScreenDevice();

Once the GraphicsDevice object (gd) has been obtained, it’s a good idea to check if
FSEM is supported by the user’s OS before attempting to use it:

if (!gd.isFullScreenSupported()) {
 System.out.println("FSEM not supported.") ;
 System.out.println("Device = " + gd) ;
 System.exit(0) ;
}

gd.setFullScreenWindow(win); // set FSEM
if (gd.getFullScreenWindow() == null)
 System.out.println("Did not get FSEM");
else
 System.out.println("Got FSEM") ;

If GraphicsDevice.setFullScreenWindow() cannot switch to FSEM mode, then it will
position the window at (0,0) and resize to fit the screen, so the application can con-
tinue without being overly affected.

The final task is to switch off FSEM when the program terminates, which is done as
part of the response to a quit key being pressed:

canvas3D.addKeyListener(new KeyAdapter() {
 public void keyPressed(KeyEvent e)
 { int keyCode = e.getKeyCode();
 if ((keyCode == KeyEvent.VK_ESCAPE) || (keyCode == KeyEvent.VK_Q) ||
 (keyCode == KeyEvent.VK_END) ||
 ((keyCode == KeyEvent.VK_C) && e.isControlDown())) {

gd.setFullScreenWindow(null); // exit FSEM
 win.dispose();
 System.exit(0);
 }
 }
});

Figure 19-9 shows the FSEM in operation. Note the absence of a window frame or
any other decoration.

This is the Title of the Book, eMatter Edition

528 | Chapter 19: Animated 3D Sprites

Changing the Display Mode
Once an application is in FSEM, further performance gains may be available by
adjusting the screen’s display mode (i.e., its bit depth, height, width, and refresh
rate). Bit depth is the number of bits per pixel, and refresh rate is how frequently the
monitor updates itself. Reducing the bit depth will increase rendering speed, but
there may be an impact on the quality of the textures and other images in the scene.

A crucial thing to do when changing the display mode is to store the original version
so it can be restored at the end of execution, as shown in the following code. In
AnimTourFS(), you should change the display mode after FSEM has been initiated:

private DisplayMode origDM = null; // global

if (gd.isDisplayChangeSupported()) {
 origDM = gd.getDisplayMode();
 gd.setDisplayMode(
 new DisplayMode(origDM.getWidth(), origDM.getHeight(),
 origDM.getBitDepth()/2,
 origDM.getRefreshRate()));
}

The code checks if display changing is supported via a call to GraphicsDevice.

isDisplayChangeSupported(), stores the original display mode, and updates the mode
using the original screen dimensions and refresh rate but halving the bit depth (with
the aim of increasing the rendering speed).

Figure 19-9. AnimTourFS in action

This is the Title of the Book, eMatter Edition

A Full-Screen Version of the Application | 529

This reduces the bit depth of my machine from 32 to 16 bits.

The original display mode is restored at the end of the program by two extra lines in
the quit key listener:

if ((keyCode == KeyEvent.VK_ESCAPE) || (keyCode == KeyEvent.VK_Q) ||
 (keyCode == KeyEvent.VK_END) ||
 ((keyCode == KeyEvent.VK_C) && e.isControlDown())) {
if (origDM != null) // original was saved

 gd.setDisplayMode(origDM);
 gd.setFullScreenWindow(null);
 win.dispose();
 System.exit(0);
}

Figure 19-10 shows AnimTourFS with its reduced bit depth.

The 24-bit JPEG used for the background has become rather pixilated as you would
expect with only 16 bits per pixel. I didn’t notice any acceleration in rendering, but
that may be because the scene is already so easy to render.

The Java FSEM tutorial (http://java.sun.com/docs/books/tutorial/extra/
fullscreen/) includes a section on display modes and an example show-
ing how to use them.

Figure 19-10. Reduced bit depth AnimTourFS

This is the Title of the Book, eMatter Edition

530 | Chapter 19: Animated 3D Sprites

Pros and Cons of Keyframe Animation
The advantage of using multiple models is they can be designed and created outside
of Java 3D with software specific to the task (I used Poser). Model creation can be
carried out independently of game development, perhaps assigned to someone
skilled in 3D modeling. An animation sequence is a combination of poses, which you
can mix and match. For example, the poses needed in a fighting game will be differ-
ent from those in a sports game.

Several Java 3D loaders support keyframe animation. For example, the NWN
loader (http://nwn-j3d.sourceforge.net/loader.about.php) defines animations as
frames sequences which refer to the Never Winter Night models. Playing an ani-
mation consists of calling the loader’s playAnimation() method with the name of
the animation sequence. You’ll find a list of all the keyframe animation loaders in
Chapter 14.

A major drawback is the potential size of each model and the number of models
required to cover all the necessary positions. I chose the simplest figure (size 20 KB)
and a small number of poses (13), coming to 260 KB, which must be loaded at startup.
These numbers could become unmanageable with larger models and more poses, but
that depends on the application. One means of reducing the memory requirements is
to share poses between the sprites (by using Java 3D SharedGroup nodes), which
would be useful for groups of similar sprites, such as soldiers. This would require
changes to the implementation detailed in this chapter.

This is the Title of the Book, eMatter Edition

531

Chapter 20 CHAPTER 20

An Articulated, Moveable Figure

This chapter describes the implementation of an articulated figure (sprite), com-
posed of moveable and rotatable limbs, which can be instructed to walk, run, and
jump around a checkerboard floor.

This work is based on the first part of a student project carried out for
me by Thana Konglikhit in 2003–2004.

Chapter 19 was concerned with sprite animation but used the keyframe animation of
multiple models. Advantages of figure articulation over keyframes include the
increase in control over the figure and the reduction in memory requirements since
only one model is being manipulated.

A disadvantage of articulation is the model will probably be a Java 3D creature of
cylinders, spheres, and blocks, which must be “dressed” in some way. This will usu-
ally necessitate the loading of 3D models, which may bring back the problem of
excessive memory usage.

Another issue is the increased complexity of the control code, which requires some
mechanism for coordinating the movement of numerous TransformGroups; for
instance, a single step forward will affect many joints, and the exact changes needed
aren’t obvious. I utilize forward kinematics in this chapter.

There are several ways of extending the basic articulation technique, including the
use of mesh deformation, morphing, and skinning, which I briefly mention at the
end.

The Articulated Figure Application
The Mover3D application demonstrates the articulated figure approach.

This is the Title of the Book, eMatter Edition

532 | Chapter 20: An Articulated, Moveable Figure

The lefthand picture in Figure 20-1 shows the figure’s initial stance and the right-
hand one is the position after the following commands have been processed:

urLeg f 40, lrLeg f -40, ulArm f 20, llArm f 20, chest t 10, head t –10

The commands are typed into a text field at the bottom of the application window
and processed when Enter is pressed. All the commands are carried out as a group,
causing a single reorientation of the figure.

The first four commands specify forward (f in the command line above) rotations of
the limbs representing the upper part of the right leg (urLeg), the lower-right leg
(lrLeg), the upper-left arm (ulArm), and the lower part of the left arm (llArm). The
chest and head are turned (t) left and right respectively, so the head stays facing
forward.

Pressing Enter again repeats the commands, though when a limb reaches its pre-
defined maximum positive or negative rotation, operations that would rotate it
beyond these limits are ignored. Figure 20-2 shows the result of executing the com-
mand line from Figure 20-1 a few more times. Several of the limbs have reached their
rotational limits, including the upper-right leg and the upper-left arm.

The right arm passes through the right leg because Mover3D does not
employ collision avoidance to prevent limbs from intersecting.

Aside from commands that influence individual limbs, several affect the entire fig-
ure, moving it over the floor and rotating it around the y-axis. These commands can

Figure 20-1. Initial position and after limb movement

This is the Title of the Book, eMatter Edition

The Articulated Figure Application | 533

be typed into the text field or entered by pressing arrow keys on the keyboard.
Figure 20-3 displays the outcome of the text field commands:

f, f, c, c, f, f

This sequence causes the figure to move from its starting position at (0,0) on the
floor, forward 0.6 units (2 × 0.3), 45 degrees to its right (two 22.5 degree turns), and
forward another 0.6 units.

The move increment and rotation angle are hardwired into the code. An advantage
of 22.5 degrees is that four turns total 90 degrees, and 16 turns bring the figure back
to its original orientation.

Figure 20-2. Repeated limb movements

Figure 20-3. Figure movement

This is the Title of the Book, eMatter Edition

534 | Chapter 20: An Articulated, Moveable Figure

Figure 20-4 is a view of the scene after repeating the f, f, c, c, f, f commands three
times.

The figure can move up and down (i.e., it can float), but it can’t be lowered below
floor level. Rotations are limited to clockwise and counterclockwise around the verti-
cal, with no support for turns about the x- or z-axes. This means, for example, that
the figure cannot lie on its back on the floor. The main reason for these restrictions
was to reduce the complexity of the implementation.

As with the limb operations, all figure commands entered into the text field update
the figure at once after Enter is pressed. The operations are carried out in the order
specified by reading the input sequence from left to right. Figures 20-3 and 20-4
show that the entire figure moves and rotates as a single unit.

Figure 20-5 illustrates the result of pressing the Reset button in the GUI: the figure’s
limbs are rotated back to their starting position, but the figure remains at its current
position and orientation on the floor.

Building the Figure
The figure is created by connecting together instances of the Limb class. The shape of
a limb is specified using a LatheShape3D object (introduced in Chapter 17), and its
appearance is derived from a texture.

As the limbs are connected, they form a parent/child hierarchy. Each limb can be
given an initial orientation relative to its parent limb, and it can be rotated around its
x-, y-, and z-axes at runtime. A limb may be invisible, which enables it to be used as
a connector between other limbs without being rendered. For example, invisible
limbs are used to connect the arms to the torso.

Figure 20-4. Repeated figure movement

This is the Title of the Book, eMatter Edition

Forward and Inverse Kinematics | 535

Though the aim is to make a limbed, human figure, the Limb class is sufficiently gen-
eral to be used to build most kinds of articulated shapes.

Forward and Inverse Kinematics
Before talking about forward and inverse kinematics, it’s useful to review the parent-
child relationship utilized by the nodes in a Java 3D scene graph. This hierarchy is
particularly important for sequences of TransformGroup nodes.

Figure 20-6 shows a simple hierarchy made up of a parent and a child
TransformGroup. The parent holds a translation of (1, 1, 2), and the child a transla-
tion of (2, 3, 1). However, from the world’s viewpoint, the child’s translation will be
(3, 4, 3), a combination of the parent and child values. Here, the combination is an
addition of the local translations, but it becomes more complicated when introduc-
ing rotation and scaling elements.

In general, the world (or scene) view of a TransformGroup is a combination of its
translation, rotations, and scaling with those of its ancestors (parent, grandparent,
and so on).

Figure 20-5. Reset limbs

Figure 20-6. A hierarchy of TransformGroups

parent TG

child TG

local translation: (1,1,2)

local translation: (2, 3, 1)
world translation: (3, 4, 3)

This is the Title of the Book, eMatter Edition

536 | Chapter 20: An Articulated, Moveable Figure

This hierarchy is important when developing an articulated figure since each limb
contains several TransformGroups, and the connection of limbs to make the complete
figure creates a large hierarchy of TransformGroups. The consequence is that when a
limb is moved (by affecting one of its TransformGroups), the limbs linked to it as chil-
dren will also move.

This top-down behavior is at the heart of forward kinematics, one of the standard
approaches to animating articulated figures. For example, the rotation of a figure’s
chest can cause its arms and head to turn even though the bottom and legs remain
stationary. From a programming point of view, this means less explicit manipulation
of TransformGroups but requires the arms and head are connected as children to the
chest’s TransformGroup.

Forward kinematics is especially useful for movements that originate at the top-level
of a figure and ripple down to the lower-level components. An everyday example is
moving a figure: the translation is applied to the top-most TransformGroup, and all
the other nodes will move as well.

Forward kinematics is less satisfactory for operations that start at lower-level limbs
and should ripple up. For instance, the natural way of having a figure touch an
object in the scene is to move its hand to the object’s location. As the hand is moved,
the arm and torso should follow. Unfortunately, this would require that a child
TransformGroup be able to influence its ancestors, which is impossible in the parent-
child hierarchy used by Java 3D.

This ripple-up animation technique is called inverse kinematics and is a staple of pro-
fessional animation packages such as Poser, Maya, and 3D Studio Max. Important
low-level nodes are designated as end-effectors, and these influence higher-level
nodes as they’re manipulated. Typically, end-effectors for an articulated human are
its hands, feet, and head.

Inverse kinematics has problems specifying top-down effects, so it is often combined
with constraints that link end-effectors to other nodes. For instance, when the body
moves, the end-effectors can be constrained to stay within a certain distance of the
torso.

A good nontechnical introduction to forward and inverse kinematics is Steve Pizel’s
article “Character Animation: Skeletons and Inverse Kinematics,” online at http://www.
intel.com/cd/ids/developer/asmo-na/eng/segments/games/resources/modeling/20433.htm.

As far as I know, no Java 3D examples use inverse kinematics. The
FAQ at j3d.org contains a few links to discussions of how to imple-
ment inverse kinematics in procedural languages (http://www.j3d.org/
faq/techniques.html#ik).

This is the Title of the Book, eMatter Edition

Class Diagrams for Mover3D | 537

Forward Kinematics in Mover3D
The Mover3D application in this chapter creates a figure by linking Limb objects
together in a parent/child relationship. As I’ll explain in detail, each Limb object is a
collection of TransfromGroup nodes (and other things) forming a complex hierarchi-
cal scene graph.

Limb movement is a matter of translating or rotating TransformGroups in a limb, and
changes to those nodes will affect all the child nodes below it (i.e., the child Limb

objects). In other words, Mover3D uses forward kinematics.

Class Diagrams for Mover3D
Figure 20-7 shows the class diagrams for the Mover3D application. The class names,
public and protected methods, and data are shown.

Figure 20-7. Class diagrams for Mover3D

This is the Title of the Book, eMatter Edition

538 | Chapter 20: An Articulated, Moveable Figure

Mover3D is the top-level JFrame for the application, containing two JPanels. The 3D
scene is created in WrapMover3D and displayed in its panel, the text field for entering
commands and Reset button are managed by CommandsPanel. The LocationBeh behav-
ior deals with user input via the keyboard, and enables the figure to be moved and
rotated. WrapMover3D creates the usual checkerboard scene, using the CheckerFloor

and ColouredTiles classes (first used in Chapter 15) to create the floor.

The scene contains one Figure object that represents the figure as a series of con-
nected shapes created from the Limb class and its subclasses (MoveableLimb,
MoveableEllipticLimb, and EllipticLimb). The shape of a limb is specified using a
LatheShape3D or EllipseShape3D object, both described in Chapter 17. The choice
depends on the cross-sectional shape you want for a limb: LatheShape3D offers a cir-
cular cross-section suitable for arms and legs, and EllipseShape3D is a better choice
for a torso (which is closer to elliptical).

The code for this example can be found in the Mover3D/ directory.

Creating the Scene
WrapMover3D is like previous Wrap classes: it creates a 3D scene inside a JPanel, made
up of a checkerboard floor, blue sky, lighting, and an OrbitBehavior node to allow
the user to adjust the viewpoint. Much of this is done in the createSceneGraph()

method:

private void createSceneGraph()
{
 sceneBG = new BranchGroup();
 bounds = new BoundingSphere(new Point3d(0,0,0), BOUNDSIZE);

 lightScene(); // add the lights
 addBackground(); // add the sky
 sceneBG.addChild(new CheckerFloor().getBG()); // add the floor
 addFigure();
 sceneBG.compile(); // fix the scene
}

The code that distinguishes WrapMover3D from earlier Wrap classes is mostly con-
tained in addFigure():

// global: the multilimbed figure
private Figure figure;

private void addFigure()
// add the figure and its behavior to the scene
{
 figure = new Figure();
 sceneBG.addChild(figure.getFigureTG()); // add figure's TG

This is the Title of the Book, eMatter Edition

Processing User Input | 539

 // add behavior
 LocationBeh locBeh = new LocationBeh(figure);
 locBeh.setSchedulingBounds(bounds);
 sceneBG.addChild(locBeh);
}

The Figure object constructs the articulated figure, and its top-level TransformGroup
is added to the scene. The LocationBeh object converts user key presses into figure
commands.

Mover3D uses the getFigure() method to obtain a reference to the Figure object,
which it passes to the CommandsPanel:

public Figure getFigure()
{ return figure; }

Processing User Input
The LocationBeh behavior class deals with user input via the keyboard. The figure
can be moved forward, back, left, right, up, or down, and turned clockwise or coun-
terclockwise around the y-axis via the arrow keys. The code in LocationBeh is similar
to the code in the TourControls class in Tour3D (from Chapter 18) but simpler in
many cases since there’s no viewpoint manipulation.

The figure reference is passed in through the constructor:

// globals
private Figure figure;
private WakeupCondition keyPress;

public LocationBeh(Figure fig)
{ figure = fig;
 keyPress = new WakeupOnAWTEvent(KeyEvent.KEY_PRESSED);
}

If a key is pressed along with alt, then altMove() will be called; otherwise,
standardMove() will be invoked. (An Alt-key pair is used to move the figure verti-
cally up and down and slide it to the left and right.) Both move methods have a simi-
lar style:

// global movement constants
private final static int FWD = 0;
private final static int BACK = 1;
private final static int LEFT = 2;
private final static int RIGHT = 3;
private final static int UP = 4;
private final static int DOWN = 5;

private final static int CLOCK = 0; // clockwise turn
private final static int CCLOCK = 1; // counter clockwise

This is the Title of the Book, eMatter Edition

540 | Chapter 20: An Articulated, Moveable Figure

private void standardMove(int keycode)
// moves figure forwards, backwards, rotates left or right
{
 if(keycode == forwardKey)
 figure.doMove(FWD);
 else if(keycode == backKey)
 figure.doMove(BACK);
 else if(keycode == leftKey)
 figure.doRotateY(CLOCK); // clockwise
 else if(keycode == rightKey)
 figure.doRotateY(CCLOCK); // counter-clockwise
} // end of standardMove()

private void altMove(int keycode)
// moves figure up, down, slideleft or right
{
 if(keycode == backKey)
 figure.doMove(UP);
 else if(keycode == forwardKey)
 figure.doMove(DOWN);
 else if(keycode == leftKey)
 figure.doMove(LEFT);
 else if(keycode == rightKey)
 figure.doMove(RIGHT);
 } // end of altMove()

The movement and rotation constants (FWD, BACK, etc.) are utilized as
unique identifiers to control the move and rotation methods in Figure.

The keys are processed by calling doMove() and doRotateY() in the Figure object.

The Commands Panel
CommandsPanel creates the panel at the bottom of the GUI containing the text field
and Reset button. Much of the code deals with the parsing of the input from the text
field, which takes two forms. A limb command has the following format:

(<limbName> | <limbNo>) (fwd | f | turn | t | side | s) [angleChg]

A figure command has this format:

(fwd | f | back | b | left | l | right | r | up | u | down | d | clock | c | cclock | cc)

Each moveable limb is assigned a name and number, and either one can be used to
refer to the limb. As a convenience, the name/number mappings are printed to stan-
dard output when Mover3D is started.

The principal difference between the limb and figure commands is that a limb com-
mand needs to refer to a particular limb, and a figure command applies to the entire
figure. A limb command can include a rotation value (angleChg).

This is the Title of the Book, eMatter Edition

The Commands Panel | 541

The rotation operations refer to the three axes:

fwd (or f)
Rotation around x-axis

turn (or t)
Rotation around y-axis

side (or s)
Rotation around z-axis

If an angleChg value isn’t included, a rotation of +5 degrees will be car-
ried out.

Each limb has a predefined maximum positive and negative rotation, and a rotation
command will only move a limb to the prescribed limit.

An advantage of text field input is the ability to group several limb and/or figure
commands together, separated by commas. These are processed before the figure is
redrawn. By pressing Enter, a complex sequence of commands is repeated. This can
be seen in action in the example that started this chapter when several parts of the
figure were rotated in unison.

Processing a Command
The string entered in the text field is tokenized in processComms(), which separates
out the individual commands and extracts the two or three argument limb action or
single argument figure operation:

private void processComms(String input)
{ if (input == null)
 return;

 String[] commands = input.split(","); // split into commands
 StringTokenizer toks;
 for (int i=0; i < commands.length; i++) {
 toks = new StringTokenizer(commands[i].trim());
 if (toks.countTokens() == 3) // three-arg limb command

limbCommand(toks.nextToken(), toks.nextToken(),
 toks.nextToken());
 else if (toks.countTokens() == 2) // two-arg limb command

limbCommand(toks.nextToken(), toks.nextToken(), "5");
 else if (toks.countTokens() == 1) // one-arg figure command

figCommand(toks.nextToken());
 else
 System.out.println("Illegal command: " + commands[i]);
 }
}

This is the Title of the Book, eMatter Edition

542 | Chapter 20: An Articulated, Moveable Figure

limbCommand() must extract the limb number, the axis of rotation, and the rotation
angle from the command string. If a limb name has been entered, then the corre-
sponding number will be obtained by querying the Figure object:

private void limbCommand(String limbName, String opStr, String angleStr)
{ // get the limb number
 int limbNo = -1;
 try {
 limbNo = figure.checkLimbNo(Integer.parseInt(limbName));
 }
 catch(NumberFormatException e)
 { limbNo = figure.findLimbNo(limbName); } // map name to num
 if (limbNo == -1) {
 System.out.println("Illegal Limb name/no: " + limbName);
 return;
 }

 // get the angle change
 double angleChg = 0;
 try {
 angleChg = Double.parseDouble(angleStr);
 }
 catch(NumberFormatException e)
 { System.out.println("Illegal angle change: " + angleStr); }
 if (angleChg == 0) {
 System.out.println("Angle change is 0, so doing nothing");
 return;
 }

 // extract the axis of rotation from the limb operation
 int axis;
 if (opStr.equals("fwd") || opStr.equals("f"))
 axis = X_AXIS;
 else if (opStr.equals("turn") || opStr.equals("t"))
 axis = Y_AXIS;
 else if (opStr.equals("side") || opStr.equals("s"))
 axis = Z_AXIS;
 else {
 System.out.println("Unknown limb operation: " + opStr);
 return;
 }

 // apply the command to the limb
 figure.updateLimb(limbNo, axis, angleChg);

} // end of limbCommand()

The handling of possible input errors lengthens the code. The limb number is
checked via a call to checkLimbNo() in Figure, which scans the limbs to determine if
the specified number is used by one of them. The mapping of a limb name to a num-
ber is carried out by Figure’s findLimbNo(), which returns -1 if the name is not found
amongst the limbs. Once the correct input has been gathered, it is passed to
updateLimb() in the Figure object.

This is the Title of the Book, eMatter Edition

Making and Moving the Figure | 543

A figure command is processed by figCommand(), which uses lots of if/else state-
ments to convert the command into a correctly parameterized call to Figure’s
doMove() or doRotateY() method:

private void figCommand(String opStr)
{ if (opStr.equals("fwd") || opStr.equals("f"))
 figure.doMove(FWD);
 else if (opStr.equals("back") || opStr.equals("b"))
 figure.doMove(BACK);
 else if (opStr.equals("left") || opStr.equals("l"))
 figure.doMove(LEFT);
 else if (opStr.equals("right") || opStr.equals("r"))
 figure.doMove(RIGHT);
 else if (opStr.equals("up") || opStr.equals("u"))
 figure.doMove(UP);
 else if (opStr.equals("down") || opStr.equals("d"))
 figure.doMove(DOWN);
 else if (opStr.equals("clock") || opStr.equals("c"))
 figure.doRotateY(CLOCK);
 else if (opStr.equals("cclock") || opStr.equals("cc"))
 figure.doRotateY(CCLOCK);
 else {
 System.out.println("Unknown figure operation: " + opStr);
 return;
 }
} // end of figCommand()

Making and Moving the Figure
The Figure class carries out three main tasks:

• It builds the figure by connecting Limb objects. The resulting figure is translated
into a Java 3D subgraph.

• It processes limb-related operations, such as updateLimb() calls.

• It processes figure movement operations, such as doRotateY().

Building the Figure
The construction of the figure starts in Figure():

//globals
private ArrayList limbs;
 // Arraylist of Limb objects, indexed by limb number
private HashMap limbNames;
 // holds (limb name, limb number) pairs

private TransformGroup figureTG;
 // the top-level TG for the entire figure

This is the Title of the Book, eMatter Edition

544 | Chapter 20: An Articulated, Moveable Figure

public Figure()
{
 yCount = 0; // the figure is on the floor initially
 t3d = new Transform3D(); // used for repeated calcs
 toMove = new Transform3D();
 toRot = new Transform3D();

 limbs = new ArrayList();
 limbNames = new HashMap();

 // construct the figure from connected Limb objects
 buildTorso();
 buildHead();

 buildRightArm();
 buildLeftArm();

 buildRightLeg();
 buildLeftLeg();

 printLimbsInfo();

 buildFigureGraph(); // convert figure into a Java 3D subgraph
} // end of Figure()

The figure’s Limb objects are stored in the limbs ArrayList. Each Limb object has a
unique ID (its limb number), which is used as its index position in the ArrayList.

The other important data structure is the limbNames HashMap. The HashMap stores
(limb name, limb number) pairs, with the name being the key and the limb number
the value. At runtime, the HashMap is employed to determine a limb’s number when a
name is supplied in a limb command.

Figure 20-8 shows the limbs that comprise the figure, labeled with their names and
numbers.

Only moveable limbs have names, which exclude the neck and bottom (bottom as in
derriere). Invisible limbs are nameless and are marked as dotted lines in the figure.
Two short invisible limbs link the legs to their feet (labeled as 16 and 21 in
Figure 20-8). The small gray circles in Figure 20-8 are the joints, the points where
limbs connect to each other, and they are positioned to make the limbs overlap.

Figure 20-9 shows the articulated figure again but with emphasis given to the joints.
Each arrow shows the positive y-axis in the limb’s local coordinate space. A limb’s
shape extends from the joint, following the arrow’s direction.

The first joint in the figure is j0, which is the starting location of the bottom. The
chest limb begins at joint j1, the neck at j2, the upper-left arm at j9, the lower-left
arm at j10, and so on. The side view of the lower-left leg shows the invisible joint
that begins at j20 and extends downward. The foot is attached to it via j21. The
arrows on the joints show that the local y-axis for a limb can be rotated significantly

This is the Title of the Book, eMatter Edition

Making and Moving the Figure | 545

when viewed in world coordinates. For example, the base of the upper-left arm is at
j9, and the limb’s positive y-axis is pointing almost straight down. Several limbs can
be attached to one joint. For instance, j0 is the starting point for the bottom limb, as
well as two invisible limbs which extend up and to the left and right, respectively.

Each limb utilizes two joints. In the joint’s local coordinate system, the start joint
begins at (0,0) on its XZ plane. The limb’s shape is placed at the start joint location and
oriented along the positive y-axis. The end joint is positioned along the limb’s y-axis,
90% of the way toward the end of the limb’s shape. For example, the upper-left arm’s
start joint is j9, and its end joint is j10. The lower-left arm’s start joint is j10, thereby
linking the lower arm to the upper.

A limb’s joints are encoded in Java 3D as TransformGroups. The start joint
TransformGroup of a child limb is the end joint TransformGroup of its parent, so link-
ing the child to the parent. Figure 20-10 shows the articulated figure again but in
terms of the TransformGroups that encode the joints.

The thick gray lines denote the limbs and hide several TransformGroups and other
Java 3D nodes. The visible TransformGroups are for the joints, and are labeled with
their joint name and TG. For instance, the limb for the upper-left arm (ulArm) starts at

Figure 20-8. The Figure’s limbs, named and numbered

4

12 lHand

19 ulLeg

20 llLeg

22 lFoot

6urArm

7lrArm

8rHand

14urLeg

15lrLeg

17rFoot

3

2

1

5 9

18

right side of figure

16 21

head

10 ulArm

11 llArm

chest

left side of figure

13

This is the Title of the Book, eMatter Edition

546 | Chapter 20: An Articulated, Moveable Figure

joint j9, and its end joint is j10. The limb for the lower-left arm (llArm) is attached to
the TransformGroup for j10 and becomes its child.

The gray lines labeled with “link” are invisible limbs, which have no
names.

Figure 20-10 shows the top-level TransformGroups for the figure: figureTG and
offsetTG. figureTG represents the origin for the entire figure and is located on the
floor, initially at (0,0). figureTG is affected by figure commands. offsetTG is a verti-
cal offset, up off the floor, which corresponds to the j0 start joint.

The details of Limb creation in the Figure object depend on the type of Limb being cre-
ated. Figure 20-11 shows the hierarchy for Limb and its subclasses.

Limb defines the appearance of a limb (using a lathe shape) and how it is connected
to a parent limb via a joint (TransformGroup). The limb’s initial orientation is fixed.
Limb and EllipticLimb cannot be moved and do not use limb names.

Figure 20-9. The Figure’s joints

j0

j1

j2

j3

j4

j9

j10

j11

j12

j5

j6

j7

j8
j18

j19

j20

j21, j22

j20

j21

j22

j13

j14

j15

j16, j17

left sideright side

the lower left-leg
viewed from the side

This is the Title of the Book, eMatter Edition

Making and Moving the Figure | 547

The MoveableLimb and MoveableEllipticLimb classes are moveable. They have limb
names and x-, y-, and z-axis rotation ranges. If a range is not specified, then it is
assumed to be 0 (i.e., rotation is not possible around that axis). The lathe shape used
in a Limb or MoveableLimb object has a circular cross-section but is elliptical in
EllipticLimb and MoveableEllipticLimb.

Figure 20-10. The Figure’s TransformGroups

Figure 20-11. The Limb class hierarchy

urLeg

lrLeg

link

rFoot

used for j0

head

neck

chest

bottom

link
link

link link

urArm

lrArm

rHand

ulLeg

llLeg

link

lFoot

ulArm

llArm

lHand

figureTG

offsetTG

j13TG

j14TG

j15TG

j16TG

j17TG

j1TG

j2TG

j3TG

j4TG

j18TG

j19TG

j20TG

j21TG

j22TG

j9TG

j10TG

j5TG

j6TG

j7TG

j8TG

j11TG

j12TG

This is the Title of the Book, eMatter Edition

548 | Chapter 20: An Articulated, Moveable Figure

Lathe shapes were described in Chapter 17.

buildTorso(), from the Figure class, shows the use of EllipticLimb and
MoveableEllipticLimb to create the bottom and chest for the figure. The bottom is
not moveable, but the chest is:

private void buildTorso()
{
 // the figure's bottom
 double xsIn1[] = {0, -0.1, 0.22, -0.2, 0.001};
 double ysIn1[] = {0, 0.03, 0.08, 0.25, 0.25};
 EllipticLimb limb1 = new EllipticLimb(
 1, "j0", "j1", Z_AXIS, 0, xsIn1, ysIn1, "denim.jpg");
 // no movement, so no name or ranges

 // the figure's chest: moveable so has a name ("chest")
 // and rotation ranges
 double xsIn2[] = {-0.001, -0.2, 0.36, 0.001};
 double ysIn2[] = {0, 0, 0.50, 0.68};
 MoveableEllipticLimb limb2 = new MoveableEllipticLimb("chest",
 2, "j1", "j2", Z_AXIS, 0, xsIn2, ysIn2, "camoflage.jpg");
 limb2.setRanges(0, 120, -60, 60, -40, 40);
 // x range: 0 to 120; y range: -60 to 60; z range: -40 to 40

 limbs.add(limb1);
 limbs.add(limb2);

 limbNames.put("chest", new Integer(2)); // store (name,number)
} // end of buildTorso()

The arrays of coordinates passed to the limb1 and limb2 objects define the lathe
curves for the bottom and chest. Figure 20-12 shows the graph of points making up
the curve for the bottom (limb1).

Figure 20-12. The lathe curve for the figure’s bottom

0.1 0.2 0.3
x

0.1

0.2

0.3

0

y

This is the Title of the Book, eMatter Edition

Making and Moving the Figure | 549

A limb requires a limb number, its start and end joint names, an axis of orientation
and angle to that axis, and lathe shape coordinates and texture. The lathe shape and
texture can be omitted, to signal that the limb should be invisible, but a limb length
must be supplied instead. If the limb is moveable (i.e., a MoveableLimb or
MoveableEllipticLimb object), then it also requires a name and x-, y-, and z-ranges to
restrict its movements.

The bottom limb is defined as:

EllipticLimb limb1 = new EllipticLimb(
 1, "j0", "j1", Z_AXIS, 0, xsIn1, ysIn1, "denim.jpg");

This is a nonmoveable limb, so it has no name. Its limb number is 1, it starts at joint
j0, and its end joint is called j1. It is rotated around the z-axis by 0 degrees (i.e., not
rotated at all), and has a lathe shape covered in denim. These details can be checked
against the information in Figures 20-9 and 20-10.

The chest limb is:

MoveableEllipticLimb limb2 = new MoveableEllipticLimb("chest",
 2, "j1", "j2", Z_AXIS, 0, xsIn2, ysIn2, "camoflage.jpg");
limb2.setRanges(0, 120, -60, 60, -40, 40);
 // x range: 0 to 120; y range: -60 to 60; z range: -40 to 40

This moveable limb is called chest, limb number 2. Its start joint is j1 (the end joint
of the bottom), so it will become a child of the bottom limb. Its end joint is called j2.
It is rotated around the z-axis by 0 degrees (i.e., not rotated at all), and has a lathe
shape covered in a camouflage pattern. The permitted ranges for rotation around the
x-, y-, and z-axes are set with a call to setRanges().

The end of buildTorso() shows the two limbs being added to the limbs ArrayList. A
limb numbered as X can be found in the list by looking up entry X-1.

The limb names (in this case only chest) are added to a limbNames HashMap together
with their limb numbers. This data structure is used when a limb is referred to by its
name, and its corresponding number must be found. Limb names aren’t needed, but
they’re a lot easier for a user to remember than numbers.

Orientating Limbs
The construction of the left arm illustrates how the initial orientation of a limb can
be adjusted. Figure 20-13 shows the construction of the left arm, including the angles
between the limbs.

The relevant code is in buildLeftArm():

private void buildLeftArm()
{
 // invisible limb connecting the neck and upper-left arm
 Limb limb9 = new Limb(9, "j2", "j9", Z_AXIS, -95, 0.35);

This is the Title of the Book, eMatter Edition

550 | Chapter 20: An Articulated, Moveable Figure

 // upper-left arm
 double xsIn10[] = {0, 0.1, 0.08, 0};
 double ysIn10[] = {0, 0.08, 0.45, 0.55};
 MoveableLimb limb10 = new MoveableLimb("ulArm",
 10, "j9", "j10", Z_AXIS, -80, xsIn10, ysIn10, "leftarm.jpg");
 limb10.setRanges(-60, 180, -90, 90, -30, 90);

 // lower-left arm
 double xsIn11[] = {0, 0.08, 0.055, 0};
 double ysIn11[] = {0, 0.08, 0.38, 0.43};
 MoveableLimb limb11 = new MoveableLimb("llArm",
 11, "j10", "j11", Z_AXIS, -5, xsIn11, ysIn11, "skin.jpg");
 limb11.setRanges(0, 150, -90, 90, -90, 90);

 // left hand
 double xsIn12[] = {0, 0.06, 0.04, 0};
 double ysIn12[] = {0, 0.07, 0.16, 0.2};
 MoveableEllipticLimb limb12 = new MoveableEllipticLimb("lHand",
 12, "j11", "j12", Z_AXIS, 0, xsIn12, ysIn12, "skin.jpg");
 limb12.setRanges(-50, 50, -90, 40, -40, 40);

 limbs.add(limb9);
 limbs.add(limb10);
 limbs.add(limb11);
 limbs.add(limb12);

 limbNames.put("ulArm", new Integer(10));
 limbNames.put("llArm", new Integer(11));
 limbNames.put("lHand", new Integer(12));
} // end of buildLeftArm()

Figure 20-13. The left arm in detail

10

11

12

left arm

j9

j10

j11

j2

-80 degrees

-5 degrees

0 degrees

limb10

limb11

limb12

limb9

-95 degrees

ulArm

llArm

lHand

This is the Title of the Book, eMatter Edition

Making and Moving the Figure | 551

The invisible limb, limb9, is made 0.35 units long and rotated around the z-axis by
95 degrees:

Limb limb9 = new Limb(9, "j2", "j9", Z_AXIS, -95, 0.35);

The rotation turns the y-axis of limb9 clockwise by 95 degrees. However, the actual
orientation of the limb in world coordinate space depends on the overall orientation
of the y-axis specified by its ancestors. In this case, none of its ancestors (bottom and
chest) have been rotated, so its world orientation is the same as its local value.

The limb for the upper-left arm is defined as:

MoveableLimb limb10 = new MoveableLimb("ulArm",
 10, "j9", "j10", Z_AXIS, -80, xsIn10, ysIn10, "leftarm.jpg");

This rotates the y-axis of limb10 clockwise by 80 degrees, which when added to the
ancestor rotations (bottom, chest, limb9) means that the shape is almost pointing
downward, with a total rotation of 175 degrees. The lower arm (limb11; llArm) is
rotated another 5 degrees to point straight down (180 degrees). The left hand
(limb12; lHand) has no rotation of its own, so it points downward.

Creating the Scene Graph
The buildXXX() methods (e.g., buildTorso(), buildLeftArm()) create the limb
objects and specify how they are linked in terms of joint names. The creation of the
scene graph outlined in Figure 20-11 is initiated by buildFigureGraph() after all the
limbs have been initialized:

private void buildFigureGraph()
{
 HashMap joints = new HashMap();
 /* joints will contain (jointName, TG) pairs. Each TG is the
 position of the joint in the scene.
 A limb connected to a joint is placed in the scene by
 using the TG associated with that joint.
 */
 figureTG = new TransformGroup();
 figureTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 figureTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 TransformGroup offsetTG = new TransformGroup();
 Transform3D trans = new Transform3D();
 trans.setTranslation(new Vector3d(0, 1.24, 0));
 // an offset from the ground to the first joint
 offsetTG.setTransform(trans);

 joints.put("j0", offsetTG); // store starting joint j0

 /* Grow the subgraph for each limb object, attaching it
 to the figure's subgraph below offsetTG. */
 Limb li;
 for (int i = 0; i < limbs.size(); i++) {

This is the Title of the Book, eMatter Edition

552 | Chapter 20: An Articulated, Moveable Figure

 li = (Limb)limbs.get(i);
 li.growLimb(joints);
 }

 figureTG.addChild(offsetTG);
} // end of buildFigureGraph()

buildFigureGraph() initializes figureTG and offsetTG. offsetTG will be the
TransformGroup for the first joint, j0, and its name/TransformGroup pair is stored in a
HashMap called joints.

A for loop iterates through the Limb objects stored in the limbs ArrayList and calls
each limb’s growLimb() method, passing in the joints HashMap. growLimb() creates a
Java 3D subbranch for the limb and attaches it to the TransformGroup corresponding
to the limb’s start joint. This joint/TransformGroup correspondence is found by
searching the joints HashMap.

A subtle assumption of this code is that a child limb is never attached
to a joint before the joint has been converted into a TransformGroup.
Another way of understanding this is that a parent limb must be con-
verted to a Java 3D subbranch before any of its children.

Processing Limb-Related Operations
The Figure class uses the limbNames HashMap, which contains limb name/limb num-
ber pairs to check if a user-supplied limb number is used by the figure and to con-
vert limb names into numbers. If the number or name isn’t correct, then an error
message is printed and the associated operation is ignored. The operations are car-
ried out by checkLimbNo() and findLimbNo().

updateLimb() is called with a legal limb number, an axis of rotation, and a rotation
angle and passes the request on to the limb in question:

public void updateLimb(int limbNo, int axis, double angle)
{ Limb li = (Limb) limbs.get(limbNo-1);
 li.updateLimb(axis, angle); // pass on axis and angle
}

reset() is called by CommandsPanel when the user presses the reset button. The reset
request is sent to every limb:

public void reset()
// restore each limb to its original position in space
{ Limb li;
 for (int i = 0; i < limbs.size(); i++) {
 li = (Limb)limbs.get(i);
 li.reset();
 }
}

This is the Title of the Book, eMatter Edition

Modeling a Limb | 553

Figure Movement
Figure commands, such as forward and clock, are converted into transforms applied
to the figureTG TransformGroup at the root of the figure’s subgraph. doMove() con-
verts a move request into a translation vector, which is applied in doMoveVec():

private void doMoveVec(Vector3d theMove)
// Move the figure by the amount in theMove
{
 figureTG.getTransform(t3d);
 toMove.setTranslation(theMove); // overwrite previous trans
 t3d.mul(toMove);
 figureTG.setTransform(t3d);
}

toMove and t3d are global Transform3D variables reused by doMoveVec() to avoid the
overhead of object creation and garbage collection.

doRotateY() converts a rotation request into a rotation around the y-axis, which is
carried out by doRotateYRad():

private void doRotateYRad(double radians)
// Rotate the figure by radians amount around its y-axis
{
 figureTG.getTransform(t3d);
 toRot.rotY(radians); // overwrite previous rotation
 t3d.mul(toRot);
 figureTG.setTransform(t3d);
}

toRot is a global Transform3D variable.

A drawback of this implementation is the lack of x- and z-axis rota-
tions that make it impossible to position the figure in certain ways. For
instance, you cannot make the figure stand on its hands, as that would
require a rotation around the x-axis. Adding this functionality would
be easy, though. You could add two extra TransformGroups below
figureTG so the three rotation axes could be cleanly separated and eas-
ily reset. This coding strategy is used for limb rotation, as seen below.

Modeling a Limb
The main job of the Limb class is to convert limb information into a Java 3D sub-
graph, like the one in Figure 20-14.

The start and end joints are represented by TransformGroups. startLimbTG isn’t cre-
ated by the limb but obtained from the parent limb. It’s the parent’s endLimbTG, and
in this way are children attached to parents. The limb creates endLimbTG, which is
positioned along the y-axis, 90 percent of the way along the length of the limb’s
shape. Child limbs can be attached to endLimbTG, meaning that they will overlap the

This is the Title of the Book, eMatter Edition

554 | Chapter 20: An Articulated, Moveable Figure

parent limb shape. This enhances the effect that the limbs are connected, especially
when a limb is rotated.

In between the joint TransformGroups are four more TransformGroups and a
LatheShape3D node representing the limb shape and its position. These are the details
hidden by the thick gray lines between the TransformGroups in Figure 20-10. Each of
those lines should be expanded into the five nodes surrounded by the gray dotted
box in Figure 20-14.

orientTG is used to orient the shape initially. The other TransformGroups are located
below it as its children, so they view the new orientation as pointing along the posi-
tive y-axis. The xAxisTG, yAxisTG, and zAxisTG TransformGroups are employed to
rotate the limb around the x-, y-, and z-axes at runtime. The separation of these rota-
tions into three parts makes it much easier to undo them if the limb is reset.

Though the Limb class creates the Figure 20-14 subgraph, it does not allow the
xAxisTG, yAxisTG, or zAxisTGs to be affected. The MoveableLimb class offers implemen-
tations of the methods that adjust these TransformGroups.

Limb contains various limb data, supplied by its constructor:

private int limbNo;
private String startJoint, endJoint;
private int orientAxis; // limb's axis of initial orientation
private double orientAngle = 0; // angle to orientation axis

private double limbLen;
private boolean visibleLimb = false;

Figure 20-14. The subgraph representing a limb

startLimbTG

orientTG

xAxisTG

endLimbTG

LatheShape3D

yAxisTG

zAxisTG

for startJoint

for endJoint

This is the Title of the Book, eMatter Edition

Modeling a Limb | 555

protected double xsIn[], ysIn[]; // coordinates of lathe shape
protected String texPath; // shape's texture filename

The Limb class doesn’t have a limb name; only moveable limbs utilize names. The
length of a limb is usually obtained from the lathe shape coordinates. I assume the
final value in the lathe shape’s y-coordinates is the maximum y-value for the entire
shape (i.e., its height). If the limb is to be invisible, then the constructor will have to
a limb length, which is directly assigned to limbLen.

The visibleLimb Boolean is used to distinguish between visible and invisible limbs.
The lathe shape coordinates and texture are protected since they need to be accessi-
ble by Limb subclasses that override the lathe shape creation method, makeShape().

Growing a Limb
growLimb() starts the process of subgraph creation for the limb:

public void growLimb(HashMap joints)
{
 TransformGroup startLimbTG =
 (TransformGroup) joints.get(startJoint);
 if (startLimbTG == null)
 System.out.println("No transform group for " + startJoint);
 else {

setOrientation(startLimbTG);
makeLimb(joints);

 }
}

The start joint name is used to find the startLimbTG TransformGroup in the joints

HashMap. This should have been created by the parent of this limb.

setOrientation() creates the four rotational TransformGroups (orientTG, xAxisTg,
yAxisTG, and zAxisTG) below startLimbTG:

private void setOrientation(TransformGroup tg)
{
 TransformGroup orientTG = new TransformGroup();
 if (orientAngle != 0) {
 Transform3D trans = new Transform3D();
 if (orientAxis == X_AXIS)
 trans.rotX(Math.toRadians(orientAngle));
 else if (orientAxis == Y_AXIS)
 trans.rotY(Math.toRadians(orientAngle));
 else // must be z-axis
 trans.rotZ(Math.toRadians(orientAngle));
 orientTG.setTransform(trans);
 }

 xAxisTG = new TransformGroup();
 xAxisTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 xAxisTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

This is the Title of the Book, eMatter Edition

556 | Chapter 20: An Articulated, Moveable Figure

 yAxisTG = new TransformGroup();
 yAxisTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 yAxisTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 zAxisTG = new TransformGroup();
 zAxisTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 zAxisTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 // scene graph's sequence of TG's
 tg.addChild(orientTG);
 orientTG.addChild(xAxisTG);
 xAxisTG.addChild(yAxisTG);
 yAxisTG.addChild(zAxisTG);
} // end of setOrientation()

The capability bits are set to allow the axis TransformGroups to change during execu-
tion, but orientTG remains fixed after being positioned at build time.

makeLimb() creates the endLimbTG TransformGroup and may create a lathe shape if the
limb is set to be visible:

private void makeLimb(HashMap joints)
{
 if (visibleLimb)
 makeShape(); // create the lathe shape

 TransformGroup endLimbTG = new TransformGroup();
 Transform3D trans = new Transform3D();
 trans.setTranslation(
 new Vector3d(0.0, limbLen*(1.0-OVERLAP), 0.0));
 /* The end position is just short of the actual length of the
 limb so that any child limbs will be placed so they overlap
 with this one. */
 endLimbTG.setTransform(trans);
 zAxisTG.addChild(endLimbTG);

 joints.put(endJoint, endLimbTG); // store (jointName, TG) pair
}

The endLimbTG TransformGroup is stored in the joints HashMap at the end of the
method, so it is available for use by this limb’s children.

makeShape() creates a LatheShape3D object and attaches it to the zAxisTG node:

protected void makeShape()
{
 LatheShape3D ls;
 if (texPath != null) {
 TextureLoader texLd =
 new TextureLoader("textures/"+texPath, null);
 Texture tex = texLd.getTexture();
 ls = new LatheShape3D(xsIn, ysIn, tex);
 }
 else
 ls = new LatheShape3D(xsIn, ysIn, null);

This is the Title of the Book, eMatter Edition

Moving a Limb | 557

 zAxisTG.addChild(ls); // add the shape to the limb's graph
} // end of makeShape()

makeShape() is a protected method since it may be overridden by Limb’s subclasses.
For example, EllipticLimb replaces the call to LatheShape3D by EllipseShape3D. This
causes the limb to have an elliptical cross-section.

Updating and Resetting
Limb() contains empty updateLimb() and reset() methods:

public void updateLimb(int axis, double angleStep) {}
public void reset() {}

updateLimb() and reset() affect the position of the limb, so they aren’t used in Limb.
They are overridden by the MoveableLimb subclass.

Moving a Limb
MoveableLimb allows a limb to be moved around the x-, y-, and z-axes. This is
achieved by affecting the xAxisTG, yAxisTG, and zAxisTG TransformGroups in the limb’s
subgraph.

MoveableLimb maintains range information for the three axes and ignores rotations
that would move the limb outside of those ranges. If a range isn’t specified, then it
will be assumed to be 0 (i.e., rotation is not possible around that axis). The program-
mer calls setRanges() or setRange() to initialize the range details for different axes:

// globals: the axis ranges
private double xMin, xMax, yMin, yMax, zMin, zMax;

public void setRanges(double x1, double x2, double y1, double y2,
 double z1, double z2)
{ setRange(X_AXIS, x1, x2);
 setRange(Y_AXIS, y1, y2);
 setRange(Z_AXIS, z1, z2);
}

public void setRange(int axis, double angle1, double angle2)
// set the range for axis only
{
 if (angle1 > angle2) {
 System.out.println(limbName + ": wrong order... swapping");
 double temp = angle1;
 angle1 = angle2;
 angle2 = temp;
 }
 if (axis == X_AXIS) {
 xMin = angle1; xMax = angle2;

This is the Title of the Book, eMatter Edition

558 | Chapter 20: An Articulated, Moveable Figure

 }
 else if (axis == Y_AXIS) {
 yMin = angle1; yMax = angle2;
 }
 else { // Z_AXIS
 zMin = angle1; zMax = angle2;
 }
} // end of setRange()

The methods initialize the xMin, xMax, yMin, yMax, zMin, and zMax globals and ensure
the ranges are given in the right order.

Rotations are processed by updateLimb(), which is called from the Figure object with
axis and angle arguments:

public void updateLimb(int axis, double angleStep)
// Attempt to rotate this limb by angleStep around axis
{
 if (axis == X_AXIS)

applyAngleStep(angleStep, xCurrAng, axis, xMax, xMin);
 else if (axis == Y_AXIS)

applyAngleStep(angleStep, yCurrAng, axis, yMax, yMin);
 else // Z_AXIS

applyAngleStep(angleStep, zCurrAng, axis, zMax, zMin);
}

private void applyAngleStep(double angleStep, double currAngle,
 int axis, double max, double min)
/* Before any rotation, check that the angle step moves the
 limb within the ranges for this axis.
 If not then rotate to the range limit, and no further. */
{
 if ((currAngle >= max) && (angleStep > 0)) { // will exceed max
 System.out.println(limbName + ": no rot; already at max");
 return;
 }
 if (currAngle <= min && (angleStep < 0)) { // will drop below min
 System.out.println(limbName + ": no rot; already at min");
 return;
 }

 double newAngle = currAngle + angleStep;
 if (newAngle > max) {
 System.out.println(limbName + ": reached max angle");
 angleStep = max - currAngle; // rotate to max angle only
 }
 else if (newAngle < min) {
 System.out.println(limbName + ": reached min angle");
 angleStep = min - currAngle; // rotate to min angle only
 }

This is the Title of the Book, eMatter Edition

Moving a Limb | 559

makeUpdate(axis, angleStep); // do the rotation
} // end of applyAngleStep()

updateLimb() uses the supplied axis value to pass the correct axis range to
applyAngleStep(). This method checks that the requested rotation stays within the
allowed range. The range extends from some largest negative value to a largest posi-
tive angle (referred to by min and max). This may mean ignoring the rotation (if the
min or max value has been reached), or reducing the rotation so the limb stops at min
or max. Once the actual rotation angle has been calculated (and stored in angleStep),
makeUpdate() is called:

// globals: the current angle in three axes
private double xCurrAng, yCurrAng, zCurrAng;

private void makeUpdate(int axis, double angleStep)
// rotate the limb by angleStep around the given axis
{
 if (axis == X_AXIS) {
 rotTrans.rotX(Math.toRadians(angleStep));
 xAxisTG.getTransform(currTrans);
 currTrans.mul(rotTrans);
 xAxisTG.setTransform(currTrans);
 xCurrAng += angleStep;
 }
 else if (axis == Y_AXIS) {
 rotTrans.rotY(Math.toRadians(angleStep));
 yAxisTG.getTransform(currTrans);
 currTrans.mul(rotTrans);
 yAxisTG.setTransform(currTrans);
 yCurrAng += angleStep;
 }
 else { // z-axis
 rotTrans.rotZ(Math.toRadians(angleStep));
 zAxisTG.getTransform(currTrans);
 currTrans.mul(rotTrans);
 zAxisTG.setTransform(currTrans);
 zCurrAng += angleStep;
 }
} // end of makeUpdate()

makeUpdate() applies a rotation to xAxisTG, yAxisTG, or zAxisTG depending on the
axis value supplied by the user. The rotational transform is multiplied to the current
value held in the relevant TransformGroup, which is equivalent to adding the rotation
to the current angle. rotTrans and currTrans are global Transform3D variables to save
on the cost of object creation and deletion. The new limb angle is stored in xCurrAng,
yCurrAng, or zCurrAng.

This is the Title of the Book, eMatter Edition

560 | Chapter 20: An Articulated, Moveable Figure

The limb can be reset to its initial orientation, via a call to reset() by the Figure

object:

public void reset()
{
 rotTrans.rotX(Math.toRadians(-xCurrAng)); // reset x angle
 xAxisTG.getTransform(currTrans);
 currTrans.mul(rotTrans);
 xAxisTG.setTransform(currTrans);
 xCurrAng = 0;

 rotTrans.rotY(Math.toRadians(-yCurrAng)); // reset y angle
 yAxisTG.getTransform(currTrans);
 currTrans.mul(rotTrans);
 yAxisTG.setTransform(currTrans);
 yCurrAng = 0;

 rotTrans.rotZ(Math.toRadians(-zCurrAng)); // reset z angle
 zAxisTG.getTransform(currTrans);
 currTrans.mul(rotTrans);
 zAxisTG.setTransform(currTrans);
 zCurrAng = 0;
} // end of reset()

The rotations maintained by xAxisTG, yAxisTG, and zAxisTG are undone by rotating
each one by the negative of their current angle, as stored in xCurrAng, yCurrAng, and
zCurrAng. The simplicity of this operation is due to the separation of the three
degrees of freedom into three TransformGroups.

Moving an Elliptical Limb
MoveableEllipticLimb shows how little code is required to adjust the limb’s shape.
Only makeShape() must be overridden to use EllipseShape3D instead of the version in
the Limb class that utilizes LatheShape3D:

protected void makeShape()
{
 EllipseShape3D es;
 if (texPath != null) {
 TextureLoader texLd =
 new TextureLoader("textures/"+texPath, null);
 Texture tex = texLd.getTexture();
 es = new EllipseShape3D(xsIn, ysIn, tex);
 }
 else
 es = new EllipseShape3D(xsIn, ysIn, null);

 zAxisTG.addChild(es); // add the shape to the limb's graph
}

This is the Title of the Book, eMatter Edition

Other Articulated Figures | 561

Other Articulated Figures
Several excellent Java 3D articulated figure examples are out on the Web:

Ana
Alessandro Borges has developed an articulated figure with named parts, with a
similar joint-based TransformGroup implementation as here but with spheres at
the limb intersections (http://planeta.terra.com.br/educacao/alessandroborges/
ana/ana.html). Movement/rotation commands are grouped together to form key-
frame animations. Forward kinematics controls the interaction between the
limbs.

The Virtual Drummer
This 3D drummer by Martijn Kragtwijk is coded in a similar way to my figure,
but the emphasis is on animating the model by having it play along to the drum
parts of music (http://parlevink.cs.utwente.nl/Projects/virtualdrummer/). The site
contains a number of papers on the work.

The fun idea of animation through music recognition has been extensively devel-
oped in Wayne Lytle’s Animusic (http://www.animusic.com/), which is unfortu-
nately not Java-based.

Robot Simulation
Yuan Cheng wrote a graphical, interactive, physical-based robot control simula-
tion environment using Java 3D (http://icmit.mit.edu/robot/simulation.html) back
in 1999. The robots are built using a hierarchy of TransformGroups.

H-Anim Working Group
The H-Anim (Humanoid Animation) Working Group (http://www.h-anim.org/)
has developed a VRML97 specification for representing figures. There is no Java
3D implementation available, but the specification contains numerous good
ideas on how to model an articulated figure.

A Joint node defines limb position, orientation, and other attributes such as skin
properties. Joints are linked together to form a hierarchy, so Joint is somewhat
similar to the Limb class developed here. The Segment node is concerned with the
shape of the body part, including its mass, and allows the shape’s geometry to be
adjusted. Segment could be equated with the LatheShape3D class but has greater
functionality. Site nodes are used to attach items to Segments, such as clothing
and jewelry. Site nodes may be employed to fix a camera so it stays in a certain
position relative to the figure. The Displacer node permits groups of vertices in a
Segment to be associated with a higher-level feature of the figure. For example,
the location of the nose, eyes, and mouth on a face can be identified with
Displacer nodes.

This is the Title of the Book, eMatter Edition

562 | Chapter 20: An Articulated, Moveable Figure

Articulation and Mesh Deformation
An alternative to building a figure from articulated shapes is to create a single mesh
(e.g., by using Java 3D’s GeometryArray). Mesh deformation can be significantly opti-
mized if carried out by reference, where the mesh data is stored in an array main-
tained by the program, rather than as part of the scene graph. The array can be
modified without the overhead of scene graph accesses, and the on-screen represen-
tation is updated by calls to GeometryArray’s updateData() method.

The standard Java 3D demos contain an example, in the directory GeometryByRefer-
ence/, showing how the shape and color of an object can be changed in this manner.
I discuss geometry referencing in Chapter 21, in relation to particle systems.

j3d.org has a small mesh deformation demo, written by Leyland Needham, which bends
a cylinder like a human arm (http://www.j3d.org/utilities/bones.html). The code gradu-
ally updates the cylinder mesh to achieve its effect. Alessandro Borges is planning to add
similar mesh deformation elements to his Ana system (http://planeta.terra.com.br/
educacao/alessandroborges/ana/bone.html).

Articulation and Skinning
Skinning utilizes two elements: a mesh for the figure’s skin (or clothes) and an articu-
lated bone model. The vertices of the skin mesh are connected to bone contact
points by weights, which specify how the skin adjusts as the bones move.

Salamander
Mark McKay has released a skeletal animation and skinning system as part of his
unfinished but useful Salamander Project (https://skinandbones.dev.java.net/).
Salamander offers keyframe interpolation and multiple animation tracks based
on the Maya trax editor.

Skinning VRML loader
Seungwoo Oh has developed a VRML loader that can handle motion data (rota-
tions and translations) and supports geometry skinning (http://vr.kaist.ac.kr/
~redmong/research.htm). He has utilized this for clothing human figures with
convincing results. His site includes Java 3D loaders and articles explaining the
concepts behind his software.

This is the Title of the Book, eMatter Edition

Articulation and Morphing | 563

H-Anim skinning
A skinned mesh system, derived from the H-Anim specification, is part of Xj3D,
a toolkit for VRML 97 and X3D content written in Java (http://www.xj3d.org/).
There’s a version for Aviatrix3D, a Java scene graph API over the top of JOGL
(http://aviatrix3d.j3d.org/). There’s no Java 3D version at the moment (Decem-
ber 2004).

M3G
Java 2 Micro Edition (J2ME) has an optional 3D graphics API package called
M3G. It’s an interesting mix of high-level and low-level 3D graphics features,
developed under JSR 184. M3G includes a SkinnedMesh class, which represents a
skeletally polygon mesh.

A good source of M3G documentation, articles, and examples is Nokia (http://
www.forum.nokia.com/java/jsr184) and the web site for this book (http://
fivedots.coe.psu.ac.th/~ad/jg/), which includes five chapters about M3G (includ-
ing one on skinning).

Magicosm
The Magicosm site has a page about its skin and bone capabilities (http://
www.cosm-game.com/dev_skinbones.php), posted in 2001. The Skeleton class
contains a hierarchy of bones and stores active, queued, and dormant anima-
tions. A Skin is a collection of sinews, vertices and triangles. Each Sinew object
forms a bond between a vertex and a bone with a weight.

Articulation and Morphing
Another animation possibility is morphing, which allows a smooth transition
between different GeometryArrays. This is done using a Morph node, set up in a simi-
lar way to a Switch to access its child geometries but with weights assigned to the
shapes. The Morph node combines the geometries into a single aggregate shape based
on each GeometryArray’s corresponding weight. Typically, Behavior nodes modify the
weights to achieve various morphing effects.

The drawback is that the various objects must have similar structures (e.g., the same
number of coordinates). Morphing may not be required for rapidly changing poses
since our eyes tend to deceive us by filling in the gaps themselves.

This is the Title of the Book, eMatter Edition

564 | Chapter 20: An Articulated, Moveable Figure

Morphing can be used in two ways with the animation techniques I’ve been discuss-
ing. It can be employed as an interpolation mechanism between models in a key-
frame sequence or utilized to deform a figure. The former approach is discussed in
Chapter 5 of the Java 3D tutorial where a stick figure is animated. Mesh deforma-
tion is illustrated by an example in the Java 3D demos, in the directory Morphing/,
showing how a hand can be made to slowly wave by morphing between three OBJ
files.

MD3 loader
A morphing animation example using the MD3 loader from New Dawn Software
(http://www.newdawnsoftware.com/) can be found at http://www.la-cfd.com/
cassos/test/md3/.

M3G
J2ME’s M3G API (see the previous section) includes a MorphingMesh class. An
example showing its capabilities can be found at this book’s web site, http://
fivedots.coe.psu.ac.th/~ad/jg/.

Salamander
Articulated figures in McKay’s Salamander (see the previous section) originally
used morphing for animation, but it was abandoned in favor of the skinning sys-
tem. Morphing tended to produce unrealistic visual transitions.

This is the Title of the Book, eMatter Edition

565

Chapter 21O CHAPTER 21

Particle Systems

Particle systems are an important component of many 3D games: when you see
sparks flying, smoke swirling, fireworks exploding, snow falling, water shooting, or
blood spurting, then it’s probably being done with a particle system. A particle system
consists of a large population of individual particles, perhaps hundreds of thou-
sands, though many commercial games use far fewer depending on the effect
required. The particle system is in charge of creating and deleting particles and
updating their attributes over time.

A particle is typically rendered as a graphics primitive, such as a point or line, as
opposed to a full-fledged 3D shape, such as a sphere or cylinder. This means that
rendering overheads can be reduced, an important consideration when so many par-
ticles are involved. However, with the advent of more powerful graphics cards, parti-
cle systems have started to utilize polygons (e.g., particles made from triangles and
quadrilaterals [quads]), which allow textures and lighting to be introduced.

The attributes of a particle vary depending on the kind of system required but typi-
cally include position, velocity, forces (e.g., gravity), age, color/texture, shape, size,
and transparency. The code that updates a system usually affects particle attributes
using time-based equations, but other approaches are possible. For instance, a parti-
cle’s new position may be a random adjustment of its previous position.

Particle systems often have a generation shape, which specifies a bounding volume in
which particles can be created. For example, a system for a water fountain will cre-
ate particles within a small space near the fountain’s base. Generation shapes have
been extended to specify bounding volumes for particle updating and aging. For
instance, if a particle moves outside the space, then it will begin to age and age more
quickly as it moves further away. The aging could trigger a change in its size or color,
all depending on the application’s needs.

A central and practical issue with particle systems is efficiency since a system may be
made up of so many particles. Efficiency influences how particles are updated, ren-
dered, and reused (e.g., a dead particle may be reset to its initial attribute settings and

This is the Title of the Book, eMatter Edition

566 | Chapter 21: Particle Systems

started again). If particles use texturing, then the texture should be applied to the
entire system. A particle is a passive entity: its attributes are changed by the particle
system.

An offshoot of particle systems are flocking boids, which I consider in
Chapter 22. A boid is more intelligent in the sense that it has its own
internal state and behavior. For instance, a boid may examine the
attributes of its nearest neighbors in the flock to adjust its velocity to
avoid colliding with them.

Three particle systems are developed in this chapter: one where the particles are
points, another using lines, and a third using quadrilaterals (quads). Figures 21-1,
21-2, and 21-3 show the three systems in action.

The three systems are part of a single application, Particles3D:

The example code for this chapter is located in Particles3D/.

The coding illustrates the following techniques:

Geometry-based particle systems
I use Java 3D’s PointArray, LineArray, and QuadArray geometries to implement
the point-, line-, and quad-based particle systems.

Reduced data copying
Information is stored in BY_REFERENCE geometries, which avoids the need for a lot
of data copying when a geometry is changed.

Figure 21-1. A particle system of points

This is the Title of the Book, eMatter Edition

Particle Systems | 567

Shape management
Shape changes are handled by a subclass of Java 3D’s GeometryUpdater interface.

Reusing textures
A single texture is applied to multiple quad particles, as opposed to using one
texture for each quad, which would cause a massive increase in memory usage.

Transparent textures
The quad texture has transparent elements, allowing boring quadrilaterals to
look more shapely (as in Figure 21-3).

Figure 21-2. A particle system of lines

Figure 21-3. A particle system of quads

This is the Title of the Book, eMatter Edition

568 | Chapter 21: Particle Systems

Color and light blending
The quad particles combine texture, color, and lighting effects for extra realism.

The illusion of 3D
A particle system automatically rotates toward the viewer using Java 3D’s
OrientedShape3D. This means that a 2D geometry, such as a quad, appears to
have 3D thickness. This produces the illusion of 3D without the need to create
3D shapes.

Particle Systems in Java 3D
There are several ways of implementing a particle system in Java 3D, but concerns
about efficiency mean that many of them are impractical for large systems. In this
chapter, particles are represented as elements of a Java 3D GeometryArray. The exam-
ple in this chapter displays three different types of systems, but they all use sub-
classes of GeometryArray: a PointArray is employed to store particles as points, a
LineArray for particles which are lines, and a QuadArray is used for quads.

The standard approach to using GeometryArray is to make changes to it by copying in
new coordinates, colors, etc. This approach introduces two copies of the geometry:
one stored internally by Java 3D (the GeometryArray instance) and another in the
user’s program (usually arrays of coordinates, colors, and so on). When users
change their data, they must make sure to update the version maintained by Java 3D.
The sample application avoids this approach, since the rapidly changing nature of a
particle system and its size would necessitate large amounts of copying, which is just
too slow.

The alternative is to link the GeometryArray to the data stored in the user’s program.
This means users only need to update their version of the data, and Java 3D’s
GeometryArray will be automatically changed since it’s a reference to the user’s data.
There’s no need for copying, and there’s a reduction in memory requirements since
the data is only stored in one place, in the users’ code. This is the approach used in
this chapter.

The GeometryArray is created with a BY_REFERENCE flag:

// a BY_REFERENCE PointArray with numPoints points
PointArray pointParts = new PointArray(numPoints,
 PointArray.COORDINATES | PointArray.COLOR_3 |

PointArray.BY_REFERENCE);

// allow things to be read and written by reference
pointParts.setCapability(GeometryArray.ALLOW_REF_DATA_READ);
pointParts.setCapability(GeometryArray.ALLOW_REF_DATA_WRITE);

This is the Title of the Book, eMatter Edition

Particle Systems in Java 3D | 569

The flag signals that the data managed by the PointArray isn’t copied; instead, the
PointArray refers to data structures stored in the user’s execution space. pointParts
will reference two data structures: one maintaining the coordinates of the PointArray

and the other the colors of the points at those coordinates.

The next step is to create the local data structures utilized by pointParts. Java 3D 1.3
only supports references to float arrays:

private float[] cs, cols;

cs = new float[numPoints*3]; // to store each (x,y,z) coord
cols = new float[numPoints*3];
// fill in the arrays with coordinates and colors

// store coordinates and colors array refs in PointArray
pointParts.setCoordRefFloat(cs); // use BY_REFERENCE
pointParts.setColorRefFloat(cols);

The restriction to float arrays means the coordinates must be stored as individual x-,
y-, and z-values, which requires a numPoints*3 size array. Similarly, the red-green-
blue components of each color must be stored separately.

Once the arrays have been filled, the references are set up with calls to
setCoordRefFloat() and setColorRefFloat(). After these methods have been called,
the program need only change the cs and cols arrays to change the PointArray.
There’s no need to copy the changes into the PointArray.

pointParts becomes the geometry of a scene graph node, such as a Shape3D, with:

setGeometry(pointParts);

Java 3D will render the shape using the data in PointArray and update the shape
when the referenced float arrays are modified.

Referring to Float Arrays
The Java 3D distribution comes with several demos using BY_REFERENCE geometry; the
most relevant to understanding referenced geometries is the GeometryByReferenceTest

application, available in <JAVA HOME>/demo/java3d/GeometryByReference/. The
code sets up references to Point3f and Color3f arrays with the following methods:

setCoordRef3f();
setColorRef3f();

However, these methods—and similar ones for textures and normals—are depre-
cated in Java 1.3, and the GeometryByReference demo has not been updated. The rea-
son for the deprecation is to reduce the work required by Java 3D to maintain the
references.

This is the Title of the Book, eMatter Edition

570 | Chapter 21: Particle Systems

Synchronization Problems
An important issue is when the user’s program should update the float arrays refer-
enced by the geometry. The simple—but wrong—answer is “whenever it wants” as
this may lead to synchronization problems. Java 3D will periodically access the
arrays to use their information for rendering the geometry, and problems may occur
if this examination is intertwined with the arrays being changed by the user’s code.
The nasty aspect of synchronization bugs is their time-dependency, which makes
them hard to detect during testing.

Synchronization worries are avoided by using Java 3D’s GeometryUpdater interface to
update the geometry:

public class PointsUpdater implements GeometryUpdater
{
 public void updateData(Geometry geo)
 { PointArray pa = (PointArray) geo;
 float[] cs = pa.getCoordRefFloat(); // use BY_REFERENCE
 float[] cols = pa.getColorRefFloat();
 // update the cs and cols float arrays
 }

 // other support methods
}

Java 3D passes a GeometryArray reference to the updateDate() method when it’s safe
for the user’s program to carry out changes. The reference must be cast to the right
type, and then the getCoordRefFloat() and getColorRefFloat() methods are used to
return references to the required float arrays. The arrays can be safely modified, and
the changes will be utilized by Java 3D when it next renders the geometry.

A GeometryUpdater object is set up like so:

PointsUpdater updater = new PointsUpdater();
// I can now request an update of the pointParts PointArray geometry
pointParts.updateData(updater);

Rather confusingly, the updating of the pointParts geometry involves two Java 3D
methods called updateData(), which are doing slightly different things.

The call to updateData() in pointParts is processed by GeometryArray.updateData(),
which requests that Java 3D carry out an update. The method argument is the
PointsUpdater object, which will be called by Java 3D when it’s safe to perform an
update. At that point, Java 3D calls the GeometryUpdater.updateData() method
implemented in the PointsUpdater class.

This is the Title of the Book, eMatter Edition

Class Diagrams for Particles3D | 571

The Inner Class Coding Style
A particle system consists of three classes:

• The particle system class containing the BY_REFERENCE geometry (e.g., a
PointArray, LineArray, or QuadArray), the float arrays holding the referenced
coordinates, colors, and so on. The class will hold the particle attribute initializa-
tion code.

• A GeometryUpdater implementation, which carries out an update of the particle
system by changing various attributes in the particles. This means accessing and
changing the particle system’s float arrays.

• A Behavior class which is triggered periodically and then calls the geometry’s
updateData() method, thereby requesting an update.

This functionality requires a substantial amount of shared data between the classes.
Consequently, the particle systems detailed in this chapter will use inner classes to
implement the Behavior and GeometryUpdater classes. An added benefit of this strat-
egy is the inner classes will be hidden from the user of the particle system.

The coding style is illustrated in Figure 21-4, which shows a simplified class diagram
for the PointParticles class, which manages the particle system made of points.

The details of each of these classes will be explained in subsequent
sections.

The other two particle systems in the Particles3D application have the same basic
structure.

Class Diagrams for Particles3D
Figure 21-5 shows the class diagrams for the Particles3D program. Only the class
names are shown.

Particles3D is the top-level JFrame for the application. WrapParticles3D creates the
3D scene and is similar to the earlier Wrap classes in that it creates the checkered floor
and sets up lighting. WrapParticles3D invokes one of the three particle systems
(PointParticles, LineParticles, or QuadParticles), depending on user input.

The PointParticles and LineParticles particle systems are subclasses of Shape3D,
allowing them to be added to the 3D scene easily. QuadParticles is a subclass of
OrientedShape3D and permits its on-screen representation to rotate towards the
viewer.

This is the Title of the Book, eMatter Edition

572 | Chapter 21: Particle Systems

The diagrams for the particle system classes show they use the inner classes approach
with GeometryUpdater and Behavior classes. CheckerFloor and ColouredTiles are the
same as in previous examples.

Creating the Scene
The WrapParticles3D object is passed two integers from the command line: the num-
ber of points to be used when creating a particle system and an integer between 1
and 3, which selects a particular system. The selection is done inside the
createSceneGraph() method:

switch(fountainChoice) {
 case 1: addPointsFountain(numParts); break;
 case 2: addLinesFountain(numParts); break;
 case 3: addQuadFountain(numParts); break;
 default: break; // do nothing
}

Figure 21-4. Point particle systems class structure

+ initialize

+ processStimulus

+ getParticleBeh

- createGeometry

- initParticle

- createAppearance

+ updateData

- updateParticle

- updateColour

- timedelay :

 WakeupCondition

- updater : PointsUpdater

ParticlesControl

PointsUpdater
implements

GeometryUpdater

- pointParts : PointArray

- partBeh : ParticlesControl

- cs, vels, accs, cols : float[]

// other privates

PointParticles

Behavior

Shape3D

This is the Title of the Book, eMatter Edition

Creating the Scene | 573

The three particle systems all render variants of a fountain, which explains the preva-
lence of the word “fountain.” The three addFountain() methods are similar, with
addPointsFountain() the longest:

private void addPointsFountain(int numParts)
{
 PointParticles ptsFountain = new PointParticles(numParts, 20);
 // 20ms time delay between updates

 // move particles start position to (2,0,1)
 TransformGroup posnTG = new TransformGroup();
 Transform3D trans = new Transform3D();
 trans.setTranslation(new Vector3d(2.0f, 0.0f, 1.0f));
 posnTG.setTransform(trans);
 posnTG.addChild(ptsFountain);
 sceneBG.addChild(posnTG);

 // timed behavior to animate the fountain
 Behavior partBeh = ptsFountain.getParticleBeh();
 partBeh.setSchedulingBounds(bounds);
 sceneBG.addChild(partBeh);
}

Figure 21-5. The Particles3D classes

Particles3D WrapParticles3D

CheckerFloor ColouredTiles

Shape3D
JPanelJFrame

PointsUpdater

ParticlesControl

PointParticles

Behavior

Shape3D

LinesUpdater

ParticlesControl

LineParticles

Behavior

OrientedShape3D

QuadsUpdater

ParticlesControl

QuadParticles

Behavior

Shape3D

GeometryUpdater

GeometryUpdaterGeometryUpdater

This is the Title of the Book, eMatter Edition

574 | Chapter 21: Particle Systems

The particle system (together with its GeometryUpdater and Behavior objects) is cre-
ated by the PointParticles() constructor, which supplies the number of points to
use and the time delay between each update.

The middle part of the addPointFountain() shows that moving the system—as a
single Shape3D entity—to a new position is simple. By default, the systems all start at
the origin.

Though the Behavior object is created inside PointParticles, it still needs to be
attached to the scene graph and given a bounding volume. This is done in the last
part of addPointFountain() and requires a public getParticleBeh() method to return
a reference to the behavior.

A Fountain of Points
PointsParticles creates a fountain of points, whose points are colored yellow ini-
tially but gradually turn red. The particles are emitted from the origin and travel in
parabolas of various velocities in any direction across the XZ plane and upwards
along the y-axis. The only force applied to the particles is gravity which will affect
their acceleration and velocity over time. When a particle drops below the XZ plane,
it’s reused by having its attributes reset to their initial settings.

A particle has four attributes:

• Its (x, y, z) location

• Its velocity (expressed in x-, y-, and z-directional components)

• Its acceleration (also expressed as three components)

• Its color (as three floats for its Red/Green/Blue parts)

The class diagram for PointParticles is shown in Figure 21-4. The attributes are repre-
sented by the float arrays cs, vels, accs, and cols. If the user starts the PointParticles

system with numPoints particles, these arrays will be sized at numPoints*3 to accommo-
date all the necessary data.

The PointParticles() constructor initializes the PointArray as outlined:

PointArray pointParts = new PointArray(numPoints,
 PointArray.COORDINATES | PointArray.COLOR_3 |

PointArray.BY_REFERENCE);

// allow things to be read and written by reference
pointParts.setCapability(GeometryArray.ALLOW_REF_DATA_READ);
pointParts.setCapability(GeometryArray.ALLOW_REF_DATA_WRITE);

The constructor creates the GeometryUpdater and Behavior objects:

PointsUpdater updater = new PointsUpdater();
partBeh = new PartclesControl(delay, updater);

partBeh is a global so it can be returned by getParticleBeh():

This is the Title of the Book, eMatter Edition

A Fountain of Points | 575

public Behavior getParticleBeh()
{ return partBeh; }

The constructor calls createGeometry() to initialize the Shape3D’s geometry and
createAppearance() for its appearance.

The Particle System’s Geometry and Appearance
createGeometry() declares the float arrays, initializes them, and sets up references to
the coordinate and color float arrays for the PointArray:

private void createGeometry()
{ cs = new float[numPoints*3]; // to store each (x,y,z)
 vels = new float[numPoints*3];
 accs = new float[numPoints*3];
 cols = new float[numPoints*3];

 // step in 3's == one (x,y,z) coord
 for(int i=0; i < numPoints*3; i=i+3)
 initParticle(i);

 // store the coordinates and colors in the PointArray
 pointParts.setCoordRefFloat(cs); // use BY_REFERENCE
 pointParts.setColorRefFloat(cols);

 setGeometry(pointParts);
}

pointParts is only set to refer to the cs and cols arrays since these contain the posi-
tion and color data required for each point. GeometryArrays may be assigned normals
and texture coordinates, as you’ll see in the QuadParticles class.

initParticles() is called in steps of three, as each iteration is initializing one point,
which is equivalent to three values in the float arrays:

private void initParticle(int i)
{ cs[i] = 0.0f; cs[i+1] = 0.0f; cs[i+2] = 0.0f;
 // (x,y,z) at origin
 // random velocity in XZ plane with combined vector XZ_VELOCITY
 double xvel = Math.random()*XZ_VELOCITY;
 double zvel = Math.sqrt((XZ_VELOCITY*XZ_VELOCITY) - (xvel*xvel));
 vels[i] = (float)((Math.random()<0.5) ? -xvel : xvel); // x vel
 vels[i+2] = (float)((Math.random()<0.5) ? -zvel : zvel);// z vel
 vels[i+1] = (float)(Math.random() * Y_VELOCITY); // y vel

 // unchanging accelerations, downwards in y direction
 accs[i] = 0.0f; accs[i+1] = -GRAVITY; accs[i+2] = 0.0f;

 // initial particle color is yellow
 cols[i] = yellow.x; cols[i+1] = yellow.y; cols[i+2] = yellow.z;
}

The method initializes the cs[], vels[], accs[], and cols[] arrays.

This is the Title of the Book, eMatter Edition

576 | Chapter 21: Particle Systems

The x-axis velocity is randomly set between -XZ_VELOCITY and XZ_VELOCITY, and the z-
axis velocity is assigned the value that makes the magnitude of the combined XZ vec-
tor equal XZ_VELOCITY. This means that particles can travel in any direction across the
XZ plane, but they all have the same speed.

The only acceleration is a constant, gravity down the y-axis. By including accelera-
tions in the x- and z-directions, forces such as air resistance could be simulated as
well.

createAppearance() increases the point size of the particles:

private void createAppearance()
{ Appearance app = new Appearance();
 PointAttributes pa = new PointAttributes();
 pa.setPointSize(POINTSIZE); // may cause bugs
 app.setPointAttributes(pa);
 setAppearance(app);
}

Point size adjustment, point anti-aliasing, line size adjustment, and line anti-aliasing
are poorly supported in Java 3D because of weaknesses in the underlying graphics
libraries and/or drivers. Currently, OpenGL and OpenGL-compatible graphics cards
can cope, but DirectX-based system often crash.

Updating the Points
The PointsUpdater class utilizes updateData() differently than outlined earlier:

public void updateData(Geometry geo)
{ // GeometryArray ga = (GeometryArray) geo;
 // float cds[] = ga.getCoordRefFloat();

 // step in 3's == one (x,y,z) coord
 for(int i=0; i < numPoints*3; i=i+3) {
 if (cs[i+1] < 0.0f) // particle dropped below y-axis
 initParticle(i); // reinitialise it
 else // update the particle
 updateParticle(i);
 }
} // end of updateData()

The commented out lines indicate that no use is made of the Geometry input argu-
ment. Instead, the float arrays (cs[], vels[], accs[], and cols[]), which are global,
are accessed directly.

updateData()’s primary purpose is to be called by Java 3D when it’s
safe to modify the arrays. It doesn’t matter where the array references
originate.

This is the Title of the Book, eMatter Edition

A Fountain of Points | 577

updateData() implements particle reuse by detecting when a particle has dropped
below the y-axis and then reinitializing it by calling PointParticles’s initParticle()

method. This shows the advantage of using an inner class and global float arrays.

Updating Particles
Underpinning the motion of the particles is Newton’s second law, which relates
force (F) to mass (m) and acceleration (a):

F = ma

I can make this simpler by assuming that a particle has a mass of one unit:

F = a

In other words, the only force on a particle is constant acceleration, which is gravity
for the examples in this chapter.

It’s possible to obtain velocity and distance equations from this basic assumption by
using Euler’s integration algorithm. The acceleration equation can be written as:

d vel/dt = a

or:

d vel = a dt

Using Euler’s method, you can obtain the velocity equation:

vel(t + dt) = vel(t) + a dt

Integrating again:

dist(t + dt) = dist(t) + vel(t) dt + 1/2 a dt2

The equations can be separated into their x-, y-, and z-components. For example:

velx(t+dt) = velx(t) + ax dt
distx(t+dt) = distx(t) + velx(t) dt + 1/2 ax dt2

These equations are embedded in the updateParticle() method, where distx, disty,
and distz are cs[i] to cs[i+2], and velx, vely, and velz are vels[i] to vels[i+2]:

private void updateParticle(int i)
{ cs[i] += vels[i] * TIMESTEP +
 0.5 * accs[i] * TIMESTEP * TIMESTEP; // x coord
 cs[i+1] += vels[i+1] * TIMESTEP +
 0.5 * accs[i+1] * TIMESTEP * TIMESTEP; // y coord
 cs[i+2] += vels[i+2] * TIMESTEP +
 0.5 * accs[i+2] * TIMESTEP * TIMESTEP; // z coord

 vels[i] += accs[i] * TIMESTEP; // x vel
 vels[i+1] += accs[i+1] * TIMESTEP; // y vel
 vels[i+2] += accs[i+2] * TIMESTEP; // z vel

This is the Title of the Book, eMatter Edition

578 | Chapter 21: Particle Systems

 updateColour(i);
} // end of updateParticle()

The small time step, dt, is fixed as the constant TIMESTEP (0.05f).

updateColor() reduces the green and blue components of a point’s color. Over time,
these will drop to 0, leaving only red:

private void updateColour(int i)
{ cols[i+1] = cols[i+1] - FADE_INCR; // green part
 if (cols[i+1] < 0.0f)
 cols[i+1] = 0.0f;
 cols[i+2] = cols[i+2] - FADE_INCR; // blue part
 if (cols[i+2] < 0.0f)
 cols[i+2] = 0.0f;
}

Triggering an Update
The ParticlesControl behavior requests an update to the PointArray every few
milliseconds:

public class PartclesControl extends Behavior
{ private WakeupCondition timedelay;
 private PointsUpdater updater;

 public PartclesControl(int delay, PointsUpdater updt)
 { timedelay = new WakeupOnElapsedTime(delay);
 updater = updt;
 }

 public void initialize()
 { wakeupOn(timedelay); }

 public void processStimulus(Enumeration criteria)
 { pointParts.updateData(updater); // request update of geometry
 wakeupOn(timedelay);
 }
} // end of PartclesControl class

This behavior is almost the same in each of the particle system classes: only the types
of the GeometryArray and GeometryUpdater arguments change.

A Fountain of Lines
The LineParticles class implements a particle system made up of yellow and red
lines, which shoot out from the origin with parabolic trajectories. The effect, as seen
in Figure 21-2, is something like a firework. The thickness of the lines is increased
slightly, and anti-aliasing is switched on. When a line has completely dropped below
the y-axis, it’s reinitialized, which means the firework never runs out.

This is the Title of the Book, eMatter Edition

A Fountain of Lines | 579

The main difference from PointParticles is the extra code required to initialize the
lines and update them inside the float arrays. Six values in a float array are necessary
to represent a single line, three values for each of the two end points.

The LineParticles constructor creates a LineArray object using BY_REFERENCE geome-
try for its coordinates and color:

lineParts = new LineArray(numPoints, LineArray.COORDINATES |
 LineArray.COLOR_3 | LineArray.BY_REFERENCE);

lineParts.setCapability(GeometryArray.ALLOW_REF_DATA_READ);
lineParts.setCapability(GeometryArray.ALLOW_REF_DATA_WRITE);

Initializing the Particles
The changes start with the initialization of the float arrays inside createGeometry():

// step in 6's == two (x,y,z) coords == one line
for(int i=0; i < numPoints*3; i=i+6)
 initTwoParticles(i);

initTwoParticles() initializes the two points. It assigns the same position and veloc-
ity to both points and then calls updateParticle() to update one of the point’s posi-
tion and velocity. This specifies a line with a point which is one update ahead of the
other point. This means that as the particle system is updated, each line will follow a
smooth path since one point is following the other.

The color of the line is set to red or yellow by fixing the colors of both points:

private void initTwoParticles(int i)
{ cs[i] = 0.0f; cs[i+1] = 0.0f; cs[i+2] = 0.0f; // origin

 // random velocity in XZ plane with combined vector XZ_VELOCITY
 double xvel = Math.random()*XZ_VELOCITY;
 double zvel = Math.sqrt((XZ_VELOCITY*XZ_VELOCITY) - (xvel*xvel));
 vels[i] = (float)((Math.random()<0.5) ? -xvel : xvel); // x vel
 vels[i+2] = (float)((Math.random()<0.5) ? -zvel : zvel); // z vel
 vels[i+1] = (float)(Math.random() * Y_VELOCITY); // y vel

 // unchanging accelerations, downwards in y direction
 accs[i] = 0.0f; accs[i+1] = -GRAVITY; accs[i+2] = 0.0f;

 // next particle starts the same, but is one update advanced
 cs[i+3] = cs[i]; cs[i+4] = cs[i+1]; cs[i+5] = cs[i+2];
 vels[i+3] =vels[i]; vels[i+4] = vels[i+1]; vels[i+5] = vels[i+2];
 accs[i+3] =accs[i]; accs[i+4] = accs[i+1]; accs[i+5] = accs[i+2];
 updateParticle(i+3);

 // set initial colors for the first particle
 Color3f col = (Math.random() < 0.5) ? yellow : red;
 cols[i] = col.x; cols[i+1] = col.y; cols[i+2] = col.z;
 // the next particle has the same colors
 cols[i+3] = col.x; cols[i+4] = col.y; cols[i+5] = col.z;
} // end of initTwoParticles()

This is the Title of the Book, eMatter Edition

580 | Chapter 21: Particle Systems

initTwoParticles() is similar to the initParticles() method in PointParticles

because they set up a parabolic trajectory for their particles.

The updateParticle() method does the same task as the one in PointParticles but is
located in the particle systems class (LineParticles) rather than in GeometryUpdater.

Particle Appearance
createAppearance() adjusts the line width, and switches on anti-aliasing:

private void createAppearance()
{ Appearance app = new Appearance();
 LineAttributes la = new LineAttributes();
 la.setLineWidth(LINEWIDTH); // may cause bugs
 la.setLineAntialiasingEnable(true);
 app.setLineAttributes(la);
 setAppearance(app);
}

As mentioned previously, these features may cause DirectX-based sys-
tem, or machines with old graphics cards, to respond strangely or
crash.

Updating the Particle System
LinesUpdater implements the GeometryUpdater interface, and specifies updateData().
The method ignores the Geometry argument and, instead, uses the global float arrays
directly. It makes use of the initTwoParticles() and updateParticle() methods in
LineParticles:

public void updateData(Geometry geo)
{
 // step in 6's == two (x,y,z) coords == one line
 for(int i=0; i < numPoints*3; i=i+6) {
 if ((cs[i+1] < 0.0f) && (cs[i+4] < 0.0f))
 // both particles in the line have dropped below the y-axis
 initTwoParticles(i); // reinitialise them
 else { // update the two particles
 updateParticle(i);
 updateParticle(i+3);
 }
 }
}

A Fountain of Quads
Though many particle systems can be modeled with points and lines, quadrilaterals
(quads) combined with textures allow more interesting effects. The texture can con-
tain extra surface detail and can be partially transparent to break up the regularity of

This is the Title of the Book, eMatter Edition

A Fountain of Quads | 581

the quad shape. A quad can be assigned a normal and a Material node component to
allow it to be affected by lighting in the scene.

The only danger with these additional features is that they may decelerate rendering.
The example here only utilizes a single Texture2D object and stores all the quads in a
single QuadArray, thereby reducing the overheads of texture and shape creation
considerably.

The effect I’m after with this example is suitably gory: a fountain of blood corpus-
cles gushing up from the origin. Each “blood” particle is roughly spherical and oscil-
lates slightly as it travels through the air.

Figure 21-3 shows the QuadParticles system in action. If the user viewpoint is
rotated around the fountain, the particles seem to be rounded on all sides (see
Figure 21-6).

It’s a mistake to represent the particles using GeometryArray meshes; the number of
vertices required for a reasonable blood cell would severely restrict the total number
of particles that could be created. Instead the effect is achieved by trickery: the parti-
cle system is placed inside an OrientedShape3D node, rather than a Shape3D.

OrientedShape3D nodes automatically face toward the viewer and can be set to rotate
about a particular point or axis. Since the particle system is rooted at the origin, it
makes the most sense to rotate the system about the y-axis.

QuadParticles is made a subclass of OrientedShape3D, rather than Shape3D, and its
constructor specifies the rotation axis:

// rotate about the y-axis to follow the viewer
setAlignmentAxis(0.0f, 1.0f, 0.0f);

Figure 21-6. A fountain of blood from the back

This is the Title of the Book, eMatter Edition

582 | Chapter 21: Particle Systems

This means that the illusion of blood globules starts to breaks down if the viewpoint
is looking down toward the XZ plane, as in Figure 21-7.

There is a drawback with the y-axis rotation setting in setAlignmentAxis(): the entire
particle system rotates as the viewpoint moves so each particle retains its position rel-
ative to the others. This is noticeable with the fountain of blood since each particle is
large and moving relatively slowly. It’s interesting to experiment with different align-
ment values, such as rotations around the x- or z-axes, or axis combinations.

Specifying the Geometry
The QuadArray requires information about coordinates, textures, and normals:

// BY_REFERENCE QuadArray
quadParts = new QuadArray(numPoints,GeometryArray.COORDINATES |

 GeometryArray.TEXTURE_COORDINATE_2 |
 GeometryArray.NORMALS |

 GeometryArray.BY_REFERENCE);

// the referenced data can be read and written
quadParts.setCapability(GeometryArray.ALLOW_REF_DATA_READ);
quadParts.setCapability(GeometryArray.ALLOW_REF_DATA_WRITE);

Using BY_REFERENCE means there must be float arrays for the coordinates, velocities,
and accelerations (as before), and for normals and texture coordinates:

private float[] cs, vels, accs, norms;
private float[] tcoords;

cs = new float[numPoints*3]; // to store each (x,y,z)
vels = new float[numPoints*3];
accs = new float[numPoints*3];

Figure 21-7. The fountain of blood from above

This is the Title of the Book, eMatter Edition

A Fountain of Quads | 583

norms = new float[numPoints*3];
tcoords = new float[numPoints*2];

Each vertex in the QuadArray (there are numPoints of them) requires a texture coordi-
nate (s, t), where s and t have float values in the range 0 to 1 (see Chapter 16 for the
first use of Texture2D).

As of Java 3D 1.3, the use of a TexCoord2f array to store the texture
coordinates of a BY_REFERENCE geometry is no longer encouraged; a
float array should be employed. Instead of storing numPoints
TexCoord2f objects, numPoints*2 floats are added to a tcoords[] array.

Initializing Particle Movement
A particle is a single quad, made up of four vertices (12 floats). The consequence is
that much of the particle initialization and updating code utilizes loops which make
steps of 12 through the float arrays. The creation/updating of one quad involves 12
floats at a time.

createGeometry() calls initQuadParticle() to initialize each quad:

for(int i=0; i < numPoints*3; i=i+12)
 initQuadParticle(i);
// refer to the coordinates in the QuadArray
quadParts.setCoordRefFloat(cs);

initQuadParticles() has a similar style to the initialization methods in PointParticles

and LineParticles. The idea is to use the same initial velocity and acceleration for all
the vertices and to make the parts of the quad move in the same manner.

The position of a quad is determined by setting its four points to have the values
stored in the globals p1, p2, p3, and p4:

private float[] p1 = {-QUAD_LEN/2, 0.0f, 0.0f};
private float[] p2 = {QUAD_LEN/2, 0.0f, 0.0f};
private float[] p3 = {QUAD_LEN/2, QUAD_LEN, 0.0f};
private float[] p4 = {-QUAD_LEN/2, QUAD_LEN, 0.0f};

The order of these starting points is important: they specify the quad in a counter-
clockwise order starting from the bottom-left point. Collectively, the points define a
quad of sides QUAD_LEN, facing along the positive z-axis, resting on the XZ plane, and
centered at the origin. This is illustrated by Figure 21-8.

The QuadArray will contain quads which all begin at this position and orientation.

Initializing Particle Texture Coordinates
The aim is to add a texture to each particle (each quad) in the QuadArray and to use
only one Texture2D object. This is possible by mapping the four vertices of each quad

This is the Title of the Book, eMatter Edition

584 | Chapter 21: Particle Systems

to the same (s, t) texels. Later, when the Texture2D is set in the Appearance node com-
ponent, it will be applied to all the quads in the QuadArray individually. The map-
ping of quad coords to texels is represented in Figure 21-9.

The texels should be specified in an counterclockwise order starting at the bottom
left so they possess the same ordering as the quad vertices; otherwise, the texture
image will appear distorted.

The mapping is done in createGeometry():

for(int i=0; i < numPoints*2; i=i+8) {
 tcoords[i] = 0.0f; tcoords[i+1] = 0.0f; // for one vertex
 tcoords[i+2] = 1.0f; tcoords[i+3] = 0.0f;
 tcoords[i+4] = 1.0f; tcoords[i+5] = 1.0f;
 tcoords[i+6] = 0.0f; tcoords[i+7] = 1.0f;
}
quadParts.setTexCoordRefFloat(0, tcoords); // use BY_REFERENCE

tcoords is filled with a repeating sequence of (s, t) texels (in float format). When this
is applied to the QuadArray, Java 3D will map the vertices to the texels.

Figure 21-8. Initial quad position

Figure 21-9. Mapping quads to the same texels

face

p3p4

+x

+z

+y

p1 p2

p3p4

the other quads. . .

(0,0)

(1,1)

t

s texture Coordinates

QuadArray

p1 p2

p3p4

p1 p2

p3p4

p1 p2

p3p4

same mapping order

This is the Title of the Book, eMatter Edition

A Fountain of Quads | 585

The code is difficult to understand because the cs[] array (holding the vertices) is
bigger than tcoords[] (holding the texels). The reason for the size difference is that a
vertex is stored as three floats, but a texel only needs two.

Initializing Particle Normals
For lighting and Material node components to work, normals must be set for the
points of each quad. The desired effect is a fountain of globules pumping out in dif-
ferent directions, which can be enhanced by assigning random normals to the quads.
This causes each one to reflect light in a different way, giving the impression of sur-
face variations. In fact, the normals won’t be completely random: the z-direction
should be positive so light is bounced back toward the viewer, but the x- and y- com-
ponents can be positive or negative. A further restriction is that the normal vector
must be unit length (i.e., be normalized).

Here’s the code in createGeometry() that does this:

Vector3f norm = new Vector3f();
for(int i=0; i < numPoints*3; i=i+3) {
randomNormal(norm);

 norms[i]=norm.x; norms[i+1]=norm.y; norms[i+2]=norm.z;
}
quadParts.setNormalRefFloat(norms); // use BY_REFERENCE

and:

private void randomNormal(Vector3f v)
{ float z = (float) Math.random(); // between 0-1
 float x = (float)(Math.random()*2.0 - 1.0); // -1 to 1
 float y = (float)(Math.random()*2.0 - 1.0); // -1 to 1
 v.set(x,y,z);
 v.normalize();
}

Particle Appearance
createAppearance() carries out four tasks:

• It switches on transparency blending so the transparent parts of a texture will be
invisible inside Java 3D.

• It turns on texture modulation so the texture and material colors will be dis-
played together.

• It loads the texture.

• It sets the material to a blood red.

Here’s the code:

private void createAppearance()
{ Appearance app = new Appearance();

This is the Title of the Book, eMatter Edition

586 | Chapter 21: Particle Systems

 // blended transparency so texture can be irregular
 TransparencyAttributes tra = new TransparencyAttributes();
 tra.setTransparencyMode(TransparencyAttributes.BLENDED);
 app.setTransparencyAttributes(tra);

 // mix the texture and the material color
 TextureAttributes ta = new TextureAttributes();
 ta.setTextureMode(TextureAttributes.MODULATE);
 app.setTextureAttributes(ta);

 // load and set the texture
 System.out.println("Loading textures from " + TEX_FNM);
 TextureLoader loader = new TextureLoader(TEX_FNM, null);
 Texture2D texture = (Texture2D) loader.getTexture();
 app.setTexture(texture);

 // set the material: bloody
 Material mat = new Material(darkRed, black, red, white, 20.f);
 mat.setLightingEnable(true);
 app.setMaterial(mat);

 setAppearance(app);
}

TEX_FNM is the file smoke.gif, shown in Figure 21-10. Its background is transparent
(i.e., its alpha is 0.0).

createAppearance() doesn’t switch off polygon culling, which means that the back
face of each quad will be invisible (the default action). Will this spoil the illusion
when the viewer moves round the back of the particle system? No, because the sys-
tem is inside an OrientedShape3D node and will rotate to keep its front pointing at the
user.

Permitting back face culling improves overall speed since Java 3D only
has to render half of the quad.

Figure 21-10. The smoke.gif texture

This is the Title of the Book, eMatter Edition

Performance Results | 587

Updating the Particles
QuadsUpdater is similar to previous GeometryUpdater implementations but works on
groups of four points (12 floats) at a time. When a quad has completely dropped
below the XZ plane then it’s reinitialized: the blood never stops flowing.

Here is updateDate()’s code:

public void updateData(Geometry geo)
{ // step in 12's == 4 (x,y,z) coords == one quad
 for(int i=0; i < numPoints*3; i=i+12)
 updateQuadParticle(i);
}

private void updateQuadParticle(int i)
{ if ((cs[i+1] < 0.0f) && (cs[i+4] < 0.0f) &&
 (cs[i+7] < 0.0f) && (cs[i+10] < 0.0f))
 // all of the quad has dropped below the y-axis
 initQuadParticle(i);
 else {
 updateParticle(i); // all points in a quad change the same
 updateParticle(i+3);
 updateParticle(i+6);
 updateParticle(i+9);
 }
}

updateParticle() uses the same position and velocity equations as the point and
line-based particle systems but with a slight modification to the position calculation.
After the new coordinates for a point have been stored in cs[i], cs[i+1], and
cs[i+2], they are adjusted:

cs[i] = perturbate(cs[i], DELTA);
cs[i+1] = perturbate(cs[i+1], DELTA);
cs[i+1] = perturbate(cs[i+1], DELTA);

perturbate() adds a random number in the range -DELTA to DELTA, to the coordinate
(DELTA is set to be 0.05f). This has the effect of slightly distorting the quad as it
moves through the scene, which causes the texture to twist.

Figure 21-11 shows the particle system with the perturbate() calls commented out:
each quad looks like a perfect sphere, which is unconvincing. This should be com-
pared to the irregular shapes in Figures 21-3 and 21-6.

Performance Results
Many of the techniques used in this chapter are aimed at increasing performance
(balanced against realism and functionality). The obvious question is how fast are
these particle systems? Table 21-1 gives average frames per second (FPS) for the
PointParticles, LineParticles, and QuadParticles classes, initialized with increasing
numbers of points.

This is the Title of the Book, eMatter Edition

588 | Chapter 21: Particle Systems

These averages are for at least five runs of the application. The hardware used was a
Pentium IV 1800 MHz, 256 MB RAM, and an old NVIDIA RIVA TNT 2 Model 64
display card. The window size was 512 × 512 pixels.

The first number in a cell is the FPS reported by FRAPS (a screenshot utility avail-
able at http://www.fraps.com) when the application was left to run for a minute or so.
The number in parentheses is the reported FPS when the mouse was moved rapidly
inside the application window. This shows the response rate of the application when
it had to carry out some basic processing (responding to mouse movements) at the
same time as updating the particle system.

The results for PointParticles and LineParticles are improved if point
size and line size are unchanged and anti-aliasing isn’t switched on.

The number of points for each column must be divided by two to obtain the number
of lines in the LineParticles row by four to get the number of quads in
QuadParticles.

When an FPS speed of about 15 is employed, the particle systems are capable of
dealing with many thousands of points—about 15,000 points in the PointParticles

Figure 21-11. Particles without perturbation

Table 21-1. Average FPS for the particle system with varying numbers of points

Number of points

1,000 5,000 10,000 20,000 50,000 100,000

Point particles 19 (50) 19 (35) 19 (24) 12 (14) 7 (7) 4 (4)

Line particles 19 (50) 19 (45) 19 (35) 19 (24) 11 (11) 6 (6)

Quad particles 19 (44) 14 (17) 9 (9) 6 (6) 2 (2) 1 (1)

This is the Title of the Book, eMatter Edition

Other Java 3D Approaches | 589

system, about 15,000 lines (30,000 points) in LineParticles, and 1,000 quads (4,000
points) in QuadParticles.

More Particle Systems
Chapter 5 of the Java 3D tutorial (Interaction and Animation) has a section on the
GeometryUpdater interface and illustrates it with a LineArray particle system for a
fountain. It’s similar to my LineArray example but uses a different algorithm for
updating the positions of the lines, and it utilizes the Geometry argument of the
updateDate() method rather than accessing global float arrays.

Sun’s Java 3D Demo page (http://java.sun.com/products/java-media/3D/demos/) con-
tains two examples by Jeff White showing the use of lines and points to create a swirl
of particles that change color.

A Java 3D package for writing particle systems is available at j3d.org (http://code.j3d.org/
). It utilizes TriangleArrays or QuadArrays and supports attributes for position, color,
texture, aging, wind movement, and forces. It supports collision detection through pick-
ing and allows bounding boxes to be set to limit movement. It was written by Daniel
Selman (the author of the Java 3D Programming text); the package is currently an alpha
version.

Artur Biesiadowski has a beautiful particle system demo available at http://nwn-
j3d.sourceforge.net/misc/particles.jar—a mass of glowing, flickering colored clouds
of light speeding around and through a central location in space.

Other Java 3D Approaches
The particle systems in this chapter were coded with BY_REFERENCE geometries and
GeometryUpdater, but what other ways are there of writing particle systems?

One possibility is to represent each particle by a separate TransformGroup and Shape3D

pair and have the particle system move the shapes by adjusting the TransformGroups.
This coding style is utilized in an example by Peter Palombi and Chris Buckalew, which
is part of Buckalew’s CSc 474 Computer Graphics course (http://www.csc.calpoly.edu/
~buckalew/474Lab5-W03.html). It has the advantage of being simple to understand but
isn’t scaleable to large numbers of particles.

Another technique is to store all the particles in a GeometryArray as before, but do the
updates directly without the involvement of a GeometryUpdater. Synchronization
problems can be avoided by detaching the Shape3D from the scene graph before the
updates are made and reattaching it afterward. The detachment of the shape removes
it from the rendering cycle, so synchronization problems disappear. There seems little
advantage to this approach since the overhead of removing and restoring scene graph
nodes is large.

This is the Title of the Book, eMatter Edition

590 | Chapter 21: Particle Systems

If the application uses mixed mode or immediate mode rendering, then the program-
mer gains control of when rendering is carried out and can avoid synchronization
problems.

The excellent Yaarq demo by Wolfgang Kienreich (downloadable from http://
www.ascendancy.at/downloads/yaarq.zip) is a mixed mode Java3D example show-
ing off a range of advanced techniques such as bump mapping, reflection map-
ping, overlays, and particle systems. It utilizes a BY_REFERENCE TriangleArray and a
GeometryUpdater. The particle attributes include size, position, direction, gravity,
friction, alpha values for transparency, and a texture applied to all the particles.

There are three particle systems available at the WolfShade web site (http://www.
wolfshade.com/technical/3d_code.htm), coded in retained, mixed, and immediate
modes. They don’t use BY_REFERENCE geometries for storing the particles.

Non–Java 3D Approaches
The basic framework for a particle system is fairly standard, and variations only
appear when we decide on a particle’s attributes and how they change over time.
Ideas for these can be gained by looking at implementations in other languages.

Almost every games programming book seems to have a particle system example.
For instance, OpenGL Game Programming (Muska and Lipman/Premier-Trade) by
Kevin Hawkins and Dave Astle implements a snow storm effect, which can be easily
translated from C++ to Java.

A popular particle system API created by David McAllister is downloadable at http://
www.cs.unc.edu/~davemc/Particle/. Its C++ source code is available, as well as excel-
lent documentation. It uses the interesting notions of actions and action lists.
Actions are low-level operations for modifying particles, including gravity, bounc-
ing, orbiting, swirling, heading toward a point, matching velocity with another parti-
cle, and avoiding other particles. Action lists are groups of actions which together
make more complex effects. Many of the actions employ Euler’s integration method,
which underpins the workings of the parabolas in my examples. The API has been
ported to various Unixes, Windows operating systems, and to parallel machines. The
API would make an excellent model for a Java 3D–based package.

Most graphics software, such as Maya and 3DS, have particle system animation
packages that can be used for testing effects.

The two papers that introduced particle systems are by William T. Reeves:

• “Particle Systems – a Technique for Modeling a Class of Fuzzy Objects,” Com-
puter Graphics, 17 (3), p.359–376, 1983.

• “Approximate and Probabilistic Algorithms for Shading and Rendering Struc-
tured Particle Systems,” Computer Graphics, 19 (3), p.313–322, 1985.

This is the Title of the Book, eMatter Edition

Non–Java 3D Approaches | 591

The first paper was written after Reeves’s work on the movie Star Trek II: The Wrath
of Khan, for which he created a wall of fire that engulfed a planet with a particle sys-
tem made of points. The second paper came out of the graphics work for the ani-
mated cartoon The Adventures of Andrew and Wally B, where the particles were
small circles and lines used to model tree, branches, leaves, and grass.

GameDev has a small subsection on particle systems in its “Special Effects” section
(http://www.gamedev.net/reference/list.asp?categoryid=72).

This is the Title of the Book, eMatter Edition

592

Chapter 22CHAPTER 22

Flocking Boids

Flocking is a computer model for the coordinated motion of groups (or flocks) of
entities called boids. Flocking represents group movement—as seen in bird flocks
and fish schools—as combinations of steering behaviors for individual boids, based
on the position and velocities of nearby flockmates. Though individual flocking
behaviors (sometimes called rules) are quite simple, they combine to give boids and
flocks interesting overall behaviors, which would be complicated to program explicitly.

Flocking is often grouped with Artificial Life algorithms because of its use of emer-
gence: complex global behaviors arise from the interaction of simple local rules. A
crucial part of this complexity is its unpredictability over time; a boid flying in a par-
ticular direction may do something different a few moments later. Flocking is useful
for games where groups of things, such as soldiers, monsters, or crowds move in
complex, coordinated ways.

Flocking appears in games such as Unreal (Epic), Half-Life (Sierra),
and Enemy Nations (Windward Studios).

Flocking was first proposed by Craig Reynolds in his paper “Flocks, Herd, and
Schools: A Distributed Behavioral Model,” published in Computer Graphics, 21(4),
SIGGRAPH'87, pp. 25–34.

The basic flocking model consists of three simple steering behaviors (or rules):

Separation
Steer to avoid crowding local flockmates.

Alignment
Steer toward the average heading of local flockmates.

Cohesion
Steer to move toward the average position of local flockmates.

These rules are illustrated in Figure 22-1.

This is the Title of the Book, eMatter Edition

Flocking Boids | 593

The circles in Figure 22-1 surround the center boid’s local flockmates. Any boids
beyond a certain distance of the central boid don’t figure in the rule-based calculations.

A more elaborate notion of neighborhood only considers flockmates surrounding the
boid’s current forward direction (see Figure 22-2). The extent of neighborhood is
governed by an arc on either side of the forward vector. This reduced space more
closely reflects how real-world flock members interact.

Many other rules have been proposed over the years, including ones for obstacle
avoidance and goal seeking. Reynold’s web site (http://www.red3d.com/cwr/boids/)
contains hundreds of links to relevant information, including flocking in games, vir-
tual reality, computer graphics, robotics, art, and artificial life. The plethora of links at
Reynold’s site can be a tad daunting. A good starting point is Conrad Parker’s web
page explaining boid algorithms with pseudocode examples (http://www.vergenet.net/
~conrad/boids/pseudocode.html). He describes Reynolds’ steering rules, and additional
techniques for goal setting, speed limiting, keeping the flock inside a bounded vol-
ume, perching, and flock scattering. His pseudocode was a major influence on the
design of my boids’ steering rules.

Figure 22-1. Reynolds’ steering rules

Figure 22-2. Boid neighborhood based on distance and angle

CohesionSeparation Alignment

angle

distance

This is the Title of the Book, eMatter Edition

594 | Chapter 22: Flocking Boids

Two other good starting points are Steven Woodcock’s articles “Flocking: A Simple
Technique for Simulating Group Behavior” in Game Programming Gems and “Flock-
ing with Teeth: Predators and Prey” in Game Programming Gems II. The first paper
describes Reynolds’ basic steering rules, and the second introduces predators and
prey, and static obstacles. Both articles come with C++ source code.

A Flocking Application
My Flocking3D application is shown in Figure 22-3. It involves the interaction of two
different groups of boids: the yellow flock are the predators, and the orange ones the
prey. Over time, the boids in the orange flock are slowly eaten though they try their
best to avoid it. Both flocks must avoid obstacles and stay within the bounds of
the scene.

The lefthand image shows an early stage in the system, when the predators are chas-
ing prey. The righthand image was taken after all the prey have been eaten, and the
predators are flying in groups.

The code in this chapter was developed by one of my students, Miss
Sirinart Sakarin, and me; the code can be found in Flocking3D/.

Boid behavior includes:

• Reynolds’ steering rules for separation, alignment, and cohesion.

• Perching on the ground occasionally.

• Avoiding static obstacles.

Figure 22-3. Predator and prey flocks in Flocking3D

This is the Title of the Book, eMatter Edition

A Flocking Application | 595

• Staying within the scene volume.

• A maximum speed (the prey boids have a higher maximum than the predators).

• When a predator is hungry, it chases prey boids. If it gets close enough to a prey
boid, it will eat the prey.

• Prey boids try to avoid predators (they have an aversion to being eaten).

The implementation techniques illustrated in this example include:

Inheritance
Inheritance is used to define the boids (as subclasses of Boid) and their behav-
iors (as subclasses of FlockingBehavior).

Geometry building
The boid shape (a sort of arrowhead) is built using Java 3D’s IndexedTriangleArray.

Synchronized updates
Updates to the boids must be controlled, so changes to the flock in each time
interval only become visible when every boid in the flock has been changed.

Scene graph detaching
When a boid is eaten, it’s removed from the scene graph by having its
BranchGroup detached from its parent node.

Figure 22-4 shows the class diagrams for the application. Only the class names are
shown; superclasses that are a standard part of Java or Java 3D (e.g., JPanel, Shape3D)
are omitted.

Flocking3D is the top-level JFrame. WrapFlocking3D creates the 3D scene, the predator
and prey behaviors, and the obstacles. PreyBehavior and PredatorBehavior can be
thought of as flock managers: they initialize the boids that make up their flock and
handle rule evaluation at runtime; they’re subclasses of the FlockBehavior class.

Flocking3D’s Ancestor
Flocking3D was influenced by Anthony Steed’s Java 3D flocking program, developed
back in 1998 as part of a comparison with VRML (http://www.cs.ucl.ac.uk/staff/A.Steed/
3ddesktop/). Each boid in his work is represented as a TransformGroup and utilizes a
BoidSet object (a BranchGroup subclass) for a flock. An interesting feature is his use of
morphing for wing flapping, implemented as a transition between three TriangleArrays.
A FlockBehavior class uses WakeupOnFramesElapsed(0) to trigger boid updates, and a
FlapBehavior object for the wings is triggered by WakeupOnTransformChanged events when
the boid moves. Flock dynamics include perching, speed limiting, proximity detection,
and inertia. There’s only one kind of boid, and no obstacles in the scene.

This is the Title of the Book, eMatter Edition

596 | Chapter 22: Flocking Boids

PreyBoid and PredatorBoid represent individual boids and are subclasses of the Boid

class. BoidShape is a subclass of Shape3D and manages the boid shape. CheckerFloor

and ColouredTiles are the same as in previous examples.

Scene Creation
WrapFlocking3D is like previous Wrap classes in that it creates a 3D scene inside a
JPanel, made up of a checkerboard floor, blue sky, lighting, and an OrbitBehavior

node to allow the user to adjust the viewpoint.

The additions are the obstacles and the two flocks, both created in addFlockingBoids():

private void addFlockingBoids(int numPreds, int numPrey, int numObs)
{ // create obstacles
 Obstacles obs = new Obstacles(numObs);
 sceneBG.addChild(obs.getObsBG()); // add obstacles to scene

 // make the predator manager
 PredatorBehavior predBeh = new PredatorBehavior(numPreds, obs);
 predBeh.setSchedulingBounds(bounds);
 sceneBG.addChild(predBeh.getBoidsBG()); // add preds to scene

 // make the prey manager
 PreyBehavior preyBeh = new PreyBehavior(numPrey, obs);
 preyBeh.setSchedulingBounds(bounds);
 sceneBG.addChild(preyBeh.getBoidsBG()); // add prey to scene

 // tell behaviors about each other
 predBeh.setPreyBeh(preyBeh);
 preyBeh.setPredBeh(predBeh);

} // end of addFlockingBoids()

Figure 22-4. The Flocking3D classes

This is the Title of the Book, eMatter Edition

Adding Obstacles | 597

The number of predators, prey, and obstacles are read from the command line in
Flocking3D or are assigned default values. The behaviors are passed references to
each other so their steering rules can consider neighboring boids of the other type.
Here’s a typical call to Flocking3D:

java Flocking3D 10 200 15

This will make addFlockingBoids() create 10 predators, 200 prey, and 15 obstacles.

Adding Obstacles
The Obstacles class creates a series of blue cylinders placed at random locations
around the XZ plane. The cylinders have a fixed radius, but their heights can vary
between 0 and MAX_HEIGHT (8.0f). A cylinder is positioned with a TransformGroup and
then added to a BranchGroup for all the cylinders; the BranchGroup is then retrieved by
calling getObsBG().

At the same time that a cylinder is being created, a BoundingBox is calculated:

height = (float)(Math.random()*MAX_HEIGHT);
lower = new Point3d(x-RADIUS, 0.0f, z-RADIUS);
upper = new Point3d(x+RADIUS, height, z+RADIUS);
bb = new BoundingBox(lower, upper);

A boid checks an obstacle’s bounding box to avoid colliding with it. The bounding
boxes for all the obstacles are added to an ArrayList, which is examined by boids
when they call isOverLapping(). A boid calls isOverLapping() with a BoundingSphere

object representing its current position:

public boolean isOverlapping(BoundingSphere bs)
// Does bs overlap any of the BoundingBox obstacles?
{ BoundingBox bb;
 for (int i=0; i < obsList.size(); i++) {
 bb = (BoundingBox)obsList.get(i);
 if(bb.intersect(bs))
 return true;
 }
 return false;
} // end of isOverlapping()

The isOverlapping() method sacrifices efficiency for simplicity: the bounding sphere
is checked against every obstacle’s bounding box in the scene. An obvious improve-
ment would be to order the bounding boxes in some way to reduce the number that
needs to be tested. However, this would complicate the code and wouldn’t produce
much improvement for the small number of obstacles used in my examples.

This is the Title of the Book, eMatter Edition

598 | Chapter 22: Flocking Boids

The boid shape

A boid is represented by a spearhead shape, which is shown from three different
directions in Figure 22-5. A prey boid has an orange body with a purple nose, while
predators are completely yellow.

Even with something as simple as this shape, doing a preliminary sketch before
resorting to programming is useful. I usually draw a simple side/front/top CAD-style
diagram, as in Figure 22-5. The points in the diagrams (p0, p1, etc.) will become the
points in the resulting GeometryArray.

Different sides of the shape reuse the same points, which suggests that Java 3D’s
IndexedGeometry (or a subclass) should represent the shape. IndexedGeometry allows
sides to be specified by indices into an array of points, which means fewer points are
needed when creating the shape.

The spearhead is made up of four triangles, so my BoidShape class uses a Java 3D
IndexedTriangleArray:

IndexedTriangleArray plane = new IndexedTriangleArray(NUM_VERTS,
 GeometryArray.COORDINATES |
 GeometryArray.COLOR_3, NUM_INDICES);

The shape is made from four triangles, but the sharing of sides means there’s only
four different vertices (labeled as p0, p1, p2, and p3 in Figure 22-5). As a conse-
quence, NUM_VERTS is 4 in the code above. Each vertex has an (x, y, z) coordinate, so
the IndexedTriangleArray will use 12 indices (4 vertices each require 3 values). Con-
sequently, NUM_INDICES has the value 12.

Figure 22-5. CAD sketches for a boid shape

-0.25

Z

0.25

-0.2-0.2

-0.2

0

p0

p1p2

p3

top

X

-0.2 0.2

X

front

0.25
Y

0
p0

p1p2

p3

-0.250.25 -0.2

right side

Z

Y

p0 p1
p2

p30.25

This is the Title of the Book, eMatter Edition

Adding Obstacles | 599

First, the points are stored in an array, and then the indices of the points array are
used to define the sides in another array:

// the shape's coordinates
Point3f[] pts = new Point3f[NUM_VERTS];
pts[0] = new Point3f(0.0f, 0.0f, 0.25f);
pts[1] = new Point3f(0.2f, 0.0f, -0.25f);
pts[2] = new Point3f(-0.2f, 0.0f, -0.25f);
pts[3] = new Point3f(0.0f, 0.25f, -0.2f);

// anti-clockwise face definition
int[] indices = {
 2, 0, 3, // left face
 2, 1, 0, // bottom face
 0, 1, 3, // right face
 1, 2, 3 }; // back face

plane.setCoordinates(0, pts);
plane.setCoordinateIndices(0, indices);

Some care must be taken to get the ordering of the indices correct. The points for a
face must be listed in counterclockwise order for the front of the face to point toward
the viewer. This is an example of the “righthand rule” for orienting normals (dis-
cussed back in Chapter 16).

The point colors are set in the same way with an array of Java 3D Color3f objects,
and an array of indices into that array:

Color3f[] cols = new Color3f[NUM_VERTS];
cols[0] = purple; // a purple nose
for (int i=1; i < NUM_VERTS; i++)
 cols[i] = col; // the body color

plane.setColors(0,cols);
plane.setColorIndices(0, indices);

The array holding the indices (i.e., indices) can be reused, which may allow some
graphics cards to do further optimizations on the shape’s internal representation.

My boids don’t change shape or color though this is quite common in other flocking
systems; perhaps the boid gets bigger as it gets older or eats and changes color to
indicate a change to its age or health. From a coding perspective, this requires a
mechanism for adjusting the coordinate and/or color values inside BoidShape. The
safe way to do this, as discussed in the last chapter, is to use a Java 3D
GeometryUpdater, maintained as an inner class of BoidShape. The GeometryArray’s
updateData() method would be called when the shape and/or its color had to be
changed.

This is the Title of the Book, eMatter Edition

600 | Chapter 22: Flocking Boids

Types of Boids
The public and protected methods and data of the Boid class and its PredatorBoid

and PreyBoid subclasses are shown in Figure 22-6.

Boid represents a boid using a BranchGroup, TransformGroup, and BoidShape (a Shape3D

node). The TransformGroup moves the boid about in the scene, and the BranchGroup

permits the boid to be removed from the scene (e.g., after being eaten). Only a
BranchGroup can be detached from a scene graph. The subgraph is built in the Boid()

constructor:

private TransformGroup boidTG = new TransformGroup(); // global

public Boid(...)
{ // other initialization code, and then ...

 // set TG capabilities so the boid can be moved
 boidTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 boidTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 addChild(boidTG); // add TG to Boid BranchGroup

 // add the boid shape to the TG
 boidTG.addChild(new BoidShape(boidColour));
} // end of Boid()

Boid Movement
The most important attributes for a boid are its current position and velocity. These
are set to random values (within a certain range) in the Boid constructor:

// globals
protected Vector3f boidPos = new Vector3f();
protected Vector3f boidVel = new Vector3f();

Figure 22-6. The Boid class and subclasses

extends

This is the Title of the Book, eMatter Edition

Types of Boids | 601

// code in the Boid constructor
boidPos.set(randPosn(),(float)(Math.random()*6.0), randPosn());
boidVel.set(randVel(), randVel(), randVel());

The moveBoid() method uses them to orient and position the boid in the scene:

// global used for repeated calculations
private Transform3D t3d = new Transform3D();

private void moveBoid()
{ t3d.setIdentity(); // reset t3d
 t3d.rotY(Math.atan2(boidVel.x, boidVel.z)); // around y-axis
 // atan2() handles 0 value input arguments
 t3d.setTranslation(boidPos);
 boidTG.setTransform(t3d); // move the TG
} // end of moveBoid()

The boid position and velocity vectors (boidPos and boidVel) are protected, so sub-
classes that need to access or change their values can do so easily. moveBoid() uses
the current velocity to calculate a rotation around the y-axis, and positions the boid
with boidPos. A limitation of moveBoid() is that the boid doesn’t rotate around the x-
or z-axes, which means a boid always remains parallel to the XZ plane. For example,
a boid can’t turn downward into a nose dive or lean over as it turns sharply. This
restriction can be removed by adding extra TransformGroup nodes above the boid’s
current TransformGroup to handle the other forms of rotation.

Animating the Boid
animateBoid() is the top-level method for animating a boid and is called by the
FlockBehavior class at each update for every boid. animateBoid() can be overridden
by Boid subclasses (e.g., by PredatorBoid) to modify the animation activities.

animateBoid() begins with code related to boid perching, which is when a boid is sta-
tionary on the floor:

// global constants for perching
private final static int PERCH_TIME = 5; // how long to perch
private final static int PERCH_INTERVAL = 100; // how long between perches

// global variables for perching
private int perchTime = 0;
private int perchInterval = 0;
private boolean isPerching = false;

public void animateBoid()
{ if (isPerching) {
 if (perchTime > 0) {
 perchTime--; // perch a while longer
 return; // skip rest of boid update
 }

This is the Title of the Book, eMatter Edition

602 | Chapter 22: Flocking Boids

 else { // finished perching
 isPerching = false;
 boidPos.y = 0.1f; // give the boid a push up off the floor
 perchInterval = 0; // reset perching interval
 }
 }
 // update the boid's vel & posn, but keep within scene bounds
 boidVel.set(calcNewVel());
 boidPos.add(boidVel);
 keepInBounds();
 moveBoid();
} // end of animateBoid()

keepInBounds() contains the rest of the perching code:

perchInterval++;
if ((perchInterval > PERCH_INTERVAL) &&
 (boidPos.y <= MIN_PT.y)) { // let the boid perch
 boidPos.y = 0.0f; // set down on the floor
 perchTime = PERCH_TIME; // start perching time
 isPerching = true;
}

Perching sessions occur at fixed intervals, and each session lasts for a fixed amount
of time. During the PERCH_INTERVAL time, the boid must fly about, until the interval is
met; then the boid can perch for PERCH_TIME time units before it must start flying
again. animateBoid() is called repeatedly by the FlockBehavior object, and
perchInterval records the number of calls. When the count exceeds the number
stored in PERCH_INTERVAL, perching is initiated.

isPerching is set to true when perching starts, and perchTime is set to PERCH_TIME.
Each time that animateBoid() is called after that, perchTime is decremented. When
perchTime reaches 0, perching stops. The perchInterval counter is reset to 0, and the
perching interval can start being measured off again.

This code illustrates how the timing of boid activities can be implemented using
counters. This is possible since animateBoid() is called at fixed intervals by
FlockingBehavior.

If the boid is not perching, then calcNewVel() calculates the boid’s new velocity and
updates boidVel and boidPos with this velocity. keepInBounds() checks these values
to decide if they specify a new position for the boid outside the scene’s boundaries. If
they do, then the values are modified so that when they’re applied to the boid, it will
stay within the boundary. Back in animateBoid(), the boid in the scene is moved by
moveBoid().

This is the Title of the Book, eMatter Edition

Types of Boids | 603

Velocity Rules
calcNewVel() calculates a new velocity for a boid by executing all of the velocity rules
for steering the boid. Each rule returns a velocity, and these velocities are summed by
calcNewVel() to get a total.

An important design aim is that new velocity rules can be easily added to the system
(e.g., by subclassing Boid), so calcNewVel() doesn’t make any assumptions about the
number of velocity rules being executed. Each velocity rule adds its result to a global
ArrayList, called velChanges. calcNewVel() iterates through the list to find all the
velocities.

Two other issues are obstacle avoidance and limiting the maximum speed. If the
boid has collided with an obstacle, then the velocity change to avoid the obstacle
takes priority over the other velocity rules. The new velocity is limited to a maxi-
mum value, so a boid cannot attain the speed of light, or something similar by the
combination of the various rules:

protected ArrayList velChanges = new ArrayList(); // globals
protected FlockBehavior beh;

private Vector3f calcNewVel()
{ velChanges.clear(); // reset velocities ArrayList

 Vector3f v = avoidObstacles(); // check for obstacles
 if ((v.x == 0.0f) && (v.z == 0.0f)) // if no obs velocity
 doVelocityRules(); // then carry out other velocity rules
 else
 velChanges.add(v); // else only do obstacle avoidance

 newVel.set(boidVel); // re-initialise newVel
 for(int i=0; i < velChanges.size(); i++)
 newVel.add((Vector3f)velChanges.get(i)); // add vels

 newVel.scale(limitMaxSpeed());
 return newVel;
} // end of calcNewVel()

protected void doVelocityRules()
// override this method to add new velocity rules
{
 Vector3f v1 = beh.cohesion(boidPos);
 Vector3f v2 = beh.separation(boidPos);
 Vector3f v3 = beh.alignment(boidPos, boidVel);
 velChanges.add(v1);
 velChanges.add(v2);
 velChanges.add(v3);
} // end of doVelocityRules()

This is the Title of the Book, eMatter Edition

604 | Chapter 22: Flocking Boids

avoidObstacles() always returns a vector even when there is no obstacle to avoid.
The “no obstacle” vector has the value (0, 0, 0), which is detected by calcNewVel().

To reduce the number of temporary objects, calcNewVel() reuses a
global newVel Vector3f object in its calculations.

doVelocityRules() has protected visibility so subclasses can readily extend it to add
new steering rules. In addition to executing a rule, adding the result to the
velChanges ArrayList is necessary. The three rules executed in Boid are Reynolds’
rules for cohesion, separation, and alignment.

beh is a reference to the FlockBehavior subclass for the boid. Velocity rules that
require the checking of flockmates, or boids from other flocks, are stored in the
behavior class, which acts as the flock manager.

Obstacle Avoidance
Obstacle avoidance can be computationally expensive, easily crippling a flocking sys-
tem involving hundreds of boids and tens of obstacles. The reason is two-fold: the
algorithm has to keep looking ahead to detect a collision before the boid image inter-
sects with the obstacle and, therefore, should calculate a rebound velocity that mim-
ics the physical reality of a boid hitting the obstacle.

As usual, a trade-off is made between the accuracy of the real-world simulation and
the need for fast computation. In Flocking3D, the emphasis is on speed, so there’s no
look-ahead collision detection and no complex rebound vector calculation. A boid is
allowed to hit (and enter) an obstacle and rebounds in the simplest way possible.

The boid is represented by a bounding sphere, whose radius is fixed but center
moves as the boid moves. The sphere is tested for intersection with all the obstacles,
and if an intersection is found, then a velocity is calculated based on the negation of
the boid’s current (x, z) position, scaled by a factor to reduce its effect:

private Vector3f avoidObstacles()
{ avoidOb.set(0,0,0); // reset
 // update the BoundingSphere's position
 bs.setCenter(new Point3d((double)boidPos.x,
 (double)boidPos.y, (double)boidPos.z));
 if (obstacles.isOverlapping(bs)) {
 avoidOb.set(-(float)Math.random()*boidPos.x, 0.0f,
 -(float)Math.random()*boidPos.z);
 // scale to reduce distance moved away from the obstacle
 avoidOb.scale(AVOID_WEIGHT);
 }
 return avoidOb;
}

This is the Title of the Book, eMatter Edition

Types of Boids | 605

There’s no adjustment to the boid’s y-velocity, which means that if it hits an obsta-
cle from the top, its y-axis velocity will be unchanged (i.e., it’ll keep moving down-
ward) but it will change its x- and z-components.

Instead of creating a new temporary object each time obstacle checking is carried
out, the code utilizes a global Vector3f object called avoidOb. The bs BoundingSphere

object is created when the boid is first instantiated.

Staying in Bounds
keepInBounds() checks a bounding volume defined by two points, MIN_PT and MAX_PT,
representing its upper and lower corners. If the boid’s position is beyond a bound-
ary, then it’s relocated to the boundary, and its velocity component in that direction
is reversed.

The following code fragment shows what happens when the boid has passed the
upper x-axis boundary:

if (boidPos.x > MAX_PT.x) { // beyond upper x-axis boundary
 boidPos.x = MAX_PT.x; // put back at edge
 boidVel.x = -Math.abs(boidVel.x); // move away from boundary
}

The same approach is used to check for the upper and lower boundaries along all the
axes.

The Prey Boid
A prey boid has an orange body and wants to avoid being eaten by predators. It does
this by applying a velocity rule for detecting and evading predators. It has a higher
maximum speed than the standard Boid, so it may be able to outrun an attacker.

Since a PreyBoid can be eaten, it must be possible to detach the boid from the scene
graph:

public class PreyBoid extends Boid
{
 private final static Color3f orange = new Color3f(1.0f,0.75f,0.0f);

 public PreyBoid(Obstacles obs, PreyBehavior beh)
 { super(orange, 2.0f, obs, beh); // orange and higher max speed
 setCapability(BranchGroup.ALLOW_DETACH); // prey can be "eaten"
 }

 protected void doVelocityRules()
 // Override doVelocityRules() to evade nearby predators
 { Vector3f v = ((PreyBehavior)beh).seePredators(boidPos);
 velChanges.add(v);
 super.doVelocityRules();
 } // end of doVelocityRules()

This is the Title of the Book, eMatter Edition

606 | Chapter 22: Flocking Boids

 public void boidDetach()
 { detach(); }
}

The benefits of inheritance are clear, as it’s simple to define PreyBoid.
doVelocityRules() in PreyBoid adds a rule to the ones present in Boid and calls the
superclass’s method to evaluate those rules as well.

seePredators() is located in the PreyBehavior object, the manager for the prey flock.
The method looks for nearby predators and returns a flee velocity. seePredators() is
inside PreyBehavior because it needs to examine a flock.

The Predator Boid
A predator gets hungry. Hunger will cause it to do two things: eat a prey boid, if one
is sufficiently close (as defined by the eatClosePrey() method), and trigger a veloc-
ity rule to make the predator subsequently pursue nearby prey groups:

public class PredatorBoid extends Boid
{ private final static Color3f yellow = new Color3f(1.0f, 1.0f,0.6f);
 private final static int HUNGER_TRIGGER = 3;
 // when hunger affects behavior
 private int hungerCount;

 public PredatorBoid(Obstacles obs, PredatorBehavior beh)
 { super(yellow, 1.0f, obs, beh); // yellow boid, normal max speed
 hungerCount = 0;
 }

 public void animateBoid()
 // extend animateBoid() with eating behavior
 { hungerCount++;
 if (hungerCount > HUNGER_TRIGGER) // time to eat
 hungerCount -= ((PredatorBehavior)beh).eatClosePrey(boidPos);
 super.animateBoid();
 }

 protected void doVelocityRules()
 // extend VelocityRules() with prey attack
 { if (hungerCount > HUNGER_TRIGGER) { // time to eat
 Vector3f v = ((PredatorBehavior)beh).findClosePrey(boidPos);
 velChanges.add(v);
 }
 super.doVelocityRules();
 }

} // end of PredatorBoid class

Eating prey isn’t a velocity rule, so it is carried out by extending the behavior of
animateBoid(). eatClosePrey() is located in PredatorBehavior because it examines
(and modifies) a flock, which means that it’s handled by the flock manager. The

This is the Title of the Book, eMatter Edition

Grouping the Boids | 607

method returns the number of prey eaten (usually 0 or 1), reducing the predator’s
hunger.

The movement toward prey is a velocity rule, so it is placed in the overridden
doVelocityRules() method. Since findClosePrey() is looking at a flock, it’s carried
out by PredatorBehavior.

Grouping the Boids
The FlockBehavior class is a flock manager and, consequently, must maintain a list of
boids. The obvious data structure for the task is an ArrayList, but there’s a subtle
problem: boids may be deleted from the list, as when a prey boid is eaten. This can
cause synchronization problems because of the presence of multiple behavior threads
in the application.

For example, the PredatorBehavior thread may delete a prey boid from the prey list
at the same time that PreyBehavior is about to access the same boid in the list. The
solution is to synchronize the deleting and accessing operations so they can’t occur
simultaneously. This is the purpose of the BoidsList class:

public class BoidsList extends ArrayList
{
 public BoidsList(int num)
 { super(num); }

 synchronized public Boid getBoid(int i)
 // return the boid if it is visible; null otherwise
 { if (i < super.size())
 return (Boid)get(i);
 return null;
 }

 synchronized public boolean removeBoid(int i)
 // attempt to remove the i'th boid
 { if (i < super.size()) {
 super.remove(i);
 return true;
 }
 return false;
 }

} // end of BoidsList class

Another consequence of the dynamic change of the boids list is that code should not
assume that the list’s length stays the same. This means, for instance, that for loops
using the list size should be avoided. If a for loop was utilized, then a change in the
boids list may cause a boid to be processed twice, or skipped, because of its index
position changing.

This is the Title of the Book, eMatter Edition

608 | Chapter 22: Flocking Boids

Flock Behavior
The public and protected methods and data of the FlockBehavior class and its
PredatorBehavior and PreyBehavior subclasses are shown in Figure 22-7.

FlockBehavior has two main tasks:

• To call animateBoid() on every boid periodically

• To store the velocity rules, which require an examination of the entire flock

FlockBehavior doesn’t create boids since that’s handled by its subclasses, and the
information required for each type of boid is too specialized to be located in the
superclass. PredatorBehavior creates a series of PredatorBoids, and PreyBehavior han-
dles PreyBoids. But the subclass behaviors do use the inherited boidsList list for storage.

Animate the Boids
The calls to animateBoid() are carried out in processStimulus():

public void processStimulus(Enumeration en)
{ Boid b;
 int i = 0;
 while((b = boidsList.getBoid(i)) != null) {
 b.animateBoid();
 i++;
 }
 wakeupOn(timeOut); // schedule next update
}

Velocity Rules Again
FlockBehavior is a general-purpose flock manager, so it stores the basic velocity
methods used by all boids: Reynolds’ cohesion, separation, and alignment rules. All

Figure 22-7. FlockBehavior and its subclasses

extends

This is the Title of the Book, eMatter Edition

Flock Behavior | 609

the rules have a similar implementation since they examine nearby flockmates and
build an aggregate result. This is converted into a velocity and scaled before being
returned.

As explained at the start of this chapter, Reynolds’ notion of flockmates is based on a
distance measure and an angle around the forward direction of the boid. However,
the rules in Flocking3D only utilize the distance value, effectively including flock-
mates from all around the boid. The angle measure is dropped because of the over-
head of calculating it and because the behavior of the boids seems realistic enough
without it. A boid using an angle component is only influenced by the boids within
its field of vision. The general effect is that a flock is more affected by changes to
boids near the front and less affected by changes toward the back.

The cohesion() method is shown below. It calculates a velocity that encourages the
boid to fly toward the average position of its flockmates:

public Vector3f cohesion(Vector3f boidPos)
{ avgPosn.set(0,0,0); // the default answer
 int numFlockMates = 0;
 Vector3f pos;
 Boid b;

 int i = 0;
 while((b = boidsList.getBoid(i)) != null) {
 distFrom.set(boidPos);
 pos = b.getBoidPos();
 distFrom.sub(pos);
 if(distFrom.length() < PROXIMITY) { // is boid a flockmate?
 avgPosn.add(pos);// add position to tally
 numFlockMates++;
 }
 i++;
 }
 avgPosn.sub(boidPos); // don't include the boid itself
 numFlockMates--;

 if(numFlockMates > 0) { // there were flockmates
 avgPosn.scale(1.0f/numFlockMates); // calculate avg position
 // calculate a small step towards the avg. posn
 avgPosn.sub(boidPos);
 avgPosn.scale(COHESION_WEIGHT);
 }
 return avgPosn;
}

avgPosn and distPosn are global Vector3f objects to reduce the creation of temporary
objects when the method is repeatedly executed. The while loop uses getBoid() to
iterate through the boids list. The loop’s complexity is O(n), where n is the number of
boids. Since the method is called for every boid, checking the entire flock for cohe-
sion is O(n2). If there are m velocity rules, then each update of the flock will have a

This is the Title of the Book, eMatter Edition

610 | Chapter 22: Flocking Boids

complexity of O(m*n2). This is less than ideal and one reason why flocking systems
tend to have few boids.

A well-designed boids list data structure will reduce the overhead of the calcula-
tions; for example, one simple optimization is to utilize boid position in the list’s
ordering. A search algorithm using spatial information should find a nearby boid in
constant time (O(1)), reducing the cost of a flock update to O(m*n). For example, if
there are 1,000 boids and 10 rules, then the current algorithm takes time propor-
tional to O(107), whereas the improved version would be O(104), potentially a 1,000-
fold improvement

In cohesion(), nearness is calculated by finding the absolute distance between the
boid (boidPos) and each neigboring boid. The PROXIMITY constant can be adjusted to
change the number of neighbors.

The choice of scaling factor (COHESION_WEIGHT in this case) is a matter of trial and
error, determined by running the system with various values and observing the
behavior of the flock. Part of the difficulty when deciding on a good value is that the
rules interact with each other to produce an overall effect. For example, the cohe-
sion rule brings boids together while the separation rules keep them apart. This inter-
play is what makes boid behavior hard to predict and so interesting.

The Prey’s Behavior
PreyBehavior has three tasks:

• To create boids (e.g., PreyBoids) and store them in the boids list

• To store the velocity rules specific to PreyBoids, which require an examination of
the entire flock

• To delete a PreyBoid when a predator eats it

Boid creation is done in createBoids(), called from the class’s constructor:

private void createBoids(int numBoids, Obstacles obs)
{ // preyBoids can be detached from the scene
 boidsBG.setCapability(BranchGroup.ALLOW_CHILDREN_WRITE);
 boidsBG.setCapability(BranchGroup.ALLOW_CHILDREN_EXTEND);

 PreyBoid pb;
 for(int i=0; i < numBoids; i++){
 pb = new PreyBoid(obs, this);
 boidsBG.addChild(pb); // add to BranchGroup
 boidsList.add(pb); // add to BoidsList
 }
 boidsBG.addChild(this); // store the prey behavior with its BG
}

This is the Title of the Book, eMatter Edition

Flock Behavior | 611

boidsBG is the inherited BranchGroup holding the boids in the scene; boidsBG’s capabil-
ities must allow changes to its children so prey boids can be detached from it at run-
time (after they’re eaten).

When a PreyBoid object is created, it’s passed a reference to the obstacles (passed to
the behavior from WrapFlocking3D) and a reference to the behavior itself, so its veloc-
ity rules can be accessed.

createBoid() creates a scene branch such as that shown in Figure 22-8.

Velocity Rules and Other Flocks
PreyBehavior’s second task is complicated by the need to access the other flock (the
predators), which means that it must reference the PredatorBehavior object.
WrapFlocking3D delivers the reference via PreyBehavior’s setPredBeh():

public void setPredBeh(PredatorBehavior pb)
{ predBeh = pb; }

predBeh is a global, used by the seePredators() velocity rule.

Figure 22-8. Scene branch for PreyBoid nodes

BG boids BG

BG

TG

more boids

PreyBehavior

PreyBoid object

boid TG

boidShape

Shape3D

This is the Title of the Book, eMatter Edition

612 | Chapter 22: Flocking Boids

seePredators() is coded in a similar way to the rules in FlockBehavior: a loop tests
each of the boids in the predator flock for proximity. If a predator is within range,
the velocity will be set to a scaled move in the opposite direction:

public Vector3f seePredators(Vector3f boidPos)
{
 predsList = predBeh.getBoidsList(); // refer to pred list
 avoidPred.set(0,0,0); // reset
 Vector3f predPos;
 PredatorBoid b;

 int i = 0;
 while((b = (PredatorBoid)predsList.getBoid(i)) != null) {
 distFrom.set(boidPos);
 predPos = b.getBoidPos();
 distFrom.sub(predPos);
 if(distFrom.length() < PROXIMITY) { // is pred boid close?
 avoidPred.set(distFrom);
 avoidPred.scale(FLEE_WEIGHT); // scaled run away
 break;
 }
 i++;
 }
 return avoidPred;
} // end of seePredators()

An important difference in this code from earlier rules is the first line, where a refer-
ence to the predators list is obtained by calling getBoidsList() in PredatorBehavior.
The prey examine this list to decide if they should start running.

Goodbye Prey
PreyBehavior contains an eatBoid() method, called by PredatorBehavior when the
given boid has been eaten:

public void eatBoid(int i)
{ ((PreyBoid)boidsList.getBoid(i)).boidDetach();
 boidsList.removeBoid(i);
}

eatBoid() deletes a boid by detaching it from the scene graph, and removing it from
the boids list.

The Predator’s Behavior
PredatorBehavior has similar tasks to PreyBehavior:

• To create its boids (e.g., PredatorBoids) and store them in the boids list

• To store the velocity rules specific to PredatorBoids, which require an examina-
tion of the entire flock

• To eat prey when they’re close enough

This is the Title of the Book, eMatter Edition

Flock Behavior | 613

Boid creation is almost identical to that done in PreyBehavior, except that
PredatorBoids are created instead of PreyBoids. PredatorBoid has a method,
setPredBeh(), which allows WrapFlocking3D to pass it a reference to the PreyBehavior

object.

The velocity rule is implemented by findClosePrey(): the method calculates the
average position of all the nearby PreyBoids and moves the predator a small step
toward that position. The code is similar to other rules, except that it starts by
obtaining a reference to the prey list by calling getBoidsList() in PreyBehavior.

preyList = preyBeh.getBoidsList(); // get prey list
int i = 0;
while((b = (PreyBoid)preyList.getBoid(i)) != null) {
 pos = b.getBoidPos(); // get prey boid position
 // use pos to adjust the predator's velocity
}

Lunch Time
The third task for PredatorBehavior—eating nearby prey—isn’t a velocity rule but a
method called at the start of each predator’s update in animateBoid(). However, the
coding is similar to the velocity rules—it iterates through the prey boids checking for
those near enough to eat:

public int eatClosePrey(Vector3f boidPos)
{ preyList = preyBeh.getBoidsList();
 int numPrey = preyList.size();
 int numEaten = 0;
 PreyBoid b;

 int i = 0;
 while((b = (PreyBoid)preyList.getBoid(i)) != null) {
 distFrom.set(boidPos);
 distFrom.sub(b.getBoidPos());
 if(distFrom.length() < PROXIMITY/3.0) { // boid v.close to prey
 preyBeh.eatBoid(i); // found prey, so eat it
 numPrey--;
 numEaten++;
 System.out.println("numPrey: " + numPrey);
 }
 else
 i++;
 }
 return numEaten;
} // end of eatClosePrey()

The reference to PreyBehavior is used to get a link to the prey list and to call eatBoid()
to remove the ith boid. When a boid is removed, the next boid in the list becomes
the new ith boid, so the i index mustn’t be incremented.

This is the Title of the Book, eMatter Edition

614

Chapter 23CHAPTER 23

Shooting a Gun

It’s an unfortunate fact that shooting (and being shot) is a major part of many types
of games. Exact percentages are hard to come by, but I’ve seen figures which indi-
cate that perhaps 40 percent of the top-selling console games involve shooting, ris-
ing to 50 percent for PC games. My own feeling is that the percentages are much
higher.

I’m writing this as Christmas 2004 approaches, and the top action games for the PC
include Half-Life 2, Doom 3, Medal of Honor: Pacific Assault, The Lord of the Rings:
Battle For Middle Earth, Warhammer 40,000: Dawn of War, World of Warcraft, and
so on. Where’s the peace and harmony gone? Santa better have some serious armor
on his sleigh this Yuletide.

Action games can be categorized into third person and first person. Third-person
games frequently utilize a viewpoint slightly above and behind the main character as
in Splinter Cell and Hitman. First-person games put the gun in your hand, with a
viewpoint linked to the gun, as in Doom and Half-Life.

This chapter looks at how to get an object in the scene to shoot. This is a prerequi-
site for third person games and, of course, is needed in first person games when the
enemy fires back. Chapter 24 is about first person shooting, where the shot comes
from your own gun.

The Shooter3D application contains a gun (a cone mounted on a cylinder) which fires
a laser beam at a point on the checkered floor clicked on by the user. The flight of
the laser beam (a red cylinder) is accompanied by a suitable sound and followed by
an explosion (an animated series of images and another sound).

Figure 23-1 shows three screenshots of Shooter3D. The first one has the laser beam in
mid-flight, the second captures the explosion, and the third is another explosion
after the user has clicked on a different part of the floor, from a different viewpoint.

This is the Title of the Book, eMatter Edition

Shooting a Gun | 615

The cone head rotates to aim at the target point, and the animated explosion always
faces the user.

Here are some Java 3D and Java features illustrated by this example:

Picking
The user’s clicking on the floor is dealt with by Java 3D picking. Picking works
by creating a pick shape (often a line or cone) extending from the user’s view-
point, through the mouse location and into the scene. Information can be gath-
ered about the objects in the scene (e.g., the floor) which intersect with the pick
shape.

3D sounds
The laser beam and explosion sounds are Java 3D PointSound objects. A
PointSound is a sound source at a given position in the scene.

More complex rotations
The rotations of the cone and the laser beam are handled by axis angles defined
using Java 3D’s AxisAngle4d class. An axis angle specifies a rotation in terms of
an angle turned around a vector. The vector can be any direction, not just along
one of the axes.

Animation
The explosion visual is created with my ImagesSeries class, which simplifies the
loading and displaying of a sequence of transparent GIFs as an animation.

Global variables for repeated calculations
Many operations, such as the method to rotate the gun, require Java 3D objects
(e.g., Transform3D and Vector3d). A bad way of coding these methods is to create
new, temporary objects each time they’re called. Object creation, and subse-
quent garbage collection, will slow the application down. Instead, I employ glo-
bal objects, created once at startup and reused throughout the execution.

Figure 23-1. The deadly Shooter3D

This is the Title of the Book, eMatter Edition

616 | Chapter 23: Shooting a Gun

User and Java 3D threads
The delivery of the laser beam and subsequent explosion are managed by a
FireBeam thread, showing how Java threads and the built-in threading of Java 3D
can coexist.

The benefits of OOD
The overall complexity of this application is greatly reduced by using object-
oriented design (OOD) principles; each of the main entities (the gun, the laser
beam, the explosion) are represented by its own class.

Class Diagrams for Shooter3D
Figure 23-2 shows the class diagrams for the Shooter3D application. The class names
and public methods are included.

Shooter3D is the top-level JFrame for the application, and very similar to the JFrame

classes in earlier chapters. WrapShooter3D creates the 3D scene (as usual) and adds the
gun, laser beam and explosion, as well as their controlling behavior. CheckerFloor

and ColouredTiles manage the checkerboard as in previous chapters, but both have
been modified to deal with floor picking.

ExplosionsClip represents the explosion, GunTurret the gun, and LaserBeam the laser
beam. ExplosionsClip uses ImagesSeries to animate the explosion. ShootingBehaviour

Figure 23-2. Class diagrams for Shooter3D

This is the Title of the Book, eMatter Edition

The Sound of Shooting | 617

contains the behavior triggered when the user clicks on the floor. Its picking capabili-
ties come from being a subclass of PickMouseBehavior, a Java 3D utility class, which is
itself a subclass of Behavior. The tasks of firing the laser beam and triggering the
explosion are delegated to the FireBeam thread.

All the code for this example can be found in the Shooter3D/ directory.

Scene Creation
WrapShooter3D’s createSceneGraph() calls makeGun() to initialize various elements:

private void makeGun(Canvas3D canvas3D)
{ // starting vector for the gun cone and beam
 Vector3d startVec = new Vector3d(0, 2, 0);

 // the gun
 GunTurret gun = new GunTurret(startVec);
 sceneBG.addChild(gun.getGunBG());

 // explosion and sound
 PointSound explPS = initSound("Explo1.wav");
 ExplosionsClip expl = new ExplosionsClip(startVec, explPS);
 sceneBG.addChild(expl.getExplBG());

 // laser beam and sound
 PointSound beamPS = initSound("laser2.wav");
 LaserBeam laser = new LaserBeam(startVec, beamPS);
 sceneBG.addChild(laser.getBeamBG());

 // the behavior that controls the shooting
 ShootingBehaviour shootBeh =
 new ShootingBehaviour(canvas3D, sceneBG, bounds,
 new Point3d(0,2,0), expl, laser, gun);
 sceneBG.addChild(shootBeh);
} // end of makeGun()

The position vector of the gun cone is hardwired to be (0, 2, 0). The same vector is
used to place the laser beam (a red cylinder) inside the cone. The hardwiring makes
the coding easier and highlights a major simplification of this example: the base of
the gun doesn’t move.

The Sound of Shooting
Java 3D has three kinds of sound node classes. All three are subclasses of the
Sound class.

This is the Title of the Book, eMatter Edition

618 | Chapter 23: Shooting a Gun

BackgroundSound

A BackgroundSound node allows a sound to permeate the entire scene, located at
no particular place.

PointSound

A PointSound node has a location, so its volume varies as the user moves (or as
the sound node moves). I use PointSound nodes for the laser-beam and explo-
sion sounds in Shooter3D.

ConeSound

A ConeSound node is a PointSound that can be aimed in a particular direction.

Before sound nodes can be added to a scene, an audio device must be created and
linked to the Viewer object. This is simple if the SimpleUniverse utility class is being
used (as in this example):

AudioDevice audioDev = su.getViewer().createAudioDevice();

This line of code appears in the WrapShooter3D constructor.

SimpleUniverse was introduced in Chapter 14; it builds the view branch part of the
scene graph, which specifies how the user’s viewpoint is positioned in the world and
includes the Viewer object.

WrapShooter3D uses initSound() to load a WAV sound file and create a PointSound

object:

private PointSound initSound(String filename)
{ MediaContainer soundMC = null;
 try {
 soundMC = new MediaContainer("file:sounds/" + filename);
 soundMC.setCacheEnable(true); // load sound into container
 }
 catch (Exception ex)
 { System.out.println(ex); }

 // create a point sound
 PointSound ps = new PointSound();
 ps.setSchedulingBounds(bounds);
 ps.setSoundData(soundMC);

 ps.setInitialGain(1.0f); // full on sound from the start

 // allow sound to be switched on/off & its position to be moved
 ps.setCapability(PointSound.ALLOW_ENABLE_WRITE);
 ps.setCapability(PointSound.ALLOW_POSITION_WRITE);

 System.out.println("PointSound created from sounds/" + filename);
 return ps;
} // end of initSound()

This is the Title of the Book, eMatter Edition

Picking Scene Objects | 619

A Sound node needs a sound source, which is loaded with a MediaContainer object.
Loading can be done from a URL, local file, or input stream; the try/catch block
handles invalid filenames, as well as problems with opening files. initSound() loads
its sound from a local file in the subdirectory sounds/.

All Sound nodes must be given a bounding region and assigned a sound source:

PointSound ps = new PointSound();
ps.setSchedulingBounds(bounds);
ps.setSoundData(soundMC);

To play, the sound node must be enabled with setEnable(). initSound() doesn’t call
setEnable() since the sound isn’t played when first loaded. Instead, the node’s capa-
bility bits are set to allow it to be enabled and disabled during execution:

ps.setCapability(PointSound.ALLOW_ENABLE_WRITE);

The explosion sound will be positioned at runtime, requiring another capability bit:

ps.setCapability(PointSound.ALLOW_POSITION_WRITE);

Other sound elements include setting the volume and saying whether the sound
should loop (and if so, then how many times). The relevant methods are:

void setInitialGain(float volume);
void setLoop(int loopTimes);

initSound() sets the volume to 1.0f (full-on) and uses the default looping behavior
(play once, finish). PointSound nodes have a location in space, given by setPosition().
They emit sound in all directions, so attenuation factors can be specified in a similar
way to Java 3D PointLight nodes.

Picking Scene Objects
Shooter3D’s gun shoots at a point on the floor selected by the user clicking the
mouse. The cursor position on the screen is translated into scene coordinates using
Java 3D’s picking. In general, picking is a more user-friendly way of obtaining input
than asking the user to type in a coordinate or the name of an object.

Problems with Sound
The Sound classes in the current version of Java 3D (v.1.3.1) contain some severe bugs,
including poor volume adjustment when the user moves away from a Java 3D
PointSound or ConeSound node, strange interactions between multiple sounds at differ-
ent locations, and anomalies between left and right ear sounds. There are plans to fix
these bugs in the next major Java 3D version, 1.4.

This is the Title of the Book, eMatter Edition

620 | Chapter 23: Shooting a Gun

Picking is the selection of a shape (or shapes) in the scene, usually accomplished by
having the user click the mouse while the pointer is over a particular shape. This is
implemented by projecting a pick shape (a line or ray) into the scene from the user’s
viewpoint, through the mouse pointer position on screen, to intersect with the near-
est object in the scene (see Figure 23-3).

There are many variations of this idea, such as using a different pick shape instead of
a line—a cone or cylinder. Another possibility is to return a list of all the intersected
objects rather than the one nearest to the viewer.

The selected object will correspond to a leaf node in the scene graph. Leaf nodes are
the visual parts of the scene, such as meshes and models, and internal nodes are typi-
cally Group nodes (or subclasses of Group).

By default, leaf nodes, such as Shape3Ds and OrientedShape3Ds, are pickable, so pro-
grammers should switch off picking (with setPickable(false)) in as many nodes as
possible to reduce the cost of intersection testing. This is an important optimization
in a large scene that may contain thousands of visible items.

The information generated by picking can include more than the leaf node: it may
include the path from the root of the scene graph (the Locale node) down to the
selected node. This can be useful since the path will include the TransformGroup

nodes used to position or orient the selected item. However, this requires that the
Group nodes have their ENABLE_PICK_REPORTING capability set to true. When picking
returns more information (such as the path), processing times increase, and the oper-
ation requires the setting of a bewildering range of capability bits. Fortunately, Java
3D’s PickTool class offers a simple setCapabilities() method for setting the neces-
sary bits in Java 3D’s Shape3D nodes. (The Shape3D class is used to build leaf nodes
representing geometric shapes.) The method supports three different types (levels) of
picking:

static void setCapabilities(Node node, int level);

Figure 23-3. Picking using a ray

screen

cube in the scene

user viewpoint

mouse pointer

pick ray

This is the Title of the Book, eMatter Edition

Picking Scene Objects | 621

The three levels return increasing amounts of information:

INTERSECT_TEST

A Shape3D node with this level of picking will report if it was intersected by a
pick shape.

INTERSECT_COORD

The Shape3D node will report whether it was intersected and supply the intersec-
tion coordinates.

INTERSECT_FULL

The node will supply intersection coordinates and details of its geometry’s color,
normals, and texture coordinates.

What to Pick in Shooter3D?
A consideration of the Shooter3D scene (as shown in Figure 23-1) reveals many
potentially pickable shapes:

• Two Shape3D nodes holding the QuadArrays for the blue and green floor tiles

• 42 Text2D axis labels

• The Shape3D red tile at the origin

• The gun cylinder and cone

• The laser-beam cylinder

• The explosion Shape3D

Shooter3D switches off picking for all of these, with the exception of the floor tiles
and the red tile at the origin. This matches the intended behavior of the application:
the user clicks on a floor tile and the gun shoots at it. Switching off picking capabili-
ties reduces the cost of the intersection calculations and makes the picking result eas-
ier to analyze since few things remain that can be picked.

Small changes must be made to the familiar CheckerFloor and ColouredTiles classes
to disable the picking of the axis labels and to reduce the amount of picking informa-
tion gathered for the tiles.

In CheckerFloor, makeText() is employed to create an axis label and now includes a
call to setPickable():

private TransformGroup makeText(Vector3d vertex, String text)
// Create a Text2D object at the specified vertex
{
 Text2D message = new Text2D(text, white, "SansSerif", 36, Font.BOLD);
message.setPickable(false); // cannot be picked

 TransformGroup tg = new TransformGroup();
 Transform3D t3d = new Transform3D();
 t3d.setTranslation(vertex);
 tg.setTransform(t3d);

This is the Title of the Book, eMatter Edition

622 | Chapter 23: Shooting a Gun

 tg.addChild(message);
 return tg;
}

In ColouredTile, picking is left on, but the amount of detail returned is set with a call to
setCapabilities(). Only intersection coordinates are required—not information about
the shape’s color, normals, etc.—so the INTERSECT_COORD picking level is sufficient:

public ColouredTiles(ArrayList coords, Color3f col)
{ plane = new QuadArray(coords.size(),
 GeometryArray.COORDINATES | GeometryArray.COLOR_3);
 createGeometry(coords, col);
 createAppearance();
 // set the picking capabilities so that intersection
 // coords can be extracted after the shape is picked
 PickTool.setCapabilities(this, PickTool.INTERSECT_COORD);
}

The other objects in the scene—the gun, laser beam, and explosion—contain calls to
setPickable(false).

ShootingBehaviour extracts and utilizes the intersection information, so a detailed
discussion of that side of picking will be delayed until later. Essentially, the class uses
a ray to find the intersection point on a tile nearest to the viewer. There’s no need to
obtain path information about the Group nodes above it in the graph, so there’s no
need to set ENABLE_PICK_REPORTING capability bits for Group nodes.

Controlling the Gun
The GunTurret class builds the scene graph branch for the cylinder and cone and has
two public methods: getGunBG() and makeRotation(). getGunBG() is used by
WrapShooter3D to retrieve a reference to the gun’s top-level BranchGroup, gunBG, so it
can be added to the scene. makeRotation() is called by ShootingBehaviour to rotate
the cone to point at the clicked position.

The scene graph branch built inside GunTurret is shown in Figure 23-4.

The GunTurret constructor is:

public GunTurret(Vector3d svec)
{ startVec = svec;
 gunBG = new BranchGroup();
 Appearance apStone = stoneApp();
 placeGunBase(apStone);
 placeGun(apStone);
}

startVec contains the position of the gun cone: (0, 2, 0).

This is the Title of the Book, eMatter Edition

Controlling the Gun | 623

There’s no particular significance to this coordinate, but it works well,
so I’ve stayed with it.

apStone is a blending of a stone texture and white material, with lighting enabled,
which allows lighting effects to be seen on the gun’s surfaces. The blending is done
using the TextureAttribute.MODULATE setting for the texture mode.

A similar approach was used in Chapter 21 for the texture applied to
the particle system of quads.

placeGunBase() creates the lefthand side of the subgraph shown in Figure 23-4, and
placeGun() handles the right side.

The cylinder and cone are unpickable (you only want the gun to shoot at the tiles):

cyl.setPickable(false);
cone.setPickable(false);

The TransformGroup for the cone (gunTG) will have its rotation details changed at run-
time, so its capability bits are set accordingly:

gunTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
gunTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);

Figure 23-4. Scenegraph branch for GunTurret

BG explBG

Switch

TG

explSwitch

explTG

explShape

ImagesSeries
(subclass of Shape3D)

PointSound

explPS

This is the Title of the Book, eMatter Edition

624 | Chapter 23: Shooting a Gun

makeRotation() is called with an AxisAngle4d object that, as the name suggests, is a
combination of an axis (vector) and an angle to rotate around that vector. The vec-
tor can specify any direction, not just the x-, y-, or z-axes :

public void makeRotation(AxisAngle4d rotAxis)
// rotate the cone of the gun turret
{ gunTG.getTransform(gunT3d); // get current transform
 gunT3d.get(currTrans); // get current translation
 gunT3d.setTranslation(ORIGIN); // translate to origin

 rotT3d.setRotation(rotAxis); // apply rotation
 gunT3d.mul(rotT3d);

 gunT3d.setTranslation(currTrans); // translate back
 gunTG.setTransform(gunT3d);
}

The rotation is applied to gunTG. Since the cone is located away from the origin, it’s
first translated to the origin, rotated, and then moved back to its original position.

Preparing the Laser Beam
The LaserBeam object is a red cylinder, hidden inside the gun cone when not in use,
so there’s no need for a Switch or visibility-controlling code. ShootingBehaviour

rotates the cylinder (and gun cone) to point at the location picked by the user on the
checkerboard. It lets FireBeam handle the shooting of the beam and subsequent
explosion.

Globals for Repeated Calculations
A good optimization technique for Java and Java 3D is to avoid the creation of exces-
sive numbers of temporary objects since the JVM will have to garbage collect them
often, slowing down your application in the process.

Temporary objects are usually employed to hold temporary results during a method’s
execution: they’re created at the start of the method, and discarded at its end. If the
method is called frequently, then an alternative coding strategy will be to use global
variables. They’re created once (usually in the classes’ constructor) then reinitialized
by the method each time they’re needed. A multitude of short-lived objects are
replaced by a few reusable long-lasting ones.

This coding strategy can be seen in makeRotation() in GunTurret, which uses global
Transform3D and Vector3d objects (gunT3d, rotT3d, currTrans).

This is the Title of the Book, eMatter Edition

Preparing the Laser Beam | 625

The laser beam is accompanied by a PointSound, which moves along with it. This
means that the sound’s volume increases (or diminishes) as the beam travels towards
(or away from) the user’s viewpoint.

The class diagram for LaserBeam is in Figure 23-5; all public methods are shown.

WrapShooter3D uses getBeamBG() to retrieve the beam’s BranchGroup for addition to
the scene. The scene graph branch built inside LaserBeam (by makeBeam()) is shown in
Figure 23-6.

The cylinder is made unpickable, as only the floor should be pickable by the user:

beam.setPickable(false);

The capability bits of beamTG are set to allow it to be rotated and translated.

ShootingBehaviour rotates the beam with makeRotation(), which is identical to the
method in GunTurret, except that it applies the rotation to the beam’s TransformGroup,

beamTG.

public void makeRotation(AxisAngle4d rotAxis)
// rotate the laser beam
{

Figure 23-5. LaserBeam’s public methods

Figure 23-6. Scenegraph branch for LaserBeam

beamBG

beamPS

TG

BG

beam

beamTG

PointSound Cylinder

This is the Title of the Book, eMatter Edition

626 | Chapter 23: Shooting a Gun

 beamTG.getTransform(beamT3d); // get current transform
 beamT3d.get(currTrans); // get current translation
 beamT3d.setTranslation(ORIGIN); // translate to origin

 rotT3d.setRotation(rotAxis); // apply rotation
 beamT3d.mul(rotT3d);

 beamT3d.setTranslation(currTrans); // translate back
 beamTG.setTransform(beamT3d);
} // end of makeRotation()

Global Transform3D and Vector3D objects are used for the calculations (beamT3d,
rotT3d, and currTrans) rather than temporary objects.

Shooting the Beam
shootBeam() is called from FireBeam to deliver the beam to the position on the floor
clicked on by the user.

What the user sees as a mighty laser beam, is a red cylinder moving along a straight
line path from the gun’s cone to an intersection point on a tile, taking a few seconds
to complete the journey. The intersection coordinate in the scene is called intercept

in shootBeam() below. It’s calculated using picking, which translates the user’s
mouse click into a coordinate on the floor. (I’ll explain the implementation details a
little later in this chapter.)

shootBeam() moves the beam toward intercept, in incremental steps defined by
stepVec, with a brief delay between each move of SLEEP_TIME ms. As the beam is in
flight, a sound is played:

public void shootBeam(Point3d intercept)
{ double travelDist = startPt.distance(intercept);
 calcStepVec(intercept, travelDist);

 beamPS.setEnable(true); // switch on laser-beam sound

 double currDist = 0.0;
 currVec.set(startVec);
 beamTG.getTransform(beamT3d); // get current beam transform

 while (currDist <= travelDist) { // not at destination yet
 beamT3d.setTranslation(currVec); // move the laser beam
 beamTG.setTransform(beamT3d);
 currVec.add(stepVec);
 currDist += STEP_SIZE;
 try {
 Thread.sleep(SLEEP_TIME); // wait a while
 }
 catch (Exception ex) {}
 }

This is the Title of the Book, eMatter Edition

Causing an Explosion | 627

 // reset beam to its original coordinates
 beamT3d.setTranslation(startVec);
 beamTG.setTransform(beamT3d);

 beamPS.setEnable(false); // switch off laser-beam sound
} // end of shootBeam()

shootBeam() first calculates the distance to be traveled (travelDist) from the starting
point to the intercept, as well as a translation increment (stepVec) based on a hard-
wired step size constant. These values are shown graphically in Figure 23-7.

The step size affects the user’s perception of how fast the laser beam is moving. The
larger the step, the quicker the beam reaches intercept. setEnable() controls the
playing of the sound, which requires the WRITE capability bit to be set in initSound().

The beam’s current position is stored in currVec and its current distance along the
path to the intercept in currDist. currVec is used to update the beam’s position by
modifying its TransformGroup, beamTG. The while loop continues this process until the
required distance has been traveled. When the beam reaches the intercept point, it’s
reset to its original position at startVec, which hides it from the user back inside the
cone.

Causing an Explosion
The explosion is best explained by considering the subgraph created inside
ExplosionsClip (see Figure 23-8).

The visual component of the explosion is implemented as a series of transparent GIF
images, drawn one after another onto the surface of a QuadArray inside explShape.
explTG is utilized to position the explosion shape at the point where the user clicked
the mouse and to rotate it around the y-axis to face the user’s viewpoint. The Switch

node is used to hide the explosion until needed.

The explosion sound is the PointSound node, explPS. The showExplosion() method
positions it at the intercept point and then enables it (plays it).

The original design for the explosion had the PointSound attached to the explTG

TransformGroup, which meant that would automatically move as the explShape node

Figure 23-7. Moving the laser beam

startPt
intercept

travelDist

stepVec

This is the Title of the Book, eMatter Edition

628 | Chapter 23: Shooting a Gun

moved. Unfortunately, a runtime exception rose as the sound was enabled, making
this approach impossible. After some testing, I discovered the exception was caused
by the PointSound object being attached below the Switch node, explSwitch. This
attachment should be possible; the exception is a bug in Java 3D 1.3.1.

I coded around the problem by moving the PointSound node to a different branch
from the Switch node (as shown in Figure 23-8). This avoids the exception but means
that the sound node must be explicitly translated to stay with the explShape node as
it moves.

The subgraph is created in the constructor for ExplosionsClip, and a reference to
explBG is retrieved by WrapShooter3D via calling getExplBG().

The explosion is displayed by showExplosion(), which is called from FireBeam, after
the laser beam has reached the click point:

public void showExplosion(double turnAngle, Point3d intercept)
// turn to face eye and move to click point
{
 endVec.set(intercept.x, intercept.y, intercept.z);
 rotateMove(turnAngle, endVec);

 explSwitch.setWhichChild(Switch.CHILD_ALL); // make visible
 explPS.setPosition((float)intercept.x,
 (float)intercept.y, (float)intercept.z);
 // move sound to click point
 explPS.setEnable(true); // switch on explosion sound
 explShape.showSeries(); // show the explosion

Figure 23-8. Scenegraph branch for ExplosionsClip

BG explBG

Switch

TG

explSwitch

explTG

explShape

ImagesSeries
(subclass of Shape3D)

PointSound

explPS

This is the Title of the Book, eMatter Edition

Causing an Explosion | 629

 explPS.setEnable(false); // switch off sound
 explSwitch.setWhichChild(Switch.CHILD_NONE); // invisible

 // face front again, and reset position
 rotateMove(-turnAngle, startVec);
} // end of showExplosion()

FireBeam passes the user’s click point (intercept) and the turning angle for the explo-
sion (turnAngle) to showExplosion(). The rotation is handled by rotateMove()

(explained below), and the animation is triggered by a call to showSeries() in the
ImagesSeries object.

The PointSound, explPS, requires certain capabilities so it can be positioned and
enabled; the capabilities are set by initSound(). After the explosion has finished, it is
hidden, and rotated back to its original orientation.

Rotating the Explosion
rotateMove() uses the supplied turning angle to rotate the explosion around the y-
axis, so can employ rotY() rather than an AxisAngle4d object. As usual, the object
must be translated to the origin before the rotation and then translated to its new
position afterward:

private void rotateMove(double turn, Vector3d vec)
// rotate the explosion around the Y-axis, and move to vec
{
 explTG.getTransform(explT3d); // get transform info
 explT3d.setTranslation(ORIGIN); // move to origin

 rotT3d.rotY(turn); // rotate around the y-axis
 explT3d.mul(rotT3d);

 explT3d.setTranslation(vec); // move to vector
 explTG.setTransform(explT3d); // update transform
}

Displaying a Series of Images
The constructor for the ImagesSeries class takes a partial filename (e.g., images/
explo) and a number (e.g., 6) and attempts to loads GIF files which use that name
and numbering scheme (e.g., images/explo0.gif through images/explo5.gif). The
images are stored as ImageComponent2D objects in an ims[] array.

ImagesSeries is a Shape3D subclass, containing a QuadArray placed on the XZ plane
centered at (0,0). The quad is a single square, of size screenSize, with its front face
oriented along the positive z-axis, as in Figure 23-9.

This is the Title of the Book, eMatter Edition

630 | Chapter 23: Shooting a Gun

Implicit in the quad’s square shape is the assumption that the GIFs will be square;
otherwise, each one will be distorted as it’s laid over the face of the quad. The texture
coordinates are assigned counterclockwise from the bottom-left coordinate of the
quad, so the texture will be the right way up and facing out along the positive z-axis
toward the viewer.

The quad’s face is covered with a series of transparent GIFs, so the shape’s appear-
ance must use blended transparency. This means that the transparent parts of a GIF
will remain transparent as the GIF is applied to the shape as a texture:

Appearance app = new Appearance();
// blended transparency so texture can be irregular
TransparencyAttributes tra = new TransparencyAttributes();
tra.setTransparencyMode(TransparencyAttributes.BLENDED);
app.setTransparencyAttributes(tra);

No Material node component is assigned to the shape, which means that lighting
cannot be enabled, so the shape is unaffected by the lighting in the scene. This is the
code to do this:

// mix the texture and the material color
TextureAttributes ta = new TextureAttributes();
ta.setTextureMode(TextureAttributes.MODULATE);
app.setTextureAttributes(ta);

Material mat = new Material(); // set material and lighting
mat.setLightingEnable(true);
app.setMaterial(mat);

The Texture2D object that holds the texture is based on the size of the first image in
ims[]. The code assumes that all the subsequent GIFs are the same size:

// Set the texture from the first loaded image
texture = new Texture2D(Texture2D.BASE_LEVEL, Texture.RGBA,
 ims[0].getWidth(), ims[0].getHeight());
texture.setImage(0, ims[0]);

Figure 23-9. The ImagesSeries QuadArray

x

z

y

(0,0,0)

screenSize

This is the Title of the Book, eMatter Edition

Picking with a Mouse Click | 631

texture.setCapability(Texture.ALLOW_IMAGE_WRITE); // texture can change
app.setTexture(texture);

setAppearance(app);

The capability bit allows the texture to be changed by showSeries(), which is called
from ExplosionsClip:

public void showSeries()
{ for (int i=0; i < ims.length; i++) {
 texture.setImage(0, ims[i]);
 try {
 Thread.sleep(DELAY); // wait a while
 }
 catch (Exception ex) {}
 }
}

showSeries() defines an animation sequence that’s played once and then stops.
Variants of this idea allow the animation to cycle or to be played from some arbi-
trary point in the sequence. For example, a cyclic animation might be useful for
showing trees waving in the breeze.

Picking with a Mouse Click
Picking projects a pick shape (usually a line or ray) into the scene from the user’s
viewpoint through the mouse pointer position on screen until it intersects with a
shape in the scene (see Figure 23-3).

Java 3D’s PickCanvas class is used to turn a mouse click into a ray (a PickShape

object). Java 3D finds the pickable shapes that intersect with the PickShape object,
returning them as a list of PickResult objects. Returning the PickResult object clos-
est to the viewer is possible.

A single PickResult may contain many PickIntersection objects, which hold the
data for each intersection of the shape (e.g., the ray may go through the front and
back face of a shape, leading to two intersection points).

The complexity of the picking coding is somewhat alleviated by using Java 3D’s
PickMouseBehavior utility class, a subclass of Behaviour, which hides much of the
picking mechanism. The general format for a subclass of PickMouseBehavior is given
in Example 23-1.

Example 23-1. A typical PickMouseBehavior subclass

import javax.media.j3d.*;
import com.sun.j3d.utils.picking.PickTool;
import com.sun.j3d.utils.picking.PickResult;
import com.sun.j3d.utils.picking.behaviors.PickMouseBehavior;

This is the Title of the Book, eMatter Edition

632 | Chapter 23: Shooting a Gun

The constructor must pass the Canvas3D object, a BranchGroup, and bounds informa-
tion to the superclass for the superclass to create a PickCanvas object and a
PickShape. The PickCanvas object, pickCanvas, is available and can be used to config-
ure the PickShape, such as changing the pick shape from a ray to a cone or adjusting
the tolerance for how close a shape needs to be to the PickShape to be picked.

Many subclasses of PickShape (e.g., PickRay, PickCone, PickCylinder) specify differ-
ent kinds of ray geometries; the default one employed by PickMouseBehavior is a line
(PickRay). PickCanvas is intended to make picking based on mouse events easier. It’s
a subclass of PickTool, which has several additional methods for changing the pick
shape and specifying what is returned by the picking operation.

// other imports as necessary...

public class ExamplePickBehavior extends PickMouseBehavior
{
 public PickHighlightBehavior(Canvas3D canvas, BranchGroup bg, Bounds bounds)
 { super(canvas, bg, bounds);
 setSchedulingBounds(bounds);

 pickCanvas.setMode(PickTool.GEOMETRY_INTERSECT_INFO);
 // allows PickIntersection objects to be returned
 }

 public void updateScene(int xpos, int ypos)
 {
 pickCanvas.setShapeLocation(xpos, ypos);
 // register mouse pointer location on the screen (canvas)

 Point3d eyePos = pickCanvas.getStartPosition();
 // get the viewer's eye location

 PickResult pickResult = null;
 pickResult = pickCanvas.pickClosest();
 // get the intersected shape closest to the viewer

 if (pickResult != null) {
 PickIntersection pi = pickResult.getClosestIntersection(eyePos);
 // get the closest intersect to the eyePos point
 Point3d intercept = pi.getPointCoordinatesVW();
 // extract the intersection pt in scene coords space
 // use the intersection pt in some way...
 }
 } // end of updateScene()

} // end of ExamplePickBehavior class

Example 23-1. A typical PickMouseBehavior subclass (continued)

This is the Title of the Book, eMatter Edition

Picking with a Mouse Click | 633

The call to pickCanvas.setMode() in ExamplePickBehavior’s constructor sets the level
of detail for the returned pick and intersection data. The various modes are:

BOUNDS

This mode tests for intersection using the bounds of the shapes rather than the
shapes themselves, so is quicker than the other two modes.

GEOMETRY

This mode uses the actual shapes in its tests, so is more accurate than the BOUNDS

mode. The BOUNDS and GEOMETRY modes return the intersected shapes is.

GEOMETRY_INTERSECT_INFO

This mode tests for intersection using the shapes and returns details about the
intersections, stored in PickIntersection objects. The level of detail is con-
trolled by the capabilities set in the shapes using PickTool’s setCapabilities()

method.

From Mouse Click to Picked Object
The PickMouseBehavior class contains fully implemented initialize() and
processStimulus() methods, which should not be changed when PickMouseBehavior

is subclassed. Instead, the programmer should implement the updateScene()

method, which is called whenever the user clicks the mouse button—this method is
passed the (x, y) coordinate of the mouse click on the screen (the Canvas3D).

The first step in updateScene() is to call setShapeLocation() to inform pickCanvas of
the mouse position so the PickShape (the ray) can be cast into the scene. The inter-
secting shapes can be obtained in various ways: pickClosest() gets the PickResult

object closest to the viewer. There are other methods:

PickResult[] pickAll();
PickResult[] pickAllSorted();
PickResult pickAny();

The first two return all the intersecting shapes, with the second method sorting them
into increasing distance from the viewer. pickAny() returns any shape from the ones
found, which should be quicker than finding the closest.

Finding Intersections
A PickResult will usually refer to a Shape3D containing a GeometryArray subclass
made up of many surfaces. All the intersections between the shape and the ray can be
obtained in the following way:

PickIntersection pi;
for (int i = 0; i < pickResult.numIntersections(); i++) {
 pi = pickResult.getIntersection(i);
 // use pi in some way...
}

This is the Title of the Book, eMatter Edition

634 | Chapter 23: Shooting a Gun

More commonly, the intersection closest to some point in the scene is obtained:

PickIntersection pi = pickResult.getClosestIntersection(pt);

In ExamplePickBehavior, the point is the viewer’s position, which is extracted from
pickCanvas with getStartPosition().

A PickIntersection object can hold much information about the GeometryArray, such
as the point, line, triangle, or quad that was intersected. The intersection point can
be retrieved in terms of the picked shape’s local coordinate system or in terms of the
scene’s coordinate system. If the picking level for the shape is INTERSECT_FULL, then
there will be details about the closest vertex to the intersection point, and the color,
normal and texture coordinates at the intersection point.

The call to getPointCoordinatesVW() obtains the intercept point in the scene’s coor-
dinate space:

Point3d intercept = pi.getPointCoordinatesVW();

Shooting Behavior
ShootingBehaviour is a subclass of PickMouseBehavior, which controls the various
shooting-related entities when the user clicks the mouse. The gun cone and laser
beam are rotated to point at the placed clicked on the checkerboard. Then, a
FireBeam thread is created to move (fire) the beam towards the location and display
the explosion.

ShootingBehaviour’s central role in the application means that it has passed refer-
ences to the GunTurret, LaserBeam, and ExplosionsClip objects. In the first version of
this class, the code was complex since it dealt directly with the TransformGroups and
Shape3Ds of the shooting elements. Good OOD of the application entities (e.g., hid-
ing subgraph details and computation) leads to a halving of ShootingBehaviour’s code
length, making it easier to understand, maintain, and modify.

The ShootingBehaviour constructor is similar to the constructor in ExamplePickBehavior:

public ShootingBehaviour(Canvas3D canvas, BranchGroup root,
 Bounds bounds, Point3d sp, ExplosionsClip ec,
 LaserBeam lb, GunTurret g)
{ super(canvas, root, bounds);
 setSchedulingBounds(bounds);

 pickCanvas.setMode(PickCanvas.GEOMETRY_INTERSECT_INFO);
 // allows PickIntersection objects to be returned

 startPt = sp; // location of the gun cone
 explsClip = ec;
 laser = lb;
 gun = g;
 // other initialization code...
}

This is the Title of the Book, eMatter Edition

Shooting Behavior | 635

updateScene() is similar to the one in ExamplePickBehavior since it requires intersec-
tion information. updateScene() rotates the gun cone and beam to point at the inter-
cept and starts a FireBeam thread to fire the beam and display an explosion:

public void updateScene(int xpos, int ypos)
{
 if (finishedShot) { // previous shot has finished
 pickCanvas.setShapeLocation(xpos, ypos);

 Point3d eyePos = pickCanvas.getStartPosition(); // viewer loc

 PickResult pickResult = null;
 pickResult = pickCanvas.pickClosest();

 if (pickResult != null) {
 pickResultInfo(pickResult); // for debugging

 PickIntersection pi = pickResult.getClosestIntersection(startPt);
 // get intersection closest to the gun cone
 Point3d intercept = pi.getPointCoordinatesVW();

 rotateToPoint(intercept); // rotate the cone and beam
 double turnAngle = calcTurn(eyePos, intercept);

 finishedShot = false;
 new FireBeam(intercept, this, laser, explsClip, turnAngle).start();
 // fire the beam and show explosion
 }
 }
} // end of updateScene()

The finishedShot flag has an important effect on the behavior of the application—it
only allows a single laser beam to be in the air at a time. As FireBeam is started,
finishedShot is set to false and will remain so until the thread has moved the beam
to the intercept point. If the user clicks on the checkerboard while a beam is still
traveling, nothing will happen since the if test in updateScene() will return false. As
a result, the application only requires a single laser-beam object. Otherwise, the cod-
ing would have to deal with a user that could quickly click multiple times, each
requiring its own laser beam.

The call to getClosestIntersection() uses startPt, which is set in the constructor to
be the cone’s location. The resulting intercept will be the point nearest to the cone.

Debugging Picking
The call to pickResultInfo() plays no part in the shooting process; it’s used to print
extra information about the PickResult object (pr). I use this method to check that
the picking code is selecting the correct shape.

This is the Title of the Book, eMatter Edition

636 | Chapter 23: Shooting a Gun

getNode() is called to return a reference to the shape that the PickResult object rep-
resents:

Shape3D shape = (Shape3D) pr.getNode(PickResult.SHAPE3D);

The code must deal with a possible null result, which occurs if the selected node is
not a Shape3D object. However, I’ve been careful to ensure only Shape3D nodes are
pickable in this application, so there shouldn’t be any problem.

The PickResult object, pr, contains the scene graph path between the Locale and
picked node, which can be employed to access an object above the picked node,
such as a TransformGroup. The path is obtained by calling getSceneGraph():

SceneGraphPath path = pr.getSceneGraphPath();

The path may often be empty since internal nodes aren’t added to it unless their
ENABLE_PICK_REPORTING capability bit is set.

The path can be printed with a for loop:

int pathLen = path.nodeCount();
for (int i=0; i < pathLen; i++) {
 Node node = path.getNode(i);
 System.out.println(i + ". Node: " + node);
}

println() requires that the sceneBG BranchGroup node created in WrapShooter3D sets
the necessary capability bit:

sceneBG.setCapability(BranchGroup.ENABLE_PICK_REPORTING);

Here is the output from the for loop in pickResultInfo():

0. Node: javax.media.j3d.BranchGroup@2bcd4b

This isn’t particularly informative. A typical way of improving the labeling of scene
graph nodes is to use the setUserData() method from SceneGraphObject, which
allows arbitrary objects to be assigned to a node (e.g., a String object):

sceneBG.setUserData("the sceneBG node");

After a reference to the node has been retrieved, getUserData() can be utilized:

String name = (String)node.getUserData();
System.out.println(i + ". Node name: " + name);

Rotating the Cone
rotateToPoint() rotates the gun cone and laser-beam cylinder to point at the inter-
cept. The problem is that a simple rotation about the x-, y-, or z-axis is insufficient
since the intercept can be anywhere on the floor. Instead, an AxisAngle4d rotation is
utilized, which allows a rotation about any vector. The essential algorithm is illus-
trated in Figure 23-10.

This is the Title of the Book, eMatter Edition

Shooting Behavior | 637

The cone (and beam) start by pointing in the UPVEC direction at the StartPt location,
and they must be rotated to point in the clickVec direction, a rotation of shootAngle
radians. The rotation is around the axisVec vector, which is perpendicular to the
plane defined by the two vectors UPVEC and clickVec.

startPt and UPVEC values are predefined, and intercept is supplied by updateScene()

when it calls rotateToPoint(). clickVec is readily calculated from the startPt and
intercept points:

clickVec.set(intercept.x-startPt.x, intercept.y-startPt.y,
 intercept.z-startPt.z);

axisVec is the cross product, and Vector3d contains a cross() method which calcu-
lates it, given normalized values for UPVEC and clickVec:

clickVec.normalize();
axisVec.cross(UPVEC, clickVec);

The cross product of two vectors is a vector in a direction perpendicu-
lar to the two original vectors, with a magnitude equal to one (assum-
ing that the original vectors are normalized).

The rotation angle, shootAngle, between UPVEC and clickVec can be easily obtained
with Vector3d’s angle() method:

shootAngle = UPVEC.angle(clickVec);

shootAngle is related to the dot product: the dot product of vectors a and b (often
written as a . b) gives the length of the projection of b onto a. For example, a.b =

|x| in Figure 23-11.

The angle, theta, between a and b can be expressed as the cosine function in
Figure 23-12:

If a and b are unit vectors, as in this code, then:

cos theta = a . b

Figure 23-10. Rotating to face the intercept

startPt

UPVEC

intercept
clickVec

axisVec

shootAngle

This is the Title of the Book, eMatter Edition

638 | Chapter 23: Shooting a Gun

The cosine function can be removed by taking the inverse cosine of both sides (the
arc cosine):

theta = acos (a . b)

acos() is the arc cosine. Since shootAngle is the same as theta, I can obtain it using:

shootAngle = Math.acos(UPVEC.dot(clickVec));

Math.dot() is the dot product operation, and Math.acos() is the arc cosine.

An AxisAngle4d object requires a vector and rotation, which can now be supplied:

rotAxisAngle.set(axisVec, shootAngle);

This object is used to rotate the cone and laser beam:

gun.makeRotation(rotAxisAngle);
laser.makeRotation(rotAxisAngle);

A complication is that rotateToPoint() assumes that the cone and beam start in the
UPVEC direction, which is true at the start of the application. For rotations after the
first, the objects must be rotated back to the vertical first. This is achieved by rotat-
ing by shootAngle around the negative of the axisVec vector:

if (!firstRotation) { // undo previous rotations
 axisVec.negate();
 rotAxisAngle.set(axisVec, shootAngle);
 gun.makeRotation(rotAxisAngle);
 laser.makeRotation(rotAxisAngle);
}

Figure 23-11. The dot product of vectors a and b

Figure 23-12. The cosine function between the vectors

b

a

xtheta

cos theta =
|a| |b|

a . b

This is the Title of the Book, eMatter Edition

Firing the Beam | 639

Making the Explosion Face the Viewer
updateScene() calls calcTurn() to calculate the angle that the explosion shape
should rotate to face the viewer:

double turnAngle = calcTurn(eyePos, intercept);

The algorithm is illustrated by Figure 23-13.

The stripy red bar in Figure 23-13 is the explosion quad, which originally faces along
the positive z-axis. I assume the viewer is at the eyePos position, an offset of xDiff

units along the x-axis and zDiff units along the z-axis from the quad. A little bit of
geometry shows that the angle that eyePos makes with the positive z-axis (called
turnAngle) is the same as the angle that the quad should rotate to face the eyePos

position.

The eyePos and intercept points are supplied by updateScene(). turnAngle is readily
obtained as the arc tangent of xDiff and zDiff:

double zDiff = eyePos.z - intercept.z;
double xDiff = eyePos.x - intercept.x;
double turnAngle = Math.atan2(xDiff, zDiff);

Firing the Beam
The FireBeam thread is started from updateScene() like so:

new FireBeam(intercept, this, laser, explsClip, turnAngle).start();

A basic question is why use a thread? One answer is that by passing the job of beam
delivery and explosion to a new thread, the ShootingBehaviour object is free to do

Figure 23-13. Turning to face the viewer

intercept

eyePos

turnAngle

zDiff

xDiff

x

z

This is the Title of the Book, eMatter Edition

640 | Chapter 23: Shooting a Gun

other tasks. For example, it could show a puff of animated smoke rising from the
gun’s cone or have the cone recoil slightly. Shooter3D doesn’t do these things, as that
would further complicate the example. At present, the threaded implementation
allows updateScene() to process a user’s new pick selection once the finishedShot

Boolean has been set to true near the end of run() in the FireBeam thread:

public void run()
{
 laser.shootBeam(intercept);
 shooter.setFinishedShot(); // beam has reached its target
 explsClip.showExplosion(turnAngle, intercept); // boom!
}

The call to setFinishedShot() sets finishedShot to true, which permits updateScene()
to respond to user clicks and, simultaneously, the explosion for the current beam
will be initiated from FireBeam. This improves the responsiveness of the application
since the explosion animation lasts one to two seconds.

However, there’s a problem: what if the explosion animation for the beam (i.e., the
current call to showExplosion()) doesn’t finish before the FireBeam thread for the
next beam calls showExplosion() again? The worst that happens is an interruption to
the explosion animation and the truncation of the playing of the sound. However, in
the vast majority of situations, the travel time of the laser beam and the explosion
animation duration means that the explosion finishes before it’s required again.

From a practical point of view, this may be sufficient, but in the next chapter you’ll
see a better coding approach that allows multiple beams and multiple explosions to
coexist safely on screen at the same time.

More on Picking
The Java 3D tutorial (http://java.sun.com/developer/onlineTraining/java3d/) has a long
section on picking in Chapter 4, “Interaction and Animation,” with two examples:
MousePickApp.java and PickCallbackApp.java. The former shows how to use the
PickRotateBehavior subclass of PickMouseBehavior to select and rotate shapes. The
other predefined subclasses are PickTranslateBehavior and PickZoomBehavior. Pick-
CallbackApp.java explains how to attach a callback method to the PickRotateBehavior

object, which is called automatically when a pick operation takes place. The code is
derived from MousePickApp.java.

There’s not much information in the Java 3D documentation on how to create your
own subclasses of MousePickBehavior, but it’s possible to look at the source code for
these utilities in java3d-utils-src.jar. A potential source of confusion is that the JAR con-
tains two copies of each of the picking classes: deprecated ones in com.sun.j3dutils.

behaviors.picking and the current versions in com.sun.j3dutils.picking.behaviors.

This is the Title of the Book, eMatter Edition

More on Picking | 641

There are several Java 3D picking demos, in PickTest/, PickText3D/, and TickTock-
Picking/. The TickTockPicking example involves the picking of cubes and tetrahe-
drons to change their appearance and utilizes a simple subclass of PickMouseBehavior
called PickHighlightBehavior.

I’ll return to picking in Chapter 26 when I use it to determine terrain coordinates
below viewers as they move around a landscape. This is a common approach to han-
dling movement over irregular surfaces. The code utilizes a PickTool object to fire a
ray straight down beneath the viewer to intersect with the shape representing the
ground.

This is the Title of the Book, eMatter Edition

642

Chapter 24CHAPTER 24

A First-Person Shooter

This is the second chapter on 3D shooting. Chapter 23 was about third-person
shooting, or when an object in the scene fires at something. This chapter is about
first-person shooting (FPS) and puts the gun in the user’s hand. There are several
new issues to deal with:

Faking the 3D
There’s no need to build 3D models of the user’s arm, hand, and gun. The
objects always stay in the same spot in front of the user, so a 2D image showing
a static view of the gun hand is quite sufficient. In general, a 3D model is only
needed if the user is going to move around it or through it. To keep the gun
hand image fixed relative to the user’s viewpoint, I’ll attach the image to the
ViewingPlatform component of the scene graph.

Keyboard-based movement
Up to now, I’ve been using the Java 3D OrbitBehavior class to change the view-
point with the mouse, but I’m going to replace it with my own KeyBehavior class
(so called because key presses drive the movement). The viewer can move for-
ward, backward, left or right, rotate left or right, and float up or down.

Rapid-fire action
The gun in Chapter 23 can fire only a single laser beam at a time. Another beam
cannot be shot until the current one has disappeared or has been replaced by an
explosion. In this chapter, I’ll explain how to have multiple laser beams and
explosions in the scene at the same time. This is important when the user wants
to indulge in some rapid firing.

Hitting a target
Chapter 23 employs Java 3D picking to guide a beam to its target. This chapter
utilizes a simpler approach, which detects a hit by comparing the beam’s cur-
rent location with the target’s coordinates. A laser beam that misses the target
vanishes after traveling a certain distance.

This is the Title of the Book, eMatter Edition

Class Diagrams for FPShooter3D | 643

Creating beams and explosions
This chapter reuses (or slightly changes) the techniques of Chapter 23 for creat-
ing laser beams (thin red cylinders) and animated explosions, so it’s advisable to
read that chapter before reading this one.

Figure 24-1 contains two screenshots for the FPShooter3D application: the first has
the user strafing a robot with only laser beams that come close enough to the robot
explode. The second screenshot shows a similar scene after the user has crept behind
and up close to the robot.

A laser beam that misses the target vanishes after traveling a certain distance. To sim-
plify the coding, no sounds are played. The explosions do no harm to the robot,
which keeps standing there.

Class Diagrams for FPShooter3D
Figure 24-2 shows the class diagrams for the FPShooter3D application. The class
names and public methods are included.

FPShooter3D is the top-level JFrame for the application and similar to earlier JFrame

classes. WrapFPShooter3D creates the 3D scene as usual and adds the target and viewer
elements. The target (a robot) is loaded with PropManager, a class first seen in
Chapter 16 in the Loader3D example. The gun-in-hand image is a transparent GIF
loaded and displayed by a TexturedPlane object. CheckerFloor and ColouredTiles

manage the checkerboard, as in earlier examples. They were first encountered in
Chapter 15, in Checkers3D.

Figure 24-1. FPS diplomacy

This is the Title of the Book, eMatter Edition

644 | Chapter 24: A First-Person Shooter

A LaserShot object represents a single beam and its (possible) explosion. The
sequence of explosion images are stored in an ImageCsSeries object, a variant of the
ImagesSeries class from Chapter 23. The animation of the beam and explosion is initi-
ated from an AnimBeam thread. AmmoManager manages a collection of LaserShot objects,
which allows the application to display several beams and explosions concurrently.

The code for this application is in the directory FPShooter3D/.

Setting Up the Target
createSceneGraph() in WrapFPShooter3D loads the target using PropManager, places it
in the scene, and records its location:

PropManager propMan = new PropManager(TARGET, true);
sceneBG.addChild(propMan.getTG());
Vector3d targetVec = propMan.getLoc();
System.out.println("Location of target: " + targetVec);

Figure 24-2. Class diagrams for FPShooter3D

This is the Title of the Book, eMatter Edition

Positioning and Moving the User’s Viewpoint | 645

TARGET is Coolrobo.3ds, and the true argument to the PropManager constructor means
that there’s a coords datafile that fine-tunes the robot’s position. The robot appears
facing along the positive z-axis, with its feet resting on the XZ plane, in the middle of
the floor. targetVec holds the center point of the shape and is used to calculate if a
beam is close enough to the robot to trigger an explosion.

Positioning and Moving the User’s
Viewpoint
The user’s viewpoint (sometimes called the application camera) is positioned by the
view branch part of the scene graph; its main elements are shown in Figure 24-3.

You haven’t seen the view branch much up to now since it’s been built automati-
cally when I’ve used the SimpleUniverse utility class to create the scene graph. How-
ever, I need to attach the gun-in-hand image to the viewpoint and move it around in
response to user key presses.

The viewpoint is represented by the ViewPlatform node in Figure 24-3 (the triangle)
and is repositioned by applying transforms to the TG node above it (TG is short for
TransformGroup). It’s possible to add extra TransformGroups above the ViewPlatform

node to implement more complex forms of movements, but I don’t need to do that
in this example.

Figure 24-3. The view branch subgraph

Virtual Universe

Locale

BG

TG

View

ViewPlatform

Canvas3D

Viewer

Viewing
Platform

BG

PlatformGeometry

This is the Title of the Book, eMatter Edition

646 | Chapter 24: A First-Person Shooter

A shape is attached to the viewpoint by storing it in a Java 3D PlatformGeometry node
and connecting it to the TransformGroup above the ViewPlatform. This is the how I’ll
place the gun-in-hand image in front of the viewpoint.

SimpleUniverse offers access to the view branch via several utility classes: Viewer,
ViewingPlatform, PlatformGeometry, and others. You’ve seen ViewingPlatform used
several times to move the viewer’s starting position.

Viewpoint Behaviors
Java 3D contains several classes that can affect the viewpoint. In previous examples,
I’ve employed an OrbitBehavior object attached to the ViewingPlatform to convert
mouse presses into viewpoint movements (see the end of Chapter 15, for instance).
Here’s an example using OrbitBehavior:

OrbitBehavior orbit = new OrbitBehavior(c, OrbitBehavior.REVERSE_ALL);
orbit.setSchedulingBounds(bounds);

ViewingPlatform vp = su.getViewingPlatform();
vp.setViewPlatformBehavior(orbit);

The behavior is attached to ViewingPlatform with the setViewPlatformBehavior()

method. ViewingPlatform hides ViewPlatform and its TransformGroup and is repre-
sented by the rectangle around those nodes in Figure 24-3. When the orbit behavior
is linked to the ViewingPlatform, it’s being connected to the TransformGroup.

OrbitBehavior is a member of a set of classes for implementing behaviors that affect
the TransformGroup above ViewPlatform. The hierarchy is shown in Figure 24-4.

ViewPlatformBehavior is an abstract class that supports basic functionality; it’s a sub-
class of Behavior. ViewPlatformAWTBehavior catches AWT events and places them in a
queue. While pending events or mouse motion are occurring, the behavior will wake up
every frame and call processAWTEvents() and integrateTransforms(). WandViewBehavior

manipulates the transform using a motion-tracked wand or mouse equipped with a six-
degrees-of-freedom (6DOF) sensor.

Figure 24-4. ViewPlatformBehavior and subclasses

extends

This is the Title of the Book, eMatter Edition

Initializing the User’s Viewpoint | 647

The source code for all these classes can be found in java3d-utils-src.jar.

OrbitBehavior is mouse-driven, but FPShooter3D allows the user to control the view-
point using key presses. Another Java 3D utility class, KeyNavigatorBehavior, does
just that. It responds to the arrow keys, +, -, page up, page down, utilizes key presses
and releases, and the elapsed time between these key presses. KeyNavigatorBehavior
makes use of KeyNavigator, yet another utility class.

The source code for both of these classes are in java3d-utils-src.jar.

A typical invocation of KeyNavigatorBehavior:

TransformGroup vpTrans = su.getViewingPlatform().getViewPlatformTransform();
KeyNavigatorBehavior keybehavior = new KeyNavigatorBehavior(vpTrans);
keybehavior.setSchedulingBounds(bounds);
scene.addChild (keybehavior);

KeyNavigatorBehavior extends Behavior, so it requires the ViewPlatform TransformGroup

to be explicitly passed to it. The behavior can be linked to any node in the scene
graph, and not just the ViewPlatform’s TransformGroup.

KeyNavigatorBehavior is employed in IntersectTest.java in the PickTest/
directory of the Java 3D demos. Daniel Selman uses it in his Plat-
formTest.java example in section 6.3 of Java 3D Programming (Man-
ning Publications).

KeyNavigatorBehavior is a good choice for programs that need keyboard-based navi-
gation but offers too much functionality for this application. I’ll use KeyBehavior later
to build a keyboard navigator from the ground up.

Initializing the User’s Viewpoint
WrapShooter3D calls initUserControls() to configure the viewpoint. The method car-
ries out four main tasks:

• Sets up the user’s gun-in-hand image

• Positions the user’s initial viewpoint

• Calls AmmoManager to prepare beams and explosions

• Creates a KeyBehavior object to process keyboard input

This is the Title of the Book, eMatter Edition

648 | Chapter 24: A First-Person Shooter

The initUserControls() method is:

private void initUserControls(Vector3d targetVec)
{
 // add a 'gun in hand' image to the viewpoint
 ViewingPlatform vp = su.getViewingPlatform();
 PlatformGeometry pg = gunHand();
 vp.setPlatformGeometry(pg);

 // position starting viewpoint
 TransformGroup steerTG = vp.getViewPlatformTransform();
 Transform3D t3d = new Transform3D();
 steerTG.getTransform(t3d);
 t3d.setTranslation(new Vector3d(0, 1, Z_START));
 steerTG.setTransform(t3d);

 // create ammo (beams and explosions)
 AmmoManager ammoMan = new AmmoManager(steerTG, sceneBG, targetVec);

 // set up keyboard controls
 KeyBehavior keyBeh = new KeyBehavior(ammoMan);
 // keyBeh can ask the ammoManager to fire a beam
 keyBeh.setSchedulingBounds(bounds);
 vp.setViewPlatformBehavior(keyBeh);
} // end of initUserControls()

Adding an Image to the Viewpoint
The call to gunHand() inside initUserControls() hides the creation of a TexturedPlane

object just in front of and below the user’s viewpoint:

private PlatformGeometry gunHand()
{
 PlatformGeometry pg = new PlatformGeometry();
 // define a square of sides 0.2f, facing along the z-axis
 Point3f p1 = new Point3f(-0.1f, -0.3f, -0.7f);
 Point3f p2 = new Point3f(0.1f, -0.3f, -0.7f);
 Point3f p3 = new Point3f(0.1f, -0.1f, -0.7f);
 Point3f p4 = new Point3f(-0.1f, -0.1f, -0.7f);
 TexturedPlane tp = new TexturedPlane(p1, p2, p3, p4, GUN_PIC);
 pg.addChild(tp);
 return pg;
}

The Java 3D PlatformGeometry is nothing more than a detachable BranchGroup (con-
firmed by looking at its source code in java3d-utils-src.jar). It’s added to ViewPlatform’s
TransformGroup by a call to ViewingPlatform’s setPlatformGeometry().

My TexturedPlane class is a Shape3D holding a four-point QuadArray; the constructor is
called with the points and a transparent GIF that will be pasted onto the quad’s front
face. TexturedPlane is a simplification of the ImagesSeries class of the last chapter,
which lays a sequence of GIFs over a quad to exhibit an animation.

This is the Title of the Book, eMatter Edition

Adding an Image to the Viewpoint | 649

The most complicated aspect of using TexturedPlane is determining its scene coordi-
nates. I used trial and error until the image appeared at the bottom edge of the
screen. It’s helpful to remember that the (x, y) coordinate pair (0, 0) corresponds to
the middle of the canvas, and that negative z-coordinates are farther into the scene.
For example, look at the following points:

Point3f p1 = new Point3f(-0.1f, -0.1f, -1.7f);
Point3f p2 = new Point3f(0.1f, -0.1f, -1.7f);
Point3f p3 = new Point3f(0.1f, 0.1f, -1.7f);
Point3f p4 = new Point3f(-0.1f, 0.1f, -1.7f);

These points cause the gun-in-hand image to be located (as shown in Figure 24-5) in
the center of the screen, farther into the scene.

An alternative way of placing the image is to use Java 3D’s Viewer and ViewerAvatar.
A fragment of code illustrates the approach:

TexturedPlane tp = new TexturedPlane(p1, p2, p3, p4, GUN_PIC);
ViewerAvatar va = new ViewerAvatar();
va.addChild(tp);
Viewer viewer = su.getViewer();
viewer.setAvatar(va);

ViewerAvatar plays the same role as PlatformGeometry: it’s a subclass of BranchGroup.
setAvatar() connects it to the TransformGroup above the ViewPlatform node.

The word avatar in this situation means an on-screen representation
of the user (or part of the user). Section 6.3 of Java 3D Programming
(Manning Publications) by Daniel Selman describes two avatar exam-
ples (PlatformTest.java and AvatarTest.java) using the techniques
described here. In PlatformTest.java, the avatars are cones with text
labels, and in AvatarTest.java the avatar is a large cube.

Figure 24-5. Gun-in-hand at a new initial location

This is the Title of the Book, eMatter Edition

650 | Chapter 24: A First-Person Shooter

Why Use a GIF?
Since any shape can be attached to the viewpoint, why choose a QuadArray acting as a
surface for a transparent GIF? One reason is efficiency because it would require a
complex shape to represent a hand and a gun, together with suitable coloring and
textures. By contrast, the GIF is only 5 KB.

Another advantage is that occlusion is less likely to happen. Occlusion occurs when
the image at the viewpoint intersects with a shape in the scene and is partially hid-
den. Since the GIF is flat, the viewpoint must move right up to a shape before occlu-
sion occurs.

3D special effects, such as the gun recoiling, can still be coded by
using multiple gun-in-hand images and employing a variant of the
ImagesSeries class to animate them.

Managing the Ammunition
A drawback of the shooting application in Chapter 23 is that only one laser beam
can appear at a time, and if another explosion is triggered before the previous one
has finished, then the animation (and sound effects) may be disrupted. My
AmmoManager class fixes these problems by creating a collection of beams and explo-
sions; several beam or explosions can appear at the same time because they’re repre-
sented by different objects.

Each beam and explosion is represented by a LaserShot object, and AmmoManager’s
constructor creates NUMBEAMS of them (20) and adds them to the scene:

public AmmoManager(TransformGroup steerTG,
 BranchGroup sceneBG, Vector3d targetVec)
{
 // load the explosion images
 ImageComponent2D[] exploIms = loadImages("explo/explo", 6);

 shots = new LaserShot[NUMBEAMS];
 for(int i=0; i < NUMBEAMS; i++) {
 shots[i] = new LaserShot(steerTG, exploIms, targetVec);
 // a LaserShot represents a single beam and explosion
 sceneBG.addChild(shots[i].getTG());
 }
 }

An explosion animation uses six GIFs, and it would be inefficient if each LaserShot

object loaded those images. It’s much better to load the images once into an array
(exploIms) and pass a reference to that array to each object. In this way each
LaserShot object uses the same animation.

This is the Title of the Book, eMatter Edition

Managing a Laser Beam | 651

Shooting the Gun
A beam is fired from the gun when the user presses the f key. The KeyBehavior object
captures the key press and calls fireBeam() in AmmoManager.

AmmoManager’s managerial role is to hide that there are NUMBEAMS LaserShot objects and,
instead, offers a single fireBeam() method, which fires a beam if one is available:

public void fireBeam()
{ for(int i=0; i < NUMBEAMS; i++) {
 if(shots[i].requestFiring())
 return;
 }
}

The requestFiring() method returns true if the beam is free and has been set in
motion. It returns false if the beam is already in use (i.e., traveling or exploding).

It’s possible for all the LaserShot objects to be busy when the user types f and for
nothing to happen. In practice, this situation is unlikely to occur because a beam is
busy for no more than 3 to 4 seconds, and 20 LaserShot objects are available. From a
gaming point of view, the possibility of running out of beams, albeit temporarily,
may make the game play more interesting.

Managing a Laser Beam
Each LaserShot object creates and manipulates a subgraph holding a beam (a thin
red cylinder) and explosion (an animation laid over a quad). The subgraph shown in
Figure 24-6 is created by makeBeam().

The top-level TransformGroup, beamTG, moves the beam (and explosion), and the Switch

allows the beam, explosion, or nothing to be displayed. The beamDir TransformGroup

Figure 24-6. Scenegraph branch for LaserShot

TG

Switch

ImageCsSeries
(subclass of Shape3D)

beamTG

Cylinder

TG

beamSW

beamDirexplShape

beam

This is the Title of the Book, eMatter Edition

652 | Chapter 24: A First-Person Shooter

initially positions and orients the cylinder so it’s pointing into the scene and appears
close to the nozzle of the gun image.

The cylinder has a radius of 0.05 units and a height of 0.5; it’s rotated by 90 degrees,
moved down by 0.3, and into the scene by 0.25 units. This means that the center of
its tail is located at (0, –0.3, 0) relative to the coordinate space of beamTG.

The ImagesCsSeries class is almost identical to the ImagesSeries class in Chapter 23.
The two differences are:

• The object doesn’t load its own GIFs. Instead, an array of ImageComponent2D

objects is passed to it in the constructor.

• The shape’s position is specified with a center point.

The call to ImageCsSeries’s constructor is carried out in makeBeam():

// create explosion, centered at (0,0,0), size 2.0f
explShape = new ImageCsSeries(new Point3f(), 2.0f, exploIms);

The explosion is a child of the same TransformGroup as the beam (beamTG), so placing
its center at (0, 0, 0) will make it appear roughly at the same place in beamTG’s coordi-
nate space as the tail of the beam.

The positioning of the beam is something of an art since it depends on
creating the illusion that it’s coming from the gun, which in turn
depends on the way that the gun-in-hand is drawn and placed on
screen. Similarly, the positioning of the explosion is governed by
where the center of the explosion is drawn in the GIF and by where
that center should be relative to the beam at explosion time.

Firing a Beam
AmmoManager calls LaserShot’s requestFiring() method to utilize the beam. The
request will only be accepted if the beam is not in use, which is recorded by setting
the inUse Boolean.

If the LaserShot is not in use (inUse == false), then LaserShot will start an AnimBeam

thread, and inUse is set to true:

public boolean requestFiring()
{ if (inUse)
 return false;
 else {
 inUse = true;
 new AnimBeam(this).start(); // calls moveBeam() inside a thread
 return true;
 }
}

This is the Title of the Book, eMatter Edition

Managing a Laser Beam | 653

The AnimBeam thread is simple: its sole purpose is to call the moveBeam() method back
in the LaserShot object. By being called in a thread, the method will be executed
without causing the rest of the application (e.g., KeyBehavior, AmmoManager) to wait.

moveBeam() incrementally moves the beam (and explosion) forward, starting from the
current viewer position (steerTG). If the beam gets close to the target, then the explo-
sion is shown; otherwise, the beam disappears after reaching a certain MAX_RANGE dis-
tance from the gun.

inUse is set to false again at the end of the method, allowing the LaserShot object to
be used again by AmmoManager:

public void moveBeam()
{
 // position the beam at the current viewer position
 steerTG.getTransform(tempT3d);
 beamTG.setTransform(tempT3d);
 showBeam(true);

 double currDist = 0.0;
 boolean hitTarget = closeToTarget();
 while ((currDist < MAX_RANGE) && (!hitTarget)) {
 doMove(INCR_VEC);
 hitTarget = closeToTarget();
 currDist += STEP;
 try {
 Thread.sleep(SLEEP_TIME);
 }
 catch (Exception ex) {}
 }

 showBeam(false); // make beam invisible
 if (hitTarget)
 showExplosion(); // if a hit, show explosion
 inUse = false; // shot is finished
}

The INCR_VEC vector (0, 0, –1) is repeatedly applied to the beam’s TransformGroup,
beamTG, by doMove() to move the beam away from the viewer’s position. This works
because the top-level transform for the beam (and explosion), beamTG, is set equal to
steerTG before the loop begins, giving it the same starting position and orientation as
the viewer.

This means that any movements will be relative to the local coordinate space of the
viewer. In particular, the INCR_VEC vector always represents a unit step directly away
from the viewpoint, farther into the scene. This is true irrespective of which way the
viewpoint is facing in the global coordinate space of the scene. The code for doMove() is:

private void doMove(Vector3d mv)
{ beamTG.getTransform(tempT3d);

This is the Title of the Book, eMatter Edition

654 | Chapter 24: A First-Person Shooter

 toMove.setTranslation(mv);
 tempT3d.mul(toMove);
 beamTG.setTransform(tempT3d);
}

The doMove and tempT3d references are global to avoid the creation of temporary
objects.

closeToTarget() does a comparison between the current position of the beam and
the position of the target. This is complicated because the beam’s location in the
scene is affected by beamTG and by its initial transformation with beamDir.

A general-purpose solution is to use getLocalToVworld() on the beam shape to
retrieve its overall transformation in terms of the global scene coordinates. This
requires a capability bit to be set when the shape is created:

beam.setCapability(Node.ALLOW_LOCAL_TO_VWORLD_READ);

The closeToTarget() method becomes:

private boolean closeToTarget()
/* The beam is close if its current position (currVec)
 is a short distance from the target position (targetVec).
*/
{ beam.getLocalToVworld(localT3d); // beam's trans in world coords
 localT3d.get(currVec); // get (x,y,z) component

 currVec.sub(targetVec); // calc distance between two positions
 double sqLen = currVec.lengthSquared();
 if (sqLen < HIT_RANGE*HIT_RANGE)
 return true;
 return false;
}

The code tests to see if the beam is within HIT_RANGE units of the center of the target.

Moving the Viewpoint
FPShooter3D moves the viewpoint by attaching a KeyBehavior object to ViewPlatform’s
TransformGroup:

ViewingPlatform vp = su.getViewingPlatform();

KeyBehavior keyBeh = new KeyBehavior(ammoMan);
 // keyBeh can ask the ammoManager to fire a beam
keyBeh.setSchedulingBounds(bounds);
vp.setViewPlatformBehavior(keyBeh);

KeyBehavior’s internals are similar to earlier keyboard-based behaviors developed for
the Tour3D and AnimTour3D examples in Chapters 18 and 19. A key press triggers the
behavior, and the associated KeyEvent object is used to determine the type of move-
ment to carry out.

This is the Title of the Book, eMatter Edition

Moving the Viewpoint | 655

Similarities aside though, one difference between KeyBehavior and earlier classes is
that this class extends ViewPlatformBehavior so it can work upon ViewPlatform’s
TransformGroup, called targetTG. targetTG is available to the methods defined in
KeyBehavior through inheritance.

Another difference is that the Tour3D and AnimTour3D behaviors pass the responsibil-
ity for movement and rotation to objects in the scene (i.e., to the sprites).
KeyBehavior carries out those operations for itself, by manipulating targetTG.
KeyBehavior detects key presses of the arrow keys, optionally combined with the alt
key to move forward, back, left, right, up, down, and rotate around the y-axis. The f
key requests beam firing.

processStimulus() calls processKeyEvent() when a key is detected:

private void processKeyEvent(KeyEvent eventKey)
{ int keyCode = eventKey.getKeyCode();
 if(eventKey.isAltDown()) // key + <alt>
 altMove(keyCode);
 else
 standardMove(keyCode);
}

altMove() and standardMove() are multi-way branches calling doMove() or rotateY()
(or AmmoManager’s fireBeam(), when the key is f). rotateY() applies a rotation to
targetTG:

private void rotateY(double radians)
{ targetTG.getTransform(t3d);
 toRot.rotY(radians);
 t3d.mul(toRot);
 targetTG.setTransform(t3d);
}

t3d and toRot are globals to avoid the overhead of temporary object creation.

This is the Title of the Book, eMatter Edition

656

Chapter 25CHAPTER 25

A 3D Maze

The main contributions of the first-person shooter (FPS) in Chapter 24 were a mov-
ing viewpoint (controlled by key presses), the use of a 2D image to simulate a gun
hand, and the ability to shoot multiple laser beams at once, generating multiple
explosions. Though the user could move about, there wasn’t any scenery (except the
robot target).

This chapter continues the FPS theme but concentrates on letting the user navigate
through a complex, realistic looking scene (a 3D maze) without walking through
walls or getting too lost:

Key-based navigation
I’ll be reusing (with a few changes) the KeyBehavior class from Chapter 24, so the
navigation is again controlled from the keyboard. The user can move forward,
backward, slide left or right, float up or down but can’t walk through walls or
descend through the floor. Rotations are limited to 90-degree turns to the left or
right, which simplifies the application’s position calculations.

A realistic scene
The scene is a 3D maze made from textured, colored blocks and cylinders. The
floor is tiled with a texture to make it look more detailed. The background is a
textured sphere, which means that the sky looks different when viewed from dif-
ferent locations in the scene. The lighting is deliberately gloomy (there’s no
ambient light), but a Java 3D Spotlight node is attached to the viewpoint, so the
user appears to be carrying a spotlight.

Multiple views to aid navigation
The application offers three views of the maze. The main application panel
shows the user’s forward facing view (I call this the main camera), a smaller
panel displays the view directly behind the user (the back facing camera), and a
third panel offers a schematic overview of the entire maze with the user repre-
sented by an arrow pointing in the current forward direction (the bird’s-eye
view). Multiple views are essential in gaming, especially an overview of the entire
scene.

This is the Title of the Book, eMatter Edition

Class Diagrams for Maze3D | 657

Viewpoint adjustments
The viewpoint’s field of view (FOV) is widened, so the user can see more of the
scene. I adjust the viewpoint’s forward and back clip distances, so the player can
move close to the maze’s blocks and cylinders and still see them.

Using a maze plan
The maze plan is generated by a separate application, which stores it as an ASCII
file. The file is read in by the Maze3D application at startup time to generate the
3D structures, create the schematic overview, and use the plan in collision detec-
tion code. The utilization of a separate plan allows the maze to be changed
quickly and easily.

Figure 25-1 shows a screenshot of the application, Maze3D, which consists of three
JPanels. The lefthand side shows the main camera, the top-right panel is the back
facing camera, and the bottom-right panel is the bird’s-eye view.

Class Diagrams for Maze3D
Figure 25-2 gives the class diagrams for the Maze3D application, including the class
names and public methods.

Maze3D is the usual top-level JFrame but does a bit more than in previous examples
since it builds the GUI interface for the three views of the game.

Figure 25-1. Navigating the 3D maze

This is the Title of the Book, eMatter Edition

658 | Chapter 25: A 3D Maze

WrapMaze3D is a JPanel that creates the 3D scene including the background, lighting,
and the main camera viewpoint. It utilizes maze and floor subgraphs made by other
objects, and it invokes a KeyBehavior object. The TexturedFloor and TexturedPlane

classes are used to create the floor.

MazeManager reads in the maze plan (a text file) prepared outside of Maze3D and gener-
ates two representations: a Java 3D subgraph that is added to the scene and a Java
2D image of the maze passed to the BirdsEye object. BirdsEye draws a 2D overview
of the maze and represents the user by moving and rotating an arrow over the top of
the maze image. This bird’s-eye view is displayed in the bottom righthand JPanel in
the GUI. SecondViewPanel creates a second view branch subgraph showing the view
behind the user’s current position (the back facing camera). The subgraph is added
to the main scene, and its Canvas3D object is linked to the top righthand JPanel in the
GUI.

KeyBehavior converts key presses into moves and rotations of the two cameras, and it
updates to the bird’s-eye view.

Figure 25-2. Class diagrams for Maze3D

This is the Title of the Book, eMatter Edition

Making a Maze Plan | 659

The example code for this application can be found in the Maze3D/
directory.

Making a Maze Plan
The 3D and 2D maze representations employed in Maze3D are created by the
MazeManager object after reading in a maze plan from a text file. Here is the plan in
maze1.txt:

 s
bbbbb bbbbb bbbbb bbbbb
b b
b b
bbbb ccccc ccccc bbbb
 b
 b
 b

Figure 25-3 shows that plan realized in Maze3D (via the call java Maze3D maze1.txt).

Figure 25-3. Maze3D using maze1.txt

This is the Title of the Book, eMatter Edition

660 | Chapter 25: A 3D Maze

The s character in the text plan specifies the user’s starting position in the maze. By
default, the viewpoint is set to point along the positive z-axis in the scene, corresponding
to downward in the bird’s-eye view. The b characters in the maze plan become blue tex-
tured blocks, and the c characters are drawn as green textured cylinders.

Generating a Maze Using Software
A maze plan, like the one in maze1.txt, can be prepared in various ways, the sim-
plest being to type one manually using a text editor. As an alternative, one of my stu-
dents, Nawapoom Lohajarernvanich, and I wrote a maze generation application,
called MazeGen.java (stored in Maze3D/MazeGen/). It utilizes a recursive, depth-first
search with backtracking to create a maze.

The program generates a maze in a 2D character array. It assumes the array has an
even number of rows and columns, and it creates the outer walls of the maze offset
by one cell from the left, right, top, and bottom (see Figure 25-4). This means that
the maze boundaries are in the odd rows and columns of the array. These restric-
tions ensure that the maze will have a solid outer wall after the maze has been cre-
ated. The program adjusts the user’s supplied maze width and height values to
ensure that these restrictions are enforced.

A b is placed in every cell on the grid, and the program removes some of them to cre-
ate the maze. The generated maze is a single, winding path with no disconnected
areas (e.g., secret corridors or bricked-up rooms).

The cutting away of the bs to form the maze starts at a randomly chosen even coordi-
nate in the array (e.g., (4, 4)). Then another cell is randomly chosen from the four
cells that are two units away in the x- or y-directions. For example, if the current cell
is (4, 4), then the next cell could be (2, 4), (6, 4), (4, 6), or (4, 2). The path is made

Figure 25-4. The maze’s outer walls

0 1
0

1

width-1

height-1

maze path created here

outer maze walls

This is the Title of the Book, eMatter Edition

Making a Maze Plan | 661

by connecting the cells with spaces, deleting the bs. This process is illustrated in
Figure 25-5.

The path-making process is repeated at the new cell, except that a path cannot return
to a cell that’s been used or to a position on or outside the maze’s outer walls. For
example, from (6, 4) the algorithm can use (8, 4), (6, 6), and (6, 2), but not (4, 4).
The path cannot revisit a cell that’s been visited, so it’s not possible to create a maze
with loops.

The path is made by joining up cells at even coordinates. Since the outer maze wall is
made from cells at odd coordinates, a cell from the outer wall will never be selected
to join the maze. This means that the path cannot cut into the maze wall.

The algorithm continues until it reaches a cell that cannot be connected to any fur-
ther cells. This occurs when all the possible next cells have been utilized or are on or
outside the outer walls. At this stage, the algorithm backtracks to the previous cell
and looks at it again. Backtracking will continue until a cell has a possible next cell
or there is no previous cell to go to (i.e., execution has returned to the starting cell).

The relevant code inside MazeGen is contained in createPath():

private void createPath(Point cell)
{ RandomInRange rr = new RandomInRange(NUM_DIRS);
 int dir;
 while((dir = rr.getNumber()) != -1){
 Point nextCell = nextPos(cell, dir);
 if(!beenVisited(nextCell)){
 visit(nextCell, dir);
 createPath(nextCell); // recursive creation
 }
 }
}

Figure 25-5. Path generation in MazeGen

 (4,4)

2 4 6 8

2

4

6

8

 (6,4)

2 4 6 8

2

4

6

8

 (6,2)

2 4 6 8

2

4

6

8

b b b b b b b b
b b b b b b b b
b b b b b b b
b b b b b b b b
b b b b b b b b
b b b b b b b b
b b b b b b b b
b b b b b b b b

b b b b b b b b
b b b b b b b b
b b b b b
b b b b b b b b
b b b b b b b b
b b b b b b b b
b b b b b b b b
b b b b b b b b

b b b b b b b
b b b b b b b
b b b b
b b b b b b b b
b b b b b b b b
b b b b b b b b
b b b b b b b b
b b b b b b b b

b

This is the Title of the Book, eMatter Edition

662 | Chapter 25: A 3D Maze

The RandomInRange constructor creates a sequence between 0 and one less than the
supplied value, and each call to getNumber() randomly selects a number from that
sequence. For this application, NUM_DIRS is 4, so getNumber() can choose from {0, 1,
2, 3}, which represent the four directions leaving a cell (up, down, left, or right).

createPath() passes this number to nextPos() to select the next cell. If the next cell
hasn’t been visited, then visit() extends the path and the recursive call to
createPath() continues the path generation. Backtracking from the recursive call will
return to this loop, which will try another direction. getNumber() returns -1 when its
sequence is exhausted, causing createPath() to return to an earlier createPath()

call. The generated path is remembered by visit() modifying a global maze[][]

array, so backtracking won’t undo its creation.

The program finishes by randomly changing about 20 percent of the maze’s bs to cs,
and adds an exit to the top row of the maze. Changing the letter corresponds to
replacing some of the 3D maze’s blocks with cylinders to make the maze look a bit
more interesting.

The starting cell used for path creation is assigned an s to become the starting point
for the user. Since the maze has no disconnected parts, we know that it’s possible for
the player to get from the starting point to the maze’s exit.

A typical call to MazeGen, and its output, is shown below:

> java MazeGen 21 13
Width: 23; Height: 15 (2 added for borders)
Saving maze to file: maze.txt
Starting point: (2, 20)

 bbbbcbbbcb bbbbbbcbcc
 b b b sb
 b bbbbbccbc b bbb ccb
 b c b b b
 b bcbbb bbbcbbb cbc b
 b b c b b
 b bbb bbb bcbbbbb cbb
 b b b b b b
 b c b b bbbbb b b b b
 b b b b b b c b
 c b bbccccbbbbb cbb b
 b c b
 cbbbbbbbcbbbbbbbbbccb

Maze written to file maze.txt

The User Interface
Maze3D invokes MazeManager, BirdsEye, SecondViewPanel, and WrapMaze3D objects. The
latter three are subclasses of JPanel, which Maze3D organizes using the layout shown
in Figure 25-6.

This is the Title of the Book, eMatter Edition

Managing the Maze | 663

The fragment of code below contains the invocation of these four objects and shows
that MazeManager is required by all the JPanel objects:

MazeManager mm = new MazeManager(fnm); // fnm holds maze plan
BirdsEye be = new BirdsEye(mm);
SecondViewPanel secondVP = new SecondViewPanel(mm);
WrapMaze3D w3d = new WrapMaze3D(mm, be, secondVP.getCamera2TG());

The GUI is made with the BirdsEye object (the bottom-right panel in Figure 25-6),
the SecondViewPanel object (the top-right panel in Figure 25-6), and the WrapMaze3D

object (the lefthand panel).

Managing the Maze
MazeManager reads in a maze plan and generates two maze representations: a 3D sub-
graph added to the scene by WrapMaze3D and a 2D image employed by BirdsEye as the
background for its moving arrow. The primary aim of MazeManager is to hide the pro-
cessing of the maze plan from the rest of the application. In addition to serving up
3D and 2D mazes, MazeManager contains the coordinates of the user’s starting point
and deals with collision detection between the player and the maze walls.
MazeManager’s readFile() initializes maze[][] by reading in the ASCII maze plan, and
buildMazeReps() creates the on-screen mazes.

When buildMazeReps() creates the 3D maze, it has to translate the indices in
maze[][] into (x, y, z) coordinates for the blocks and cylinders. The first assumption
is that every block and cylinder is standing on the floor, so their y-coordinates are 0.
Then, the row’s indices of maze[][] are treated as z-axis values and the columns as
x-axis values. For example, if maze[3][5] contains a b, then a block will be placed at
(5, 0, 3) in the scene.

Figure 25-6. Maze3D GUI layout

vertical BoxLayout
spaces

horizontal BoxLayout

WrapMaze3D

BirdsEye

SecondView Panel

512

512

8 256

256

256

8

This is the Title of the Book, eMatter Edition

664 | Chapter 25: A 3D Maze

This approach means that the top-left corner of the maze is located at (0, 0, 0) in the
scene, and the rest of the maze extends over the positive XZ quadrant.

When buildMazeReps() generates the 2D image, it continues to treat the columns of
maze[][] as x-axis numbers, but the rows are viewed as y-axis values. For example, if
maze[3][5] contains a b, then a blue square will be drawn at the coordinate (5, 3) in
the image.

The 3D scene is a single BranchGroup with TransformGroups hanging off it. There’s one
TransformGroup for each block (Box node) and cylinder (Cylinder node) to place the
shape at its given coordinate. A TransformGroup is created with a call to makeObs():

private TransformGroup makeObs(char ch,int x,int z,Appearance app)
// place an obstacle (block/cylinder) at (x,z) with appearance app
{
 Primitive obs;
 if (ch == 'b') // blue textured block
 obs = new Box(RADIUS, HEIGHT/2, RADIUS,
 Primitive.GENERATE_TEXTURE_COORDS |
 Primitive.GENERATE_NORMALS, app);
 else // green textured cylinder
 obs = new Cylinder(RADIUS, HEIGHT,
 Primitive.GENERATE_TEXTURE_COORDS |
 Primitive.GENERATE_NORMALS, app);

 // position obstacle so its base is resting on the floor at (x,z)
 TransformGroup posnTG = new TransformGroup();
 Transform3D trans = new Transform3D();
 trans.setTranslation(new Vector3d(x, HEIGHT/2, z)); // move up
 posnTG.setTransform(trans);
 posnTG.addChild(obs);
 return posnTG;
}

The overhead of using textured surfaces is reduced by reusing two precalculated
Appearance nodes—one for the blocks, one for the cylinders—created with calls to
makeApp():

private Appearance makeApp(Color3f colObs, String texFnm)
{
 Appearance app = new Appearance();

 // mix the texture and the material color
 TextureAttributes ta = new TextureAttributes();
 ta.setTextureMode(TextureAttributes.MODULATE);
 app.setTextureAttributes(ta);

 // load and set the texture
 System.out.println("Loading obstacle texture from " + texFnm);
 TextureLoader loader = new TextureLoader(texFnm, null);
 Texture2D texture = (Texture2D) loader.getTexture();
 app.setTexture(texture); // set the texture

This is the Title of the Book, eMatter Edition

Managing the Maze | 665

 // add a colored material
 Material mat = new Material(colObs,black,colObs,specular,20.f);
 mat.setLightingEnable(true);
 app.setMaterial(mat);
 return app;
}

The Appearance modulates the texture and material and switches on
lighting effects.

The intention is that the scene will be poorly lit except for a spotlight “held” by the
user. The efficacy of the spot depends on its own parameters, such as its attenuation
and concentration, and on the shininess and specular color of the objects, which are
set in the Material node component.

Specular color is the color of a shape when it reflects light from shiny
areas. Usually the specular color is white, as in this example.

The 2D image is initialized as a BufferedImage:

BufferedImage mazeImg =
 new BufferedImage(IMAGE_LEN, IMAGE_LEN, BufferedImage.TYPE_INT_ARGB);

The drawing operations are applied via a graphics context:

Graphics g = (Graphics) mazeImg.createGraphics();

drawBlock(g, x, z); // for a block at (x,y)
// other drawing operations...

drawCylinder(g, x, z); // for a cylinder at (x,y)

g.dispose(); // when drawing is completed

drawBlock() and drawCylinder() are quite simple:

private void drawBlock(Graphics g, int i, int j)
// draw a blue box in the 2D image
{ g.setColor(Color.blue);
 g.fillRect(i*IMAGE_STEP, j*IMAGE_STEP, IMAGE_STEP, IMAGE_STEP);
}

private void drawCylinder(Graphics g, int i, int j)
// draw a green circle in the 2D image
{ g.setColor(Color.green);
 g.fillOval(i*IMAGE_STEP, j*IMAGE_STEP, IMAGE_STEP, IMAGE_STEP);
}

This is the Title of the Book, eMatter Edition

666 | Chapter 25: A 3D Maze

IMAGE_STEP is the number of pixels in the 2D image corresponding to a
maze cell’s dimensions.

Collision Detection
Collision detection is a matter of testing a supplied (x, z) pair against the maze[z][x]

cell to see if it contains a b or c. Coordinates beyond the maze’s extent must be dealt
with:

public boolean canMoveTo(double xWorld, double zWorld)
// is (xWorld, zWorld) free of obstacles?
// Called by the KeyBehavior object to test a possible move.
{
 int x = (int) Math.round(xWorld);
 int z = (int) Math.round(zWorld);

 if ((x < 0) || (x >= LEN) || (z < 0) || (z >= LEN))
 return true; // since outside the possible maze dimensions

 if ((maze[z][x] == 'b') || (maze[z][x] == 'c'))
 return false; // since loc occupied by block or cylinder

 return true;
} // end of canMoveTo()

The supplied coordinates should be integer values since the user only moves in one-
unit steps and rotates by 90 degrees. However, Java 3D transforms utilize floats or
doubles, so the coordinates will never be whole, which means they must be rounded
before use.

Scenery Creation
WrapMaze3D carries out two main tasks: the creation of scene objects (e.g., the floor,
the maze, lighting, background) and the initialization of the viewpoint (e.g., its posi-
tion, orientation, and geometries linked to the viewpoint). createSceneGraph()

builds the scene:

void createSceneGraph()
{
 sceneBG = new BranchGroup();
 bounds = new BoundingSphere(new Point3d(0,0,0), BOUNDSIZE);

 lightScene(); // add the lights
 addBackground(); // add the sky

 // add the textured floor
 TexturedFloor floor = new TexturedFloor();
 sceneBG.addChild(floor.getBG());

This is the Title of the Book, eMatter Edition

Scenery Creation | 667

 sceneBG.addChild(mazeMan.getMaze());
 // add 3D maze, using MazeManager
 sceneBG.addChild(camera2TG); // add second camera

 sceneBG.compile(); // fix the scene
} // end of createScene()

lightScene() is similar to the lighting code in previous chapters in that it switches on
two downward facing lights. However, no ambient light is created, causing the
maze’s internal walls to be cast into darkness.

Making a Background
WrapMaze3D has two versions of addBackground() to choose from, both of which lay a
texture over the inside face of a Sphere. The first version makes the Sphere a child of a
Background node:

private void addBackground()
// add a geometric background using a Background node
{
 System.out.println("Loading sky texture: " + SKY_TEX);
 TextureLoader tex = new TextureLoader(SKY_TEX, null);

 Sphere sphere = new Sphere(1.0f, Sphere.GENERATE_NORMALS |
 Sphere.GENERATE_NORMALS_INWARD |
 Sphere.GENERATE_TEXTURE_COORDS, 4); // default = 15
 Appearance backApp = sphere.getAppearance();
 backApp.setTexture(tex.getTexture());

 BranchGroup backBG = new BranchGroup();
 backBG.addChild(sphere);

 Background bg = new Background();
 bg.setApplicationBounds(bounds);
 bg.setGeometry(backBG);

 sceneBG.addChild(bg);
}

A useful way of thinking about a background shape is that it surrounds the scene.
This means the user is located inside the background shape and will always see the
background shape behind (beyond) the other objects in the scene. This is true even
though the Sphere’s radius is set to be 1.0f in addBackground(); the value isn’t uti-
lized when the shape is used as a background.

The Sphere is set to create inward normal vectors, which will force the texture to
appear on its inside faces—the ones visible within the scene. A normal vector for the
surface of a polygon is perpendicular to that surface, usually pointing from the inte-
rior of the polygon to the outside. The side of the polygon that faces into the object’s
interior is called the back (or inward) face, and the outward side is the front face.

This is the Title of the Book, eMatter Edition

668 | Chapter 25: A 3D Maze

The number of divisions, which controls the number of surfaces that make up the
sphere, is reduced from 15 (the default) to 4. The number of surfaces is equal to the
square of the number of divisions. This reduction makes little difference to the qual-
ity of the background but greatly reduces the cost of generating the sphere.

Another example using this technique can be found in Background/ in
the Java 3D demos directory.

Unfortunately, some bugs are connected with geometric Backgrounds in the current
version of Java 3D (1.3.1). Some (older) graphics cards find it hard to display them.
The problems manifest themselves as the background not being rendered at all (i.e.,
the background is left completely black) or parts of it being rendered inconsistently
or being clipped.

An alternative is to render an inward facing sphere without using Background:

private void addBackground()
{
 System.out.println("Loading sky texture: " + SKY_TEX);
 TextureLoader tex = new TextureLoader(SKY_TEX, null);

 // create an appearance and assign the texture
 Appearance app = new Appearance();
 app.setTexture(tex.getTexture());

 Sphere sphere = new Sphere(100.0f, // radius to edge of scene
 Sphere.GENERATE_NORMALS_INWARD |
 Sphere.GENERATE_TEXTURE_COORDS, 4, app);

 sceneBG.addChild(sphere);
}

The sphere is made as large as the intended radius of the scene and is added to the
scene directly.

Tiling the Floor
The floor is a QuadArray made up of a series of quads, which taken together cover the
entire floor. Each quad is assigned a texture and an upward facing normal. The sides
of the entire floor have the length FLOOR_LEN, and each quad has sides of length STEP,
as shown in Figure 25-7.

The paving of the floor starts at the front, leftmost point (-FLOOR_LEN/2, FLOOR_LEN/2)
and continues left to right and forward to back. This work is carried out by
TexturedFloor’s constructor and createCoords():

public TexturedFloor()
// create quad coords, make TexturedPlane, add to floorBG

This is the Title of the Book, eMatter Edition

Tiling the Floor | 669

{
 ArrayList coords = new ArrayList();
 floorBG = new BranchGroup();

 // create coords for the quad
 for(int z=FLOOR_LEN/2; z >= (-FLOOR_LEN/2)+STEP; z-=STEP) {
 for(int x=-FLOOR_LEN/2; x <= (FLOOR_LEN/2)-STEP; x+=STEP)

createCoords(x, z, coords);
 }

 Vector3f upNormal = new Vector3f(0.0f, 1.0f, 0.0f); // upwards
 floorBG.addChild(new TexturedPlane(coords,FLOOR_IMG,upNormal));
}

private void createCoords(int x, int z, ArrayList coords)
{
 // points created in counter-clockwise order, from front left
 // of length STEP
 Point3f p1 = new Point3f(x, 0.0f, z);
 Point3f p2 = new Point3f(x+STEP, 0.0f, z);
 Point3f p3 = new Point3f(x+STEP, 0.0f, z-STEP);
 Point3f p4 = new Point3f(x, 0.0f, z-STEP);
 coords.add(p1); coords.add(p2);
 coords.add(p3); coords.add(p4);
} // end of createCoords()

createCoords() takes one point and creates the four points for a quad, making sure
they’re in counterclockwise order to place the front face upward on the XZ plane.
Once all the coordinates have been calculated, they’re passed to a TexturedPlane

object, along with the name of a texture file (TEXTURE_IMG) and a vector that will
become each quad’s normal.

Figure 25-7. The floor and its QuadArray (from above)

quads

FLOOR_LEN

x

z
(-FLOOR_LEN/2,
 FLOOR_LEN/2)

STEP

This is the Title of the Book, eMatter Edition

670 | Chapter 25: A 3D Maze

The Textured Plane
The QuadArray created by TexturedPlane uses textures and normals:

QuadArray plane = new QuadArray(numPoints, GeometryArray.COORDINATES |
 GeometryArray.TEXTURE_COORDINATE_2 |
 GeometryArray.NORMALS);

The hardest part of the geometry-related code is setting the texture coordinates. The
coordinates in the QuadArray are ordered in groups of four, each specifying a quad in
counterclockwise order. The texture coordinates are created in the same way—in
groups of four in counterclockwise order:

// assign texture coords to each quad
// counter-clockwise, from bottom left
TexCoord2f[] tcoords = new TexCoord2f[numPoints];
for(int i=0; i < numPoints; i=i+4) {
 tcoords[i] = new TexCoord2f(0.0f, 0.0f); // for 1 point
 tcoords[i+1] = new TexCoord2f(1.0f, 0.0f);
 tcoords[i+2] = new TexCoord2f(1.0f, 1.0f);
 tcoords[i+3] = new TexCoord2f(0.0f, 1.0f);
}
plane.setTextureCoordinates(0, 0, tcoords);

The Appearance part of the shape creates a modulated texture with a Material node
component so lighting can be enabled. The code is similar to makeApp() in
MazeManager. The end result is that the texture will be tiled across the floor, with each
tile having sides of length STEP. Though there appears to be many textures, there’s
only one, but it’s referenced many times. This optimization means that only one
Texture2D object needs to be created by the application.

By varying the STEP constant, the number and size of the tiles can be varied. As the
STEP value gets bigger, each tile gets bigger, and fewer tiles are needed to cover the
floor. A drawback with a larger tile is that the texture will be stretched over a larger
area, so it will become more pixilated. Another point to remember is that STEP should
be divisible into the floor length value, FLOOR_LEN.

Viewpoint Creation
Various viewpoint manipulations are carried out by WrapMaze3D’s prepareViewPoint():

Positioning and orientation
The viewpoint’s position is specified using the maze’s starting point (repre-
sented by an s in the maze plan). The viewpoint is rotated to face along the posi-
tive z-axis. There’s no reason for doing this, except to show how I can change
the default orientation (which is along the negative z-axis).

Movement control
A KeyBehavior object is connected to the viewpoint so key presses can move it
during execution.

This is the Title of the Book, eMatter Edition

Viewpoint Creation | 671

A Spotlight
The maze is cast into stygian gloom, so a Spotlight node is connected to the
viewpoint to help the users see what they’re doing. It’ll move with the view-
point, giving the impression that the player is holding a spotlight.

Adjustments to the view parameters
The FOV is widened, so the user can see more of the scene in front of them. The
front and back clip distances are adjusted, primarily so the user can move right
up to a block or cylinder without it being clipped.

An avatar
Many first-person games include a player avatar (a visible representation of the
user, or part of the user); the “gun-in-hand” image in Chapter 24 is a simple
example. I’ve decided not to include an avatar in the Maze3D application, but I’ll
discuss how to add one later in this section. The example code adds a 3D cone
to the viewpoint.

The FOV
The FOV specifies how much of the scene is visible in terms of an angular spread
around the viewpoint. The default is 45 degrees or 22.5 degrees on either side of the
perpendicular into the scene (see Figure 25-8).

Increasing the FOV permits the user to see farther to the left and right, which is use-
ful in Maze3D since corridors head off to the left and right. The downside is that a fish-
eye effect appearing as the FOV is made larger, distorting the view.

The camera lovers among you may have come across a fish-eye lens,
which displays the same effect as a large FOV: the screen image is fore-
shortened in the center and increasingly distorted at the edges.

Changing the FOV to 90 degrees (from its default of 45 degrees) is straightforward:

View userView = su.getViewer().getView();
userView.setFieldOfView(Math.toRadians(90.0)); // wider FOV

Figure 25-8. Field of view of a user

FOV

This is the Title of the Book, eMatter Edition

672 | Chapter 25: A 3D Maze

The user can see more to the left and right, which is useful in a maze for noticing
passages leading off to the sides.

Clip Distances
Clip distances specify the closest and farthest objects that can be seen by the viewer.
Java 3D’s defaults are 0.1 meters for the front clip plane and 10 meters for the back
clip, which roughly corresponds to the limitations of human eyesight. These dis-
tance are in real-world units, although it’s possible to specify values in virtual world
units by using the Java 3D View class methods setFrontClipPolicy() and
setBackClipPolicy() to change the units policy.

The back clip value may be too small for a particular application, resulting in objects
disappearing when the viewpoint moves far away from them. This can be tested by
moving the viewpoint to some distant location in the game and turning around to see
if any parts of the scene have disappeared. In Maze3D, I moved the viewpoint out of
the maze to the edge of the floor and checked that the maze was still visible.

The default front clip value (0.1 meters) is fine for most applications, but the user is
likely to bump into walls in the maze. When this occurs, the front of the block or cyl-
inder will be clipped since the viewpoint is closer than 0.1 meters to the object.
What’s worse is that the other side of the object will be invisible since the user is
looking at its interior face, which is not rendered. The result is that users will see
right through a brick or cylinder when they get up close to one.

This effect is shown in Figure 25-9: the image on the left shows the viewpoint when a
user is pressed up against a cylinder and the front clip distance is 0.1 meters. The
cylinder is invisible. The image on the right shows the same view when the front clip
distance is reduced to 0.05 meters. The cylinder is visible again.

Knowing this problem, a programmer may be tempted to set the front clip distance to
0 with the hope that no clipping will occur, no matter how close the user gets to a piece

Figure 25-9. The same viewpoint with different front clip distances

This is the Title of the Book, eMatter Edition

Viewpoint Creation | 673

of scenery. What happens is that the depth ordering of objects in the scene breaks
down, with far and near objects partially overlapping each other in arbitrary ways.

The breakdown is triggered when the ratio of the back clip to front clip distances
becomes too large. The machine’s hardware (specifically its depth buffer) is being
asked to squeeze too large a range of z-values into too few bits per pixel on screen.
The critical ratio depends on the bits per pixel used in the depth buffer: older
machines may start to “sweat” at ratios close to 100, but modern cards using 32 bits
will be happy with ratios close to 100,000.

After the experimentation mentioned above, I chose a back clip distance of 20 meters
and a front clip of 0.05 meters, creating a fairly safe ratio of 400:

userView.setBackClipDistance(20);
userView.setFrontClipDistance(0.05);

Adding a Spotlight
The spotlight is meant to be in the player’s “hand,” lighting the way forward as he or
she moves around the maze. This means that the spotlight must be connected to the
viewpoint and move as it moves. Chapter 24 went into detail about the view branch
where the viewpoint is managed, and Figure 25-10 should remind you of its main
components.

Figure 25-10. The view branch subgraph

Virtual Universe

Locale

BG

TG

View

ViewPlatform

Canvas3D

Viewer

Viewing
Platform

BG

PlatformGeometry

This is the Title of the Book, eMatter Edition

674 | Chapter 25: A 3D Maze

The spotlight must be placed inside a PlatformGeometry node, then attached to the
TransformGroup (labeled as TG in Figure 25-10) above the ViewPlatform. The code that
follows utilizes Java 3D’s ViewingPlatform utility class to do this.

ViewingPlatform vp = su.getViewingPlatform();

PlatformGeometry pg = new PlatformGeometry();
pg.addChild(makeSpot());
vp.setPlatformGeometry(pg);

The construction of the spotlight is done by makeSpot().

The Java 3D Spotlight node has a position, a direction, and focusing controls for its
spread angle and concentration. The spread angle controls the width of the beam; no
light is generated outside of the angle. An increased concentration value causes the
beam to be focused into a narrower beam, though some light will appear beyond the
beam’s bounds. The default spread angle is 180 degrees; the default concentration is
0.0, which provides uniform light distribution.

Since Spotlight is a subclass of PointLight, it inherits other useful
attributes, such as the ability to adjust its attenuation (how quickly the
light fades away for objects further away).

A spotlight affects an object’s diffuse and specular reflection, which depends on the
orientation and position of the object’s surfaces and on its Material node.

The diffuse reflection is the color that bounces of an object in random
directions when light hits it. The specular reflection is the color of the
shiny highlights of the object. The size of the highlights depends on
the shininess value for the object.

The overall effect of a spotlight depends on the spotlight’s parameters (position,
direction, concentration, spread angle, attenuation) and on the lighting and material
properties of the surfaces being lit. This interplay of so many factors makes it a mat-
ter of trial and error to get a suitable effect.

My aim was to have the spotlight cast a faint light, quickly crowded
out by darkness.

The makeSpot() method is:

private SpotLight makeSpot()
{
 SpotLight spot = new SpotLight();

This is the Title of the Book, eMatter Edition

Viewpoint Creation | 675

 spot.setPosition(0.0f, 0.5f, 0.0f); // a bit above the user
 spot.setAttenuation(0.0f, 1.2f, 0.0f); // linear attenuation
 spot.setSpreadAngle((float)Math.toRadians(30.0)); // smaller
 spot.setConcentration(5.0f); // reduce strength quicker
 spot.setInfluencingBounds(bounds);
 return spot;
}

The 30-degree value for setSpreadAngle() corresponds to a spread angle of 60
degrees, 30 degrees on each side of the forward direction. The increased concentra-
tion focuses the beam, making the sides of the scene somewhat darker. By making
the spread smaller and increasing the concentration, the light becomes weaker.

The setPosition() value moves the SpotLight node slightly above the viewpoint,
which places the spotlight at a natural looking location relative to the viewpoint.

Adding an Avatar
Chapter 24 describes one way of adding an avatar: by placing a 2D image just in
front of the viewpoint. Another solution is to use a 3D model (e.g., a hand, a gun).
To illustrate the idea, makeAvatar() adds a cone at the viewpoint, rotated by 90
degrees about the x-axis so its apex is pointing forward:

private TransformGroup makeAvatar()
{
 Transform3D t3d = new Transform3D();
 t3d.rotX(Math.PI/2); // rotate so top of cone is facing front
 TransformGroup userTG = new TransformGroup(t3d);

 userTG.addChild(new Cone(0.35f, 1.0f)); // a thin cone
 return userTG;
}

The TransformGroup is then linked to PlatformGeometry:

pg.addChild(makeAvatar());

If you wanted to add this cone avatar to the viewpoint in Maze3D, the pg.addChild()

call could be included in the code fragment on the previous page, when the spotlight
is added to PlatformGeometry.

Using a 3D model has one major advantage over a 2D image: it can be used as your
physical presence in the scene. This is useful if the game contains other players who
need to see you (e.g., as in a multiplayer networked application). A 3D model is also
a drawback since it may be partially obscured if the viewpoint gets too close to
another object in the scene.

This is the Title of the Book, eMatter Edition

676 | Chapter 25: A 3D Maze

Positioning the Viewpoint
The viewpoint’s position and orientation are set up by accessing and changing the
TransformGroup above ViewPlatform :

ViewingPlatform vp = su.getViewingPlatform();
TransformGroup steerTG = vp.getViewPlatformTransform();
initViewPosition(steerTG);

steerTG is the TransformGroup above the ViewPlatform node shown in Figure 25-10.
By default, the initial viewpoint is facing into the scene along the z-axis.
initViewPosition() rotates it by 180 degrees and moves it to the maze’s start position:

private void initViewPosition(TransformGroup steerTG)
{
 Transform3D t3d = new Transform3D();
 steerTG.getTransform(t3d);
 Transform3D toRot = new Transform3D();
 toRot.rotY(-Math.PI); // so facing along positive z-axis

 t3d.mul(toRot);
 t3d.setTranslation(mazeMan.getMazeStartPosn());
 steerTG.setTransform(t3d);
}

Since the rotation orients the viewpoint in the positive z-axis direction, the transla-
tion value doesn’t need to be adjusted.

Keyboard Controls
The keyboard behavior is set up inside prepareViewPoint() in WrapMaze3D:

ViewingPlatform vp = su.getViewingPlatform();

KeyBehavior keybeh = new KeyBehavior(mazeMan, be, camera2TG);
keybeh.setSchedulingBounds(bounds);
vp.setViewPlatformBehavior(keybeh);

The KeyBehavior class requires a reference to MazeManager (mazeMan), the BirdsEye

panel (be), and the TransformGroup for the back facing camera (camera2TG).

The Back Facing Camera
The back facing camera is a second ViewPlatform node, which requires its own
Canvas3D object so the view can be displayed. The minimal subgraph for the camera
is shown in Figure 25-11.

This is the Title of the Book, eMatter Edition

The Back Facing Camera | 677

Attributes related to the user’s head are defined in PhysicalBody, such as the posi-
tion of her eyes relative to the scene. PhysicalEnvironment specifies the environment
in which the view will be generated, such as whether head-tracking or wall displays
are being utilized. I’m using a standard PC configuration, so these objects can be cre-
ated with their default settings. The ViewPlatform represents the camera’s viewpoint,
and the TransformGroup above it positions the viewpoint and is the connection point
between the camera and the top-level BranchGroup in the main scene.

The SecondViewPanel class creates a subgraph such as the one in Figure 25-11, and
makes its TransformGroup, called canvas2TG, visible via the method getCamera2TG().
The class’s other role is to embed its Canvas3D object inside a JPanel so that it can be
easily inserted into the Swing-based GUI. SecondViewPanel is a subclass of JPanel, so
the attachment of the Canvas3D object is carried out in its constructor:

// globals
private static final int PWIDTH = 256; // size of panel
private static final int PHEIGHT = 256;

private MazeManager mazeMan;
private TransformGroup camera2TG;
 // TG for the camera; will be linked to the main scene

public SecondViewPanel(MazeManager mm)
{ mazeMan = mm;
 setLayout(new BorderLayout());
 setOpaque(false);
 setPreferredSize(new Dimension(PWIDTH, PHEIGHT));
 GraphicsConfiguration config =
 SimpleUniverse.getPreferredConfiguration();
 Canvas3D canvas3D = new Canvas3D(config);
 add("Center", canvas3D); // add Canvas3D to the JPanel

initView(canvas3D);
}

Figure 25-11. The minimal view branch graph

View

TG

ViewPlatform

Canvas3D

Physical Body Physical Environment

This is the Title of the Book, eMatter Edition

678 | Chapter 25: A 3D Maze

initView() constructs the subgraph:

private void initView(Canvas3D canvas3D)
{
 ViewPlatform vp = new ViewPlatform();

 // create a View node for the ViewPlatform
 // it has the same attributes as the forward facing camera View
 View view = new View();
 view.setPhysicalBody(new PhysicalBody());
 view.setPhysicalEnvironment(new PhysicalEnvironment());
 view.addCanvas3D(canvas3D);
 view.attachViewPlatform(vp); // attach the ViewPlatform

 view.setFieldOfView(Math.toRadians(90.0));
 view.setBackClipDistance(20);
 view.setFrontClipDistance(0.05);

 camera2TG = setCameraPosition();
 camera2TG.addChild(vp); // add ViewPlatform to camera TG
}

The View attributes (FOV, clip distances) are the same as in the forward facing cam-
era. No spotlight is added to the subgraph, causing the view behind the user to be
substantially darker than the view ahead.

setCameraPosition() sets up the camera’s location by creating the top-level
TransformGroup and positioning it with lookAt():

private TransformGroup setCameraPosition()
{
 Vector3d startVec = mazeMan.getMazeStartPosn();

 Transform3D t3d = new Transform3D();
 // args are: viewer posn, where looking, up direction
 t3d.lookAt(new Point3d(startVec.x, startVec.y, startVec.z),
 new Point3d(startVec.x, startVec.y, -10), //any -z value will do
 new Vector3d(0,1,0));
 t3d.invert();

 TransformGroup tg = new TransformGroup(t3d);
 tg.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); // moveable
 tg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 return tg;
}

lookAt() places the camera at the starting position in the maze, pointing along the
negative z-axis. An implicit assumption is that the start is somewhere in the positive
quadrant of the XZ plane so startVec.z cannot be less than 0. Since the camera’s
default viewpoint faces into the scene, the transform created with lookAt() must be
inverted to have the necessary effect.

This is the Title of the Book, eMatter Edition

Moving the Viewpoint | 679

This back facing camera is now positioned and oriented. However, it has to move at
runtime as the user moves through the maze. The forward facing and back facing
cameras are controlled by KeyBehavior. For the back facing camera, KeyBehavior

affects its TransformGroup (called tg in setCameraPosition()), so the node’s capability
bits are set to allow changes

Adding the Second View to the GUI
The creation of the SecondViewPanel and its addition to the GUI is carried out in
Maze3D. Maze3D passes a reference to the camera’s top-level TransformGroup into
WrapMaze3D:

public Maze3D(String args[])
{
 // check the args[] array...

 MazeManager mm = new MazeManager(fnm);
 BirdsEye be = new BirdsEye(mm); // bird's eye view over the maze
 SecondViewPanel secondVP = new SecondViewPanel(mm);
 WrapMaze3D w3d = new WrapMaze3D(mm, be, secondVP.getCamera2TG());

 // GUI creation code ...
 ...
 Box vertBox = Box.createVerticalBox();
 vertBox.add(secondVP); // add back-facing camera pane
 c.add(vertBox);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 pack();
 setResizable(false); // fixed size display
 show();
}

The TransformGroup, called camera2TG in WrapMaze3D, is added to the scene by the
createSceneGraph() method:

sceneBG.addChild(camera2TG);

Moving the Viewpoint
This chapter’s KeyBehavior class is similar to the one described in Chapter 24, since
both control the user’s viewpoint. They both extend ViewPlatformBehavior, so they
can access the ViewPlatform’s TransformGroup. They both use the same key presses to
trigger movement and rotation.

Movement can be forward, backward, left, right, up, or down, by one unit step,
excluding jaunts through the walls or floor. Rotations are carried out in 90-degree
turns left or right, which simplifies the implementation of the BirdsEye class.

This is the Title of the Book, eMatter Edition

680 | Chapter 25: A 3D Maze

BirdsEye’s main task is to calculate the position and orientation of an arrow drawn
on top of the overview image when the viewpoint moves or rotates.

KeyBehavior is complicated by being involved in the manipulation of two cameras
and the BirdsEye view. The movement/rotation of the cameras are done inside
KeyBehavior by affecting their TransformGroups, but the BirdsEye object carries out its
own changes. These additional responsibilities can be seen in standardMove() that
calls the moveBy() and doRotateY() methods with extra arguments for the extra
views:

private void standardMove(int keycode)
{
 if(keycode == forwardKey)
 moveBy(VFWD, FORWARD, VBACK);
 else if(keycode == backKey)
 moveBy(VBACK, BACK, VFWD);
 else if(keycode == leftKey)
 doRotateY(ROT_AMT, LEFT);
 else if(keycode == rightKey)
 doRotateY(-ROT_AMT, RIGHT);
}

The arguments of moveBy() are constants related to the main camera, the bird’s-eye
view, and the back facing camera. When the main camera moves in a given direction
(e.g., VFWD, meaning forward), then the back facing camera must move in the oppo-
site direction (VBACK, meaning backward). However, both cameras always rotate in
the same direction, so no distinction is made between them when doRotateY() is
called.

moveBy() implements collision detection by first calculating the expected position
after carrying out the requested move. If that position is occupied by an obstacle,
then the move isn’t executed and a warning is reported:

private void moveBy(Vector3d theMove, int dir, Vector3d theMoveC2)
{
 Point3d nextLoc = possibleMove(theMove);
 if (mm.canMoveTo(nextLoc.x, nextLoc.z)) { // no obstacle there?
 targetTG.setTransform(t3d); // nasty!

doMoveC2(theMoveC2);
 be.setMove(dir);
 }
 else // there is an obstacle
 be.bangAlert(); // tell BirdsEye, so a warning can be shown
}

This “try-it-and-see” approach is also employed in the Tour3D applica-
tion in Chapter 18.

This is the Title of the Book, eMatter Edition

The Bird’s-Eye View | 681

possibleMove() retrieves the current transform (into the global t3d) and makes the
move but doesn’t update the TransformGroup because it’s only checking if the move
is possible:

private Point3d possibleMove(Vector3d theMove)
{
 targetTG.getTransform(t3d); // targetTG is ViewPlatform's TG
 toMove.setTranslation(theMove);
 t3d.mul(toMove);
 t3d.get(trans);
 return new Point3d(trans.x, trans.y, trans.z);
}

The new location is returned to moveBy(), which checks it by calling canMoveTo() in
MazeManager. If everything’s okay, then targetTG will be updated with t3d. The
change is achieved with a global that was set in a different method, so the offending
line is commented with the word “nasty!”.

moveBy() has to change the back facing camera and the bird’s-eye view. doMoveC2()
deals with the camera by applying a move to its TransformGroup:

private void doMoveC2(Vector3d theMoveC2)
{
 camera2TG.getTransform(t3d);
 toMove.setTranslation(theMoveC2);
 t3d.mul(toMove);
 camera2TG.setTransform(t3d);
}

Rotations of the cameras and bird’s-eye view can be carried out immediately with-
out any collision testing, inside doRotateY():

private void doRotateY(double radians, int dir)
{
 targetTG.getTransform(t3d); // rotate main camera
 toRot.rotY(radians);
 t3d.mul(toRot);
 targetTG.setTransform(t3d);

 camera2TG.getTransform(t3d); // rotate back-facing camera
 t3d.mul(toRot); // reuse toRot value
 camera2TG.setTransform(t3d);

 be.setRotation(dir); // rotate bird's eye view
}

The Bird’s-Eye View
The BirdsEye object displays a static image representing the maze as seen from
above, and it draws an arrow on top of it to show the user’s current position. As the

This is the Title of the Book, eMatter Edition

682 | Chapter 25: A 3D Maze

user moves and turns, so does the arrow. If the user hits a wall, then the message
“BANG!” appears (see Figure 25-12).

The arrow switches between four different images, shown in Figure 25-13.

Figure 25-13 shows the arrows laid out in a circle, labeled with their filenames and
numbers (e.g., the down arrow is in arrowFwd.gif and is assigned number 0). The
numbering scheme is used to quickly switch between the different arrows when the
viewpoint is rotated.

These images are loaded into arrowIms[] at start time, indexed by the numbers
shown in Figure 25-13. For instance, arrowIms[0] contains the image from arrow-
Fwd.gif:

private static final int NUM_DIRS = 4;

private static final int FORWARD = 0;
private static final int LEFT = 1;
private static final int BACK = 2;
private static final int RIGHT = 3;

Figure 25-12. The bird’s-eye view pane

Figure 25-13. Arrows as a clock

arrowBack.gif

arrowFwd.gif

arrowLeft.gifarrowRight.gif

0

1

2

3

This is the Title of the Book, eMatter Edition

The Bird’s-Eye View | 683

Image[] arrowIms = new Image[NUM_DIRS];

arrowIms[FORWARD] = new ImageIcon("images/arrowFwd.gif").getImage();
arrowIms[LEFT] = new ImageIcon("images/arrowLeft.gif").getImage();
arrowIms[BACK] = new ImageIcon("images/arrowBack.gif").getImage();
arrowIms[RIGHT] = new ImageIcon("images/arrowRight.gif").getImage();

The images are ordered in the array so moves and rotations can be calculated using
clock arithmetic, as explained below.

moves[] is another important array. It contains the distance offset when the user
moves forward, left, backward, or right:

private Point moves[]; // global

private void initMoves()
{ moves = new Point[NUM_DIRS];
 step = mm.getImageStep();
 moves[FORWARD] = new Point(0, step); // move downwards on-screen
 moves[LEFT] = new Point(step, 0); // right on-screen
 moves[BACK] = new Point(0, -step); // up on-screen
 moves[RIGHT] = new Point(-step, 0); // left on-screen
}

moves[] stores the offsets in the same order as arrowIms[].

The user’s arrow starts at the maze’s starting point. The starting direction is along
the positive z-axis, which is down the screen when viewed from above in BirdsEye.
This information is stored in initPosition():

private void initPosition()
{ currPosn = mm.getImageStartPosn();
 compass = FORWARD;
 userIm = arrowIms[FORWARD];
 // the user's arrow starts by facing down the screen
 showBang = false;
}

currPosn is a Point object holding the current (x, y) position of the arrow. compass is
the current heading for the user and an index into the arrowIms[] to get the current
arrow image.

Moving the Arrow
KeyBehavior calls setMove() in BirdsEye to move the arrow and supplies a direction
that matches the FORWARD, LEFT, BACK or RIGHT constants defined above. Before the
move is made, the actual heading is calculated as the current compass value plus the
direction, modulo 4:

public void setMove(int dir)
{
 int actualHd = (compass + dir) % NUM_DIRS;
 Point move = moves[actualHd];

This is the Title of the Book, eMatter Edition

684 | Chapter 25: A 3D Maze

 currPosn.x += move.x; // update user position
 currPosn.y += move.y;
 repaint();
}

For example, if the compass value is LEFT (1) and the direction is BACK (2), then the
actual heading will be RIGHT (1 + 2 = 3). In other words, if the users move backward
when they’re pointing left, then they will move to the right.

After the current position (currPosn) is updated, a repaint is requested, which causes
paintComponent() to be called. It draws the maze image first, the arrow at the cur-
rent position, and finally the “BANG!” text if necessary.

Rotating the Arrow
KeyBehavior calls setRotation() in BirdsEye to rotate the arrow and supplies a LEFT

or RIGHT value. As with a move, the heading must be calculated, and this becomes
the new compass value and changes the user’s arrow:

public void setRotation(int dir)
{
 compass = (compass + dir) % NUM_DIRS;
 userIm = arrowIms[compass]; // update user's arrow
 repaint();
}

For example, if the compass value is LEFT (1) and the rotation direction is RIGHT (3),
then the compass will change to FORWARD (1 + 3 = 4, which becomes 0 when divided
modulo 4). This means that when the arrow is pointing left and the user turns right,
then the new heading is forward.

The movement and rotation code in BirdsEye is tricky but would be worse if the user
could rotate through a wider range of angles. The additional complexity would arise
from the need to calculate more distance offsets, which would translate into a larger
moves[] array and more images in arrowIms[].

Why Not Use a Bird’s-Eye Camera?
An alternative to the schematic view offered by BirdsEye is to create a third camera in
a similar way to SecondViewPanel but looking down on the maze from above. This
was my original approach, but it proved unsatisfactory. It was almost impossible to
see the user’s avatar (the cone) due to the darkness of the scene, the texturing on the
floor, and the camera’s height above the scene. If the camera was moved nearer the
ground, then less of the maze would have been visible.

It’s useful to present an abstracted picture of the entire scene, which leaves out
unnecessary detail such as textures and parts of the scenery. This helps the players
maintain a general idea of the game without overloading them with information.

This is the Title of the Book, eMatter Edition

Related Approaches to Scene Generation | 685

Invariably, this abstraction requires a different kind of modeling than just another
Java 3D pane.

Having detailed views and overviews in a game suggests that essential scene informa-
tion (e.g., the maze plan) should be managed by an object that can supply alterna-
tive representations for these views. This is the role played by MazeManager.

Related Approaches to Scene Generation
The idea of using an ASCII plan to generate a 3D maze comes from the excellent
“You Build It Virtual Reality” application by Chris Heistad and Steve Pietrowicz,
developed while they were in the NCSA Java 3D Group. The scene is defined using a
series of ASCII “maps” that specify the location of objects at different heights in the
world. This layering approach allows the positioning of things along the y-axis. The
notation used in the maps is extensible, so new kinds of objects can be included in
the scene, including sounds and animations. The world is networked (using multi-
casting) with each user represented by an avatar. Communication is via a chat win-
dow. Unfortunately, this application is currently unavailable.

Daniel Selman describes a Doom-style application in Java 3D Programming (Man-
ning Publications), in section 11.6.3. The map is a GIF, and the colors of its pixels
are compared with color values assigned to scenery objects to decide how the scene
should be constructed. Interesting elements include animated flaming torches and
guards that walk through walls.

This is the Title of the Book, eMatter Edition

686

Chapter 26CHAPTER 26

Fractal Land

Chapter 25 looked at how to create a realistic setting for a first-person game (a 3D
maze). The emphasis was on techniques needed to navigate through the environ-
ment, such as multiple views, spotlights, and collision detection. Though the maze’s
floor was textured, it was quite flat.

This chapter continues the first-person gaming theme but focuses on making the
ground more interesting. The terrain can vary from rolling hills to craggy mountains.
The key elements of this chapter include:

A fractal landscape
Each time the application begins, a different landscape is generated using a fractal-
based algorithm to produce terrain heights. The variation in the heights are con-
trolled by a flatness value entered at the command line when the program is
started. The heights are translated into a patchwork of quadrilaterals (quads)
which form the landscape.

Figure 26-1 shows two terrains, generated by two separate calls to the applica-
tion (FractalLand3D), with different flatness values.

The ground is surrounded by walls, which prevent the user from leaving the ter-
rain area.

Texturing
Each quad is covered with a texture, the choice of texture being determined by
the quad’s average height. A highly textured object can start to shimmer when
viewed from far away since the texture is being mapped to too small an area of
screen pixels. I avoid this problem by using minification filtering and mipmap-
ping, which reduce a texture’s resolution depending on the viewpoint’s distance
from the textured object.

Lighting effects
The quads are affected by lighting, adding interesting shadows to their surfaces.
This requires normals to be calculated for each quad, which is done automati-
cally with the aid of Java 3D’s GeometryInfo and NormalGenerator classes. Part of

This is the Title of the Book, eMatter Edition

Fractal Land | 687

the normal generation includes smoothing the creases between the quad’s edges,
making the edges less visible.

The user’s view is obscured by Java 3D fog, which obscures distant parts of the
landscape. (I’ve commented this feature out of the code for the examples in
Figure 26-1 so you can see the terrains clearly.)

Key-based navigation (again)
I use another variation of the KeyBehavior class (first seen in Chapter 24) to con-
trol navigation from the keyboard. This time the variation allows the viewpoint
to follow the lie of the land automatically, moving up hills and down into val-
leys. This terrain-following technique is implemented using Java 3D’s picking.

Landscape construction
The implementation groups the individual quads together based on their aver-
age heights, which allows the program to use less geometry and texture objects.
At the last stage of landscape creation, the quads are converted into triangle
strips by a process called stripification, using Java 3D’s Stripifier class. This
conversion allows the graphics engine to optimize the rendering of the terrain.

This chapter is the first of two on terrain. Chapter 27 takes a different approach to
landscape generation, using data supplied by Terragen, a popular scenery-genera-
tion package. This allows me to create a detailed landscape outside of Java 3D,
which can be used every time the program is executed.

Another major theme of Chapter 27 is adding scenery to the landscape (3D and 2D
objects). The terrain in this chapter is devoid of scenery.

Figure 26-1. Fractal lands

This is the Title of the Book, eMatter Edition

688 | Chapter 26: Fractal Land

Class Diagrams for the Fractal Land
Figure 26-2 shows the class diagrams for FractalLand3D, including public methods.

FractalLand3D is the top-level JFrame for the application and is similar to earlier
examples, except that it extracts a double from the command line to be used as a
flatness value by the fractal code. WrapFractalLand3D creates the scene, using
Landscape to generate the terrain and walls, and initiates a KeyBehavior object.

Landscape uses FractalMesh to generate a collection of coordinates for the terrain and
then converts these coordinates into quads grouped into, at most, five TexturedPlanes

objects. The grouping is based on the average heights of the quads. All the quads in a
given TexturedPlanes object use the same texture, considerably reducing the number
of texture objects needed by the application. Landscape creates the walls around the
terrain with four ColouredPlane objects.

Landscape has a getLandHeight() method, used by KeyBehavior to calculate the floor
height at a given (x, z) location. KeyBehavior employs this information to position the
user’s viewpoint at the correct height above the floor as it moves.

The example code for this chapter can be found in FractalLand3D/.

Figure 26-2. Class diagrams for FractalLand3D

This is the Title of the Book, eMatter Edition

Building the Fractal Land | 689

What Is Flatness?
The flatness value is passed from FractalLand3D, through WrapFractalLand3D and
Landscape, into FractalMesh, where it controls the height variation. By trial and error,
I’ve set this number to be adjustable in the range of 1.6 to 2.5, with 2.3 being the
default. A 1.6 value creates a craggy landscape, and 2.5 makes it almost flat.

The number controls the random variation in the height values generated by the frac-
tal algorithm. If the flatness value is above 2, the random fluctuations are dampened
down leading to a smoother, flatter terrain. When the flatness value is less than 2, the
random component is more important, and the generated ground is more mountainous.

The input flatness number is checked by the FractalLand3D class, and a value out-
side of the 1.6–2.5 range is ignored. Instead, the default value (2.3) is used, which
generates an undulating landscape.

Building the Fractal Land
WrapFractalLand3D is like previous Wrap classes: it creates the 3D scene inside a
JPanel. The createSceneGraph() method brings the various elements of the scene
together:

void createSceneGraph(double flatness)
{
 sceneBG = new BranchGroup();
 bounds = new BoundingSphere(new Point3d(0,0,0), BOUNDSIZE);

 lightScene(); // add the lights
 addBackground(); // add the sky
 // addFog(); // add the fog

 // create the landscape: the floor and walls
 land = new Landscape(flatness);
 sceneBG.addChild(land.getLandBG());

 sceneBG.compile(); // fix the scene
}

lightScene() creates a single directional light, with no ambient backup, which
makes the scene dark (and hopefully mysterious). The sky is set to be dark blue,
which is the color used for the fog.

Linear Fog
The examples in Figure 26-1 use the createSceneGraph() method shown above, with
the call to addFog() commented out. When uncommented, the scene looks some-
thing like Figure 26-3.

This is the Title of the Book, eMatter Edition

690 | Chapter 26: Fractal Land

The fog adds to the sinister nature of the landscape. I’ve commented it out in the
example code to allow you to see what the entire landscape looks like.

The addFog() method is:

private void addFog()
{ LinearFog fogLinear = new LinearFog(skyColor, 15.0f, 30.0f);
 fogLinear.setInfluencingBounds(bounds);
 sceneBG.addChild(fogLinear);
}

The LinearFog node makes the scene start to fade at 15.0f world units from the user
and be totally obscured at 30.0f. My choice of numbers is based on the sides of the
scene being 64.0f units long, so the fog makes it impossible to see much more than a
quarter of the environment at any time. The fog color, skyColour, is also used for the
background, creating an effect of things fading away because of their distance from
the user.

Java 3D has an ExponentialFog node which makes a fog that seems
heavier and closer, supposedly more akin to real-world fog. When I
tried it, the fog seemed too heavy, so I moved back to the linear form.

Though my reason for using fog is to make the terrain seem a bit spookier, there is a
good technical reason for employing it: Java 3D culls fog-bound objects (i.e., objects
invisible to the user) from the scene, thereby speeding up the rendering of the scene.

User Controls
As I mentioned in the introduction, the user controls are keyboard-based with their
processing handled by a variant of the trusty KeyBehavior class. The user can move

Figure 26-3. A foggy scene

This is the Title of the Book, eMatter Edition

Creating the Landscape | 691

forward, backward, slide left or right, float up or down but can’t descend through
the ground. A minor change from KeyBehavior in Chapter 25 is that rotations are in
steps of 5 degrees left or right rather than 90 degrees. More importantly, the view-
point stays a fixed distance above the ground as it moves over the landscape. This
greatly enhances the impression that the ground is uneven.

WrapFractalLand3D calls createUserControls() to adjust the clip distances and to set
up the KeyBehavior object:

private void createUserControls()
{
 // original clips are 10 and 0.1; keep ratio between 100-1000
 View view = su.getViewer().getView();
 view.setBackClipDistance(20); // can see a long way
 view.setFrontClipDistance(0.05); // can see close things

 ViewingPlatform vp = su.getViewingPlatform();
 TransformGroup steerTG = vp.getViewPlatformTransform();

 // set up keyboard controls (and position viewpoint)
 KeyBehavior keybeh = new KeyBehavior(land, steerTG);
 keybeh.setSchedulingBounds(bounds);
 vp.setViewPlatformBehavior(keybeh);
}

The clip distances are adjusted in the same way, and for the same reasons, as in
Maze3D in Chapter 25. As you may recall, I reduced the front clip distance so the user
could move close to a block or cylinder without seeing through it. I extended the
back clip distance so the full extent of the scene could be seen without far parts of it
being clipped. In FractalLand3D, if the front clip is left at 0.1 units (the default), then
the user can often see through the side of a hill when the viewpoint is positioned
directly in front of it and the terrain is steep.

KeyBehavior handles the processing triggered by key presses and sets up the initial
viewpoint position; in previous examples, the starting point was managed by the
Wrap class itself.

Creating the Landscape
Landscape’s initial task is to build the terrain and the four walls around it. The result-
ing scene graph is shown in Figure 26-4.

The number of TexturedPlanes objects will vary depending on the height of the gen-
erated quads. Each TexturedPlanes holds all the quads within a given height range,
therefore allowing them to be assigned the same texture. This means that the pro-
gram only has to create one texture per TexturedPlanes object as opposed to one tex-
ture for each quad, a significant reduction in the number of objects.

This is the Title of the Book, eMatter Edition

692 | Chapter 26: Fractal Land

The moving viewpoint hugs the landscape by utilizing Java 3D picking. I’ll explain the
details later, but it involves shooting a pick ray straight down underneath the view-
point to hit a quad in the floor. The (x, y, z) coordinate of the intersection with the
quad is obtained, and the y-value is used to set the y-axis position of the viewpoint.

The TexturedPlanes are grouped under the floorBG BranchGroup so picking can be
localized to everything below floorBG, excluding the walls attached to the landBG

BranchGroup.

No TransformGroup nodes are in the graph, and landBG is attached directly to the top-
level sceneBG node. This means that the local coordinates used inside the
TexturedPlanes and ColouredPlane objects are scene coordinates, and mapping
between local and world values is unnecessary. This is an important optimization
when picking is employed: it means that the (x, y, z) coordinate returned from the
hit quad is the intersection point in world coordinates, so can be used immediately
to modify the viewpoint’s position.

Creating Floors
Landscape calls on FractalMesh to generate the coordinates for the floor:

FractalMesh fm = new FractalMesh(flatness);
// fm.printMesh(1); // for debugging: x=0; y=1; z=2
vertices = fm.getVertices();

The size of the floor is FLOOR_LEN, centered around the origin in the XZ plane.

vertices[] holds Point3d objects organized by FractalMesh into groups of four, each
group representing a distinct quad. The four points in a group are specified in
counterclockwise order when the points are viewed from above, with the bottom

Figure 26-4. Landscape’s scene graph

BG

BG

landBG

floorBG

ColouredPlane
(one for each wall)

TexturedPlanes
(one for each height range)

This is the Title of the Book, eMatter Edition

Creating the Landscape | 693

leftmost point first. For example, a possible sequence of points could be (0,5,1),
(1,5,1), (1,5,0), (0,5,0), which corresponds to the quad shown in Figure 26-5.

The quads in vertices[] are sorted into separate ArrayLists in platifyFloor() based
on their average heights and then passed to TexturedPlanes objects:

private void platifyFloor()
{
 ArrayList[] coordsList = new ArrayList[NUM_TEXTURES];
 for (int i=0; i < NUM_TEXTURES; i++)
 coordsList[i] = new ArrayList();

 int heightIdx;
 for (int j=0; j < vertices.length; j=j+4) { // test each quad
 heightIdx = findHeightIdx(j); //which height applies to quad?
 addCoords(coordsList[heightIdx], j); // add quad to list
 checkForOrigin(j); // check if (0,0) in the quad
 }

 // use coordsList and texture to make TexturedPlanes object
 for (int i=0; i < NUM_TEXTURES; i++)
 if (coordsList[i].size() > 0) // if used
 floorBG.addChild(new TexturedPlanes(coordsList[i],
 "images/"+textureFns[i])); // add to floor
} // end of platifyFloor()

platifyFloor() passes a filename to each TexturedPlanes, holding the texture that
will be laid over each of the quads. The resulting TexturedPlanes object is a Shape3D,
added to floorBG as shown in Figure 26-4.

Don’t bother looking for “platify” in a dictionary; it’s my invention,
meant to capture the idea that the floor is covered (plated) with tex-
tured quads.

platifyFloor() also checks the coordinates in vertices[] to find the one positioned
at (0, 0) on the XZ plane, to obtain its height. The coordinate is stored in originVec

and made accessible with the public method getOriginVec(). That method is uti-
lized by KeyBehavior to position the viewpoint at (0, 0) and at the correct height.

Figure 26-5. A quad from above

2

3

1

4

(0,5,1) (1,5,1)

(0,5,0) (1,5,0)

x

z

This is the Title of the Book, eMatter Edition

694 | Chapter 26: Fractal Land

Creating Walls
addWalls() generates eight coordinates that specify the top and bottom corners of the
four walls around the floor. The coordinates are passed to four ColouredPlane objects
to create the walls attached to landBG (see Figure 26-4). Here is a code fragment:

private void addWalls()
{
 Color3f eveningBlue = new Color3f(0.17f, 0.07f, 0.45f);

 // the eight corner points
 // back, left
 Point3d p1 = new Point3d(-WORLD_LEN/2.0f, MIN_HEIGHT, -WORLD_LEN/2.0f);
 Point3d p2 = new Point3d(-WORLD_LEN/2.0f, MAX_HEIGHT, -WORLD_LEN/2.0f);

 // code for seven more corners, finishing with ...
 // back, right
 Point3d p7 = new Point3d(WORLD_LEN/2.0f, MIN_HEIGHT, -WORLD_LEN/2.0f);
 Point3d p8 = new Point3d(WORLD_LEN/2.0f, MAX_HEIGHT, -WORLD_LEN/2.0f);

 // left wall; its points are specified in counter-clockwise order
 landBG.addChild(new ColouredPlane(p3, p1, p2, p4,
 new Vector3f(-1,0,0), eveningBlue));
 // code for three more walls, finishing with ...
 // back wall
 landBG.addChild(new ColouredPlane(p7, p8, p2, p1,
 new Vector3f(0,0,1), eveningBlue));
} // end of addWalls()

Take care to supply the points in the right order so the front face of each plane is
pointing into the scene. Otherwise, the lighting effects will appear on the face point-
ing out, hidden from the user.

On the Floor
When the user walks into a wall, any further forward movement is ignored.
KeyBehavior prevents the user walking off the edge of the floor by calling the public
method inLandscape() offered by the Landscape class:

public boolean inLandscape(double xPosn, double zPosn)
{
 int x = (int) Math.round(xPosn);
 int z = (int) Math.round(zPosn);
 if ((x <= -WORLD_LEN/2) || (x >= WORLD_LEN/2) ||
 (z <= -WORLD_LEN/2) || (z >= WORLD_LEN/2))
 return false;
 return true;
}

This is the Title of the Book, eMatter Edition

Creating the Landscape | 695

Picking a Height
When the user presses a key to move, KeyBehavior can easily calculate the new (x, z)
position, but the viewpoint cannot move until the height of the floor at that new spot
(its y-value) is obtained. This is the task of getLandHeight(), by using picking on the
floor’s BranchGroup. However, before getLandHeight() can be employed, a PickTool

object is created in Landscape’s constructor:

private PickTool picker; // global

picker = new PickTool(floorBG); // only check the floor
picker.setMode(PickTool.GEOMETRY_INTERSECT_INFO);

picker’s mode is set so the intersection coordinates can be obtained. It’s restricted to
the floor’s BranchGroup, eliminating the walls from the intersection calculations.
getLandHeight() uses the (x, z) coordinate as a starting location for a downward
pointing pick ray which intersects with the floor. The returned intersection informa-
tion includes the height of the floor at that (x, z) point, which is passed back to
KeyBehavior. The relevant code fragment from the moveBy() method in KeyBehavior is
shown here:

Vector3d nextLoc = tryMove(theMove); // next (x,?,z) user position
if (!land.inLandscape(nextLoc.x, nextLoc.z)) // if not on landscape
 return;

// Landscape returns floor height at (x,z)
double floorHeight = land.getLandHeight(nextLoc.x, nextLoc.z, currLandHeight);

The getLandHeight() method is:

public double getLandHeight(double x, double z, double currHeight)
{
 Point3d pickStart = new Point3d(x,MAX_HEIGHT*2,z); // start high
 picker.setShapeRay(pickStart, DOWN_VEC); // shoot ray downwards

 PickResult picked = picker.pickClosest();
 if (picked != null) { // pick sometimes misses an edge/corner
 if (picked.numIntersections() !=0) { // sometimes no intersects
 PickIntersection pi = picked.getIntersection(0);
 Point3d nextPt;
 try { // handles 'Interp point outside quad' error
 nextPt = pi.getPointCoordinates();
 }
 catch (Exception e) {
 // System.out.println(e);
 return currHeight;
 }
 return nextPt.y;
 }
 }
 return currHeight; // if we reach here, return old height
}

This is the Title of the Book, eMatter Edition

696 | Chapter 26: Fractal Land

The downward pointing vector is defined in DOWN_VEC:

private final static Vector3d DOWN_VEC = new Vector3d(0.0,-1.0, 0.0);

pickClosest() gets the PickResult nearest to the ray’s origin, which should be a
quad inside a TexturedPlanes node. The PickResult object is then queried to get a
PickIntersection object, and the intersection coordinate is accessed with
getPointCoordinates(). This level of access requires the TexturedPlanes objects to
have the INTERSECT_COORD picking capability:

PickTool.setCapabilities(this, PickTool.INTERSECT_COORD);

getLandHeight() is complicated by having to deal with several error cases:

• No quad is found by the pick ray, so the PickResult object is null.

• The PickResult object contains no intersections.

• The extraction of the intersection coordinate from the PickIntersection object
raises an Interp point outside quad exception.

None of these errors should occur since the pick ray is aimed straight down at a floor
covered entirely by quads. Nevertheless, they do, reflecting the buggy nature of pick-
ing in Java 3D 1.3.1. Typically, an error occurs if a ray intersects with a quad at its
edge or corner.

My error recovery strategy is to have KeyBehavior pass the current floor height into
getLandHeight() (i.e., the height of the floor where the user will be currently stand-
ing). If an error occurs, then that height will be returned.

The effect is that when the user moves, the viewpoint may remain at the same height
even if the user is moving up or down a hill. This would seem to be less than ideal
since it may mean the user will walk into the side of a hill or off into thin air when
descending the hill. In practice, errors occur infrequently, and one move only adjusts
the height marginally, so this approach is adequate.

Another description of this picking technique, with similar code, can
be found in Ben Moxon’s “The Little Purple Dude Walks,” online at
http://www.newview.co.uk/e/tutorials/java3d/index.jsp.

Issues with Terrain Representation
My approach to representing terrain uses the Landscape class to group quads with
similar heights together into the same Shape3D, so they all share the same Appearance

node component. This means that the application only has to manage a few geome-
tries and their associated textures at run time. Normal generation and stripification
(described in the next section, “Constructing the Ground”) only have to be applied
to several large geometries, rather than numerous individual quads, which would be
less efficient.

This is the Title of the Book, eMatter Edition

Constructing the Ground | 697

However, this approach has some drawbacks, especially if the terrain is large. One
issue is view frustum culling, where Java 3D renders only what can be seen in the
user’s FOV. In effect, Java 3D only displays what the user can see, which may accel-
erate the overall rendering time. Culling is only carried out if a shape is completely
hidden from the user’s viewpoint. Unfortunately, the Shape3D objects in
FractalLand3D are composed from quads distributed all over the landscape. This
means that little culling can be achieved in most situations, resulting in little (or no)
rendering gains.

Another problem is the cost of picking, which automatically employs bounds checks
to exclude Shape3Ds from more detailed intersection calculations. Again, the group-
ing of dispersed quads means these checks may not be able to exclude many shapes.

The problems with view frustum culling and picking are caused by the simplistic
approach of grouping quads together, based solely on their y-axis positions. Both prob-
lems would be alleviated if the quads were grouped based on their x- and z-coordinates.
This would allow the culling and picking algorithms to exclude shapes that were located
far away from the viewpoint.

Constructing the Ground
Quads with similar heights are grouped together in a TexturedPlanes object (which is
a subclass of Shape3D). All the quads in the object are covered with the same texture,
thereby adding detail to the landscape. However, a quad cannot be assigned a tex-
ture until it has texture coordinates.

I want quads to reflect light, so patterns of light and dark are shown on the land-
scape. This requires that each quad coordinate has a normal vector, so the direction
and intensity of reflected light at each point can be calculated.

Generating these normals manually would be time-consuming, so I use Java 3D’s
utility class, NormalGenerator, to do the job.

TheTexturedPlanes geometry is a QuadArray, with fields for the (x, y, z) coordinates,
texture coordinates, and the normals. The ArrayList of (x, y, z) coordinates (stored
in coords) is converted to an array before its points can be used:

int numPoints = coords.size();
QuadArray plane = new QuadArray(numPoints,
 GeometryArray.COORDINATES |
 GeometryArray.TEXTURE_COORDINATE_2 |
 GeometryArray.NORMALS);

// obtain points
Point3d[] points = new Point3d[numPoints];
coords.toArray(points);

This is the Title of the Book, eMatter Edition

698 | Chapter 26: Fractal Land

The texture coordinates are created in the same order as the points in a quad and
repeated for each quad:

TexCoord2f[] tcoords = new TexCoord2f[numPoints];
for(int i=0; i < numPoints; i=i+4) {
 tcoords[i] = new TexCoord2f(0.0f, 0.0f); // for 1 point
 tcoords[i+1] = new TexCoord2f(1.0f, 0.0f);
 tcoords[i+2] = new TexCoord2f(1.0f, 1.0f);
 tcoords[i+3] = new TexCoord2f(0.0f, 1.0f);
}

The calculation of the normals is carried out by a NormalGenerator object, which
requires the coordinates and texels to be stored in a Java 3D GeometryInfo object:

// create GeometryInfo
GeometryInfo gi = new GeometryInfo(GeometryInfo.QUAD_ARRAY);
gi.setCoordinates(points);
gi.setTextureCoordinateParams(1, 2); // one set of 2D texels
gi.setTextureCoordinates(0, tcoords);

// calculate normals with very smooth edges
NormalGenerator ng = new NormalGenerator();
ng.setCreaseAngle((float) Math.toRadians(150)); // default is 44
ng.generateNormals(gi);

The setTextureCoordinatesParams() specifies how many texture coordinate sets will
be used with the geometry and their dimensionality (Java 3D offers 2D, 3D, and 4D
texture coordinates).

The NormalGenerator adds vertex normals to the geometry inside GeometryInfo. The
crease angle is used to decide when two adjacent quads should be given separate nor-
mals. The crease angle is set to some prescribed value (44 degrees is the default), and
then the angles between adjacent quads are compared. If the angle between the two
quads is less than the crease angle (as in the lefthand pair in Figure 26-6), then the
quads will get to share a normal. If the angle between them is greater than the crease
angle (as in the righthand pair in Figure 26-6), then the quads will use separate nor-
mals. The sharing of normals between the quads creates a lighting effect that
smoothes (and nearly hides) the join between them.

Figure 26-6. Crease angle normals

less than the crease angle

greater than the
crease angle

quad1

quad2

normal

quad1

shared normal

normal

normal
normal

separate normals

quad2

This is the Title of the Book, eMatter Edition

Constructing the Ground | 699

By increasing the crease angle from 44 to 150 degrees in FractalLand3D, the edges
between most quads are made smoother when light is reflected off them; instead of a
sharp separation in light and shade at the shared edges, the pattern of light is more
diffuse, giving the impression that the underlying geometry is more rounded. This is
a useful trick for landscaping since no changes need to be done to the geometry’s
coordinates; only changes to the normals will be required.

Stripification
Stitching the landscape together from quads has several benefits, including making it
easier to generate the (x, y, z) coordinates and map textures to the surface. However,
Java 3D’s graphics engine (OpenGL or DirectX) can optimize the scene rendering if
the shapes are composed from triangle strips. Java 3D offers a Stripifier utility class
to convert geometries into triangle strips, a process known as stripification.

The geometry chosen for conversion should be supplied to the stripifier in a
GeometryInfo object, and the translation will be carried out in place:

Stripifier st = new Stripifier();
st.stripify(gi); // gi is a GeometryInfo object

Triangle strips are sequences of triangles where the second and third vertices of one
triangle are used as the first and second vertices of the next triangle, as in Figure 26-7.

The ordering of the points allows the underlying graphics hardware to render the
shape more quickly. However, the acceleration depends on the number of triangles
in a strip, with larger accelerations when the strip is longer. A TexturedPlanes shape
will generally consist of several medium length sequences of quads since the quads
are grouped based on similar heights. As a consequence, the rendering gains will gen-
erally be modest for this application.

The outcome of stripification is a new geometry stored in the GeometryInfo object.
This is the geometry made for the TexturedPlanes object:

// extract and use GeometryArray
setGeometry(gi.getGeometryArray());

Figure 26-7. Triangle strips examples

v1

v0

v2

v3

v4

v6

v5

v7v8

This is the Title of the Book, eMatter Edition

700 | Chapter 26: Fractal Land

Texture Minification
The Appearance node for the TexturedPlanes object is the usual mix of Texture2D and
Material nodes with lighting enabled. However, the size of the landscape means tex-
tures appear on quads at a great distance from the viewpoint. In terms of rendering,
this requires the texture image to be reduced in size, with a consequent reduction in
its resolution. As the viewpoint moves, the quads and textures are redrawn, and this
redrawing changes the mix of colors in the screen’s pixels. This change is seen by the
user as shimmering, which can become annoying in a highly textured environment
(as seen here).

Java 3D has a set of texture filtering modes which specify how a texture is made
larger or smaller for viewing. Minification is the process of reducing the texture’s size,
and magnification is its enlargement. A minification filter is set using the
setMinFilter() method:

texture.setMinFilter(Texture2D.BASE_LEVEL_LINEAR);

The minification specifies that the color in a single pixel should be based on an aver-
age of the four nearest texels in the texture. This averaging has the effect of smooth-
ing out the transition of colors from one pixel to another, which reduces the
shimmering of the texture as the viewpoint moves.

Unfortunately, minification is only an answer until the viewpoint moves too far from
the shape. At some point, the texture will be rendered at so small a size that four or
more texels are mapped to a pixel. The flicking will then return since the averaging is
no longer smoothing the transition between the pixels.

This problem doesn’t occur with mipmapping, where several lower resolution ver-
sions of the texture are precomputed as the texture is loaded and used as needed at
runtime. The relevant code is the following:

// load and set the texture; generate mipmaps for it
TextureLoader loader = new TextureLoader(fnm,
 TextureLoader.GENERATE_MIPMAP, null);

Texture2D texture = (Texture2D) loader.getTexture();
texture.setMinFilter(Texture2D.MULTI_LEVEL_LINEAR);

The GENERATE_MIPMAP flag switches on mipmapping, and the MULTI_LEVEL_LINEAR

mode specifies that the color for a pixel comes from eight texels: the four closest tex-
els from each of the two closest texture resolutions. This averaging approach
removes shimmering and replaces the need for runtime scaling of the texture.

The reduced resolution texture is called a mip map (hence the verb
mipmapping). The term mip is an acronym for the Latin phrase mul-
tum in parvo, which can be translated as “much on a small object.”

This is the Title of the Book, eMatter Edition

Generating a Fractal Landscape | 701

Multiple Textures
The edges between one texture and another in FractalLand3D are sharply highlighted
by the quad geometry, which tends to destroy the illusion of landscaping. One way
to improve the edges is to use multiple textures for each Shape3D. By using a basic
ground texture and then adding variations with additional layers of texturing, the
edges are smoothed out. Textures representing different kinds of vegetation or even
forms of lighting and shading work great for this. The layering of several textures
onto a surface is known as multitexturing.

The texture attributes for multiple layers are specified with TextureUnitState objects,
one for each layer. The setTextureUnitState() method is applied to the shape’s
Appearance node to add the textures. Several texture coordinates can be linked to
each vertex of the shape’s geometry and mapped to a particular TextureUnitState.

The Java 3D demo program TextureTest/MultiTextureTest.java shows
how multitexturing can be utilized.

A drawback with multitexturing is that older graphics cards may not support it. The
QueryProperties.java utility, in the Java 3D demo directory PackageInfo/, prints out sev-
eral properties related to textures; multiple textures require that textureUnitStateMax be
2 or greater.

Generating a Fractal Landscape
My FractalMesh class utilizes a plasma fractal to generate a mesh of Point3d objects,
centered at (0, 0) on the (x, z) plane, at intervals of 1 unit, extending out to WORLD_

LEN/2 units in the positive and negative x- and z-directions. (In my code, WORLD_LEN is
64 units.) The y-coordinates of these points become their heights in the scene.

The objects are stored in a 2D array called mesh, with mesh[0][0] storing the back,
left-most point in the scene. A row in mesh[][] stores all the points for a given z-value.

The mesh is generated using the algorithm described by Jason Shankel in “Fractal
Terrain Generation—Midpoint Displacement” from Game Programming Gems. The
mesh is seeded with four corner points, and a two-stage process is repeated until suf-
ficient extra points have been created. In the first stage (the diamond step), the height
of the midpoint of the four corner points is calculated by averaging their heights and
adding a random displacement in the range -dHeight/2 to dHeight/2. For example,
the height of the E point in Figure 26-8 is calculated this way:

E = (A + B + C + D)/4 + random(-dHeight/2, dHeight/2)

This is the Title of the Book, eMatter Edition

702 | Chapter 26: Fractal Land

The next stage (the square step) is to calculate the heights of the midpoints of the
four sides (F, G, H, and I in Figure 26-8). For example, G’s height is:

G = (A + E + C + E)/4 + random(-dHeight/2, dHeight/2)

If a point is on an edge (as G is), then we can use a neighbor from the opposite edge by
thinking of the mesh as wrapping around from left to right, and from top to bottom.
That’s why G’s calculation uses E twice: once as the left neighbor of G and once as its
right neighbor.

At the end of the two stages, the mesh can be viewed as four quarter-size squares
(AFEG, FBHE, GEIC, EHDI). Now the process begins again, on each of the four
smaller squares, as shown in Figure 26-9. The difference is that the sides of the
squares are half the length of the original, and dHeight is divided by the flatness

value (the number entered by the user at the start of FractalLand3D).

When flatness is > 2, dHeight will decrease faster than the sides of the squares, so
after the initial creation of hills and valleys, the rest of the terrain will generally con-
sist of smooth slopes between those features. When flatness < 2, the randomness
will be a significant component of the height calculations—hills and valleys will be
affected by this randomness, resulting in a rockier landscape.

The creation of the corner points is done by makeMesh():

private void makeMesh()
{

Figure 26-8. Mesh creation: first iteration

Figure 26-9. Mesh creation: second iteration

A B

C D

E
G H

F

I

square stepdiamond step

A B

C D

E

A B

C D

A B

C D

E
G H

F

I

square stepdiamond step

A B

C D

E
G H

F

I

A B

C D

E
G H

F

I

J K

L M

J K

L M

S T

Q

V
U

P

W

R

X Y

N O

This is the Title of the Book, eMatter Edition

Generating a Fractal Landscape | 703

 System.out.println("Building the landscape...please wait");
 mesh[0][0] = // back left
 new Point3d(-WORLD_LEN/2, randomHeight(), -WORLD_LEN/2);

 mesh[0][WORLD_LEN] = // back right
 new Point3d(WORLD_LEN/2, randomHeight(), -WORLD_LEN/2);

 mesh[WORLD_LEN][0] = // front left
 new Point3d(-WORLD_LEN/2, randomHeight(), WORLD_LEN/2);

 mesh[WORLD_LEN][WORLD_LEN] = // front right
 new Point3d(WORLD_LEN/2, randomHeight(), WORLD_LEN/2);

 divideMesh((MAX_HEIGHT-MIN_HEIGHT)/flatness, WORLD_LEN/2);
}

randomHeight() selects a random number between the maximum and minimum
heights fixed in the class.

divideMesh() carries out the diamond and square steps outlined abov, and contin-
ues the process by recursively calling itself. Here is the code in outline:

private void divideMesh(double dHeight, int stepSize)
{
 if (stepSize >= 1) { // stop recursing once stepSize is < 1
 // diamond step for all midpoints at this level
 // square step for all points surrounding diamonds
 divideMesh(dHeight/flatness, stepSize/2);
 }
}

divideMesh()’s stepSize value starts at WORLD_LEN/2 and keeps being divided by 2
until it reaches 1. In order for the points to be equally spaced over the XZ plane,
WORLD_LEN should be a power of 2 (it’s 64 in my code).

divideMesh() stores the generated points as Point3d objects in mesh[][]. The
Landscape object accesses the points by calling FractalMesh’s getVertices() method.
getVertices() creates vertices[] and stores references to mesh[][]’s points inside it,
in counterclockwise quad order, starting with the bottom-left corner of the quad.
For instance, when considering coordinate (x, z), it will copy the points in the order
(x, z + 1), (x + 1, z + 1), (x + 1, z), (x, z). This is somewhat clearer by considering
Figure 26-10.

The getVertices() method is:

public Point3d[] getVertices()
{
 int numVerts = WORLD_LEN*WORLD_LEN*4;
 Point3d vertices[] = new Point3d[numVerts];
 int vPos = 0;
 for(int z=0; z<WORLD_LEN; z++) {
 for(int x=0; x<WORLD_LEN; x++) {
 vertices[vPos++] = mesh[z+1][x]; // counter-clockwise
 vertices[vPos++] = mesh[z+1][x+1]; // from bottom-left

This is the Title of the Book, eMatter Edition

704 | Chapter 26: Fractal Land

 vertices[vPos++] = mesh[z][x+1];
 vertices[vPos++] = mesh[z][x];
 }
 }
 return vertices;
}

Printing the Mesh
FractalMesh contains a printMesh() method for debugging purposes: it prints either
the x-, y- or z-values stored in mesh[][] to a text file.

This method could easily be extended to store the complete mesh to a file. Landscape
could then have the option to create its floor by reading in the mesh from the file
rather than by using FractalMesh. This is similar to the way that Maze3D in Chapter 25
reads its maze information from a file created by the MazeGen application.

The advantage of this approach is that FractalLand3D could choose to reuse an exist-
ing landscape instead of generating a new one every time it was called.

Fixing the Randomness
The diamond and square steps use a random displacement in the range of –dHeight/
2 to dHeight/2. This is implemented in two places in FractalMesh, randomRange() and
randomHeight(), using Math.random() suitably scaled (e.g., in randomRange()):

private double randomRange(double h)
// between -h and h
{ return ((Math.random() * 2 * h) - h); }

This approach means that the landscape is different every time FractalLand3D is
called, even when the same flatness value is supplied by the user.

An interesting alternative, suggested to me by Tom Egan, is to employ the Random.

nextDouble() method instead. The advantage is that a Random object can be created
with a specific seed, which is a number used to generate the sequence of random num-
bers. If two instances of Random are created with the same seed, and the same sequence

Figure 26-10. Quad ordering for point (x, z)

2

3

1

4
x

z

(z+1, x) (z+1, x+1)

(z, x) (z, x+1)

This is the Title of the Book, eMatter Edition

Responding to Key Presses | 705

of method calls is made for each, they will generate identical sequences of numbers.
This means that the fractal will be the same each time, making the landscape the same
as well. This property would be useful in games where the landscape must be fixed.
The code changes would require a global Random object in FractalMesh:

private Random rnd = new Random(1L); // use a fixed seed

Then randomRange() and randomHeight() would need their calls to Math.random()

replaced by rnd.nextDouble(). For example, randomRange() would become:

private double randomRange(double h)
// between -h and h
{ return ((rnd.nextDouble() * 2 * h) - h); }

Now when FractalLand3D is called with a given flatness value, the same landscape
will be generated. However, the terrain will appear to be be random. You can still
modify it by adjusting the flatness number.

Responding to Key Presses
KeyBehavior is similar to the KeyBehavior classes I developed for FPShooter3D in
Chapter 24 and for Maze3D in Chapter 25. However, this class is given charge of posi-
tioning the viewpoint in initViewPosition(), which asks the Landscape object for the
origin’s coordinates:

private void initViewPosition(TransformGroup steerTG)
// place viewpoint at (0,?,0), facing into scene
{
 Vector3d startPosn = land.getOriginVec();
 // startPosn is (0, <height of floor>, 0)

 currLandHeight = startPosn.y; // store current floor height
 startPosn.y += USER_HEIGHT; // add user's height

 steerTG.getTransform(t3d); // targetTG not yet available
 t3d.setTranslation(startPosn); // so use steerTG
 steerTG.setTransform(t3d);
}

KeyBehaviour needs to know the current floor height to reposition the viewpoint as it
moves.

The operations carried out by KeyBehavior can be grouped into three categories:

• Movements requiring floor height information (i.e., moves forward, backward,
to the left, and right)

• Movements requiring height offset information (i.e., moves up and down)

• Rotations around the current location (i.e., turns to the left and right)

Rotations don’t require floor height data, so are implemented as rotations of
ViewPlatform’s TransformGroup.

This is the Title of the Book, eMatter Edition

706 | Chapter 26: Fractal Land

Movements up and down are made more efficient by KeyBehavior storing a zOffset

counter which records how many upward moves have been made by the user. Con-
sequently, a move down will only be allowed if zOffset is > 0. The efficiency gain
exists because there’s no need to access floor height information.

Movements over the terrain are implemented by a call to moveBy(), which has three
stages:

• The next (x, z) position on the floor is calculated by carrying out the move but
not updating ViewPlatform’s TransformGroup.

• The resulting (x, z) data are passed to getLandHeight() in the Landscape object so
that it can look up the floor height for that location.

• The viewpoint’s movement along the y-axis is calculated as the change between
the current floor height and the height at the new location.

The moveBy() method is:

private void moveBy(Vector3d theMove)
{
 Vector3d nextLoc = tryMove(theMove); // next (x,?,z) position
 if (!land.inLandscape(nextLoc.x, nextLoc.z))
 return;

 // Landscape returns floor height at (x,z)
 double floorHeight = land.getLandHeight(nextLoc.x, nextLoc.z, currLandHeight);
 // Calculate the change from the current y-position.
 // Reset any offset upwards back to 0.
 double heightChg = floorHeight - currLandHeight - (MOVE_STEP*zOffset);

 currLandHeight = floorHeight; // update current height
 zOffset = 0; // back on floor, so no offset
 Vector3d actualMove = new Vector3d(theMove.x, heightChg, theMove.z);
 doMove(actualMove);
}

The method is a little more complicated than the steps above for two reasons. There
is a call to inLandscape() to check if the proposed move will take the user off the
floor, in which case the move is ignored. Second, a move always cancels out any
existing upward offset, returning the user to the floor.

The actual move is carried out by doMove() which applies the translation to
ViewPlatform’s TransformGroup.

Terrain Following and Collision Avoidance
Realistic terrain following must handle issues such as gravity effects (e.g., falling off a
cliff), how high to step up/down at a time, holes, and water. The code in KeyBehavior

and Landscape doesn’t deal with any of these concerns.

This is the Title of the Book, eMatter Edition

Placing Objects in the Scene | 707

A programming style question is whether picking should be used as a walking aid.
One reason for employing it is that the same mechanism can help with movement
through scenery, such as up and down staircases, so long as the objects can be
picked. Picking makes it possible to walk over a terrain without needing a pre-
defined “map.”

A downside, until recently, was the large amount of garbage that could accumulate
over time because of repeatedly computing intersections. The resulting garbage col-
lection could degrade the application’s execution. Fortunately, the PickRay and
PickSegment intersection code was rewritten in Java 3D v.1.3.1 to reduce the over-
head, but the other picking shapes, such as PickCylinderRay, remain unchanged.

Garbage collection may only become a serious issue when picking is utilized for colli-
sion avoidance: the moving object typically sends out multiple rays in several direc-
tions at each frame update, each requiring intersection testing. However, this
approach is used without problems in the Pernica multiplayer role-playing game
(http://www.starfireresearch.com/pernica/pernica.html) from Starfire Research.

Java XTools (http://www.3dchat.org/dev.php) offers a KeyNavigatorBehavior class,
which implements collision avoidance and terrain following. The online docu-
mentation is at http://www.3dchat.org/doc/com/vwp/j3d/utils/behaviors/keyboard/
KeyNavigatorBehavior.html.

An interesting article on terrain following and collision detection in Java 3D, written
by Justin Couch, can be found at http://www.j3d.org/tutorials/collision.

GameDev.net has a good collision-detection section: http://www.gamedev.net/reference/
list.asp?categoryid=45#99.

Placing Objects in the Scene
Knowing where to place something in the scene at scene creation time is a question
of knowing the height of the ground at a particular (x, z) location. This is problem-
atic because most ground positions will have been extrapolated by Java 3D from the
corner points of quads. Picking is useless in this case since we want to position
objects before the complete scene is made live.

If a quad is coplanar (i.e., positioned in a single plane), then calculating interior
points is straightforward. Unfortunately, most quads are not coplanar. Furthermore,
because the underlying graphics hardware works with triangles, the geometry in a
Shape3D will have been triangulated, and the shape of those triangles is hard to pre-
dict when their vertices are highly noncoplanar.

Java 3D uses a subset of the FIST triangulation algorithm (see http://www.cosy.sbg.ac.at/
~held/projects/triang/triang.html for a nontechnical discussion of the algorithm). Each
polygon is projected onto a plane, and the 2D projected points are considered using a
range of heuristics. One aim is to avoid long, skinny triangles by maximizing the angles

This is the Title of the Book, eMatter Edition

708 | Chapter 26: Fractal Land

within the triangles. The presence of heuristics means that it’s sometimes difficult to
know how a polygon will be divided.

The example is Figure 26-11, which shows a single quad with two equally likely tri-
angulations. A division along PR will give point pt a height of 0, but if the SQ line is
used then the same point will have a height of 5 units.

One way of dealing with this issue is to move away from quadrilaterals and use trian-
gles as the tiling units for the terrain. An equation for the surface delineated by a tri-
angle’s three vertices (the plane equation) is easily obtained. Consider the points P,
Q, and R in the triangle of Figure 26-12.

The plane equation is defined as:

Ax + By + Cz = D

where A, B, C, and D are constants.

The normal vector N is calculated with the cross product of the vectors U and V:

N = U × V

U and V are obtained by subtracting P from Q and R, respectively.

When is N is normalized (made to have unit length), then A, B, and C are its coefficients.

Figure 26-11. A triangulation problem

Figure 26-12. A triangle with vectors

(2,5,4) (3,0,4)

x

z

(2,0,5) (3,5,5)

P Q

S R

(2.5,?,4.5)

pt

P

Q

R

U

V

This is the Title of the Book, eMatter Edition

Other Fractal Landscapes | 709

The distance from the origin to the point on the plane nearest to the origin is equiva-
lent to the plane equation’s D constant. D can be calculated as the dot product of the
normal and any point on the triangle (e.g., the point P):

D = N . P

Once we have the plane equation coefficients, the height of any point lying on the tri-
angle is:

y = (D – Ax – Cz)/B

where (x, z) is the known XZ position of the point.

Here is the Java 3D code for doing this:

private void vecsToHeight(Vector3d u, Vector3d v, Vector3d pt)
{
 Vector3d normal = new Vector3d();
 normal.cross(u, v);
 normal.normalize();
 double dist = normal.dot(pt);

 System.out.println("A: "+ df.format(normal.x) + ", B: " +
 df.format(normal.y) + ", C: " + df.format(normal.z) +
 ", D: " + df.format(dist)); // Ax + By + Cz = D

 double height = (dist - (normal.x * pt.x) - (normal.z * pt.z)) / normal.y;
 System.out.println("Height for pt: " + df.format(height));
}

A drawback with working with triangles is the distortion apparent in textures laid
over the triangles.

Other Fractal Landscapes
Aside from the plasma fractal used in my code, two other popular approaches are the
fault fractal and the Fractal Brownian Motion (FBM) fractal.

A fault fractal creates a height map by drawing a random line through a grid and
increasing the height values on one side of the line. If this is repeated several hun-
dred times then a reasonable landscape appears. The main drawbacks are the lack of
programmer control over the finished product and the length of time required to
produce a convincing geography.

An FBM fractal is a combination of mathematical noise functions which generate
random height values within a certain range. An important advantage of FBM is that
each noise function has several parameters which can be adjusted to alter its effect.
C++ code for creating clouds and landscapes with FBMs can be found in the article
by Jesse Laeuchi: “Programming Fractals” from Games Programming Gems 2, sec-
tion 2.8, pp.239–246, 2001.

This is the Title of the Book, eMatter Edition

710 | Chapter 26: Fractal Land

A good online starting point for fractal terrain information is the Virtual Terrain
Project page (http://www.vterrain.org/Elevation/artificial.html).

The j3d.org code repository (http://code.j3d.org) has an extensive set of packages related
to terrain creation. There’s a FractalTerrainGenerator class in org.j3d.geom.terrain

that uses a plasma fractal approach similar to mine in which the heights are generated
and converted to geometry with ElevationGridGenerator. Colors are assigned per verti-
ces based on ramp values specified in ColorRampGenerator.

The use of colors at the vertices produces a pleasant blending effect. Unfortunately,
it’s impossible to combine texture mappings and colored nodes in Java 3D due to
restrictions in the underlying OpenGL and DirectX systems.

Merlin Hughes wrote a JavaWorld article on plasma fractal terrains in 1998: “3D
Graphic Java: Render Fractal Landscapes” (http://www.javaworld.com/javaworld/jw-
08-1998/jw-08-step.html). He coded in Java without using Java 3D, so the implemen-
tation of tessellation, lighting and shading, viewpoint calculations, and rendering are
low-level.

Plasma fractals were used by Mike Jacobs in his September 2004 article for Java
Developer Journal about rendering a Martian landscape with Java 3D (http://www.
sys-con.com/story/?storyid=46231&DE=1). His terrain utilizes vertex coloring rather
than textures.

This is the Title of the Book, eMatter Edition

711

Chapter 27 CHAPTER 27

Terrain Generation with Terragen

This chapter continues the landscape creation theme from Chapter 26 but takes a
different approach. A significant drawback of that chapter’s FractalLand3D example
is the programmer’s lack of control over the generated terrain. Most games require
mountains, fields, lakes, and so on, to be in fixed, specific places, rather than ran-
domly located in a new landscape each time the program starts. Another weakness of
the approach is the lack of scenery (e.g., bushes, trees, buildings).

This chapter explains how to create a detailed, fixed landscape that’s the same every
time the program uses it and includes scenic dressing. The major topics covered are:

Use of a landscaping tool
There are numerous tools for terrain building, which are better at creating a real-
istic looking landscape than a do-it-yourself (DIY) approach coded in Java. I’ll be
using Terragen, a popular scenery generation package. The landscape is
designed with Terragen and then saved as a mesh and texture, which are loaded
by my program (Terra3D) at start time. Utilizing specialized modeling software is
better than implementing something from scratch.

3D and 2D ground cover
The landscape can be decorated with two types of scenery: 3D models loaded
with the PropManager class (from Chapter 16) and 2D ground cover images (e.g.,
trees, sagebrush), which stay oriented towards the viewer. The separation into
two types is for efficiency: multiple copies of a 2D shape are one instance of that
shape shared using Java 3D’s SharedGroup class.

Other scenery decorations
The edges of the landscape are surrounded by walls covered in a mountain range
image. This adds to the realism since the user can’t peer over the edges of the
world or walk out of the scene. The sky is filled with stars represented as a
Background geometry (an approach suggested by Kevin Duling).

This is the Title of the Book, eMatter Edition

712 | Chapter 27: Terrain Generation with Terragen

Configuration files
The landscape isn’t hardwired into the Terra3D code: the choice of landscape (its
mesh and texture) is determined by a command line argument, and a series of
configuration files specify the placement of the 3D and 2D ground cover and the
user’s starting position.

Terrain following using picking
Picking is employed for terrain following again, as in Chapter 26, but the imple-
mentation is complicated by a need to deal with large landscapes. A conse-
quence is that a user can walk “inside” a mountain but will eventually be
repositioned on its surface.

The problem is that Java 3D picking is too slow when the terrain is large. My
solution is to extend the basic algorithm of Chapter 26 with a HeightFinder

thread which separates the slow picking calculation from key processing when
the user wants to move.

Figures 27-1 and 27-2 show two landscapes, originally designed with Terragen and
then loaded by Terra3D.

The castle in Figure 27-1 is a 3D model, and the trees and sagebrush in Figures 27-1
and 27-2 are 2D ground cover images.

Class Diagrams for Terra3D
Figure 27-3 shows the class diagrams for the Terra3D application. The class names
and public methods are included.

Figure 27-1. Green valleys with a castle

This is the Title of the Book, eMatter Edition

Terragen | 713

Terra3D is the top-level JFrame for the application. WrapTerra3D creates the world,
including the lighting and background. However, most of the work is delegated to a
Landscape object that loads the landscape (a combination of an OBJ file for the mesh
and JPG image for the texture) and places walls around it. Each wall is an instance of
TexturedPlane, so a mountain range image can be displayed.

The 3D scenery models are loaded with PropManager objects, and the 2D images are
represented by GroundShape objects. A GroundCover object manages the placement of
the ground cover and the sharing of the GroundShape objects.

The KeyBehavior class is similar to the one in FractalLand3D in Chapter 26. The user
can move forward, backward, left, right, up, down (but not below the ground) and
can turn left and right. In addition, the w key prints the user’s location in the land-
scape to System.out.

Terrain picking is handled by a HeightFinder thread, which communicates its answer
back to KeyBehavior when the picking is completed.

The code for this example can be found in the Terra3D/ directory.

Terragen
Terragen is a scenery-generation package for Windows and the Mac, aimed at pro-
ducing photorealistic landscape images and animations (http://www.planetside.co.uk/
terragen/). It’s easy to use, and a beautiful scene can be generated in a few minutes.

Figure 27-2. Desert with sagebrush

This is the Title of the Book, eMatter Edition

714 | Chapter 27: Terrain Generation with Terragen

Some examples are at http://www.planetside.co.uk/terragen/images.shtml and http://
www.planetside.co.uk/terragen/gallery/gallerymain.php. Terragen is currently free for
personal, noncommercial use, though there are some restrictions on the size and res-
olution of the scenes that can be built.

A terrain can be created in Terragen using fractals (I talked about fractal terrains in
the last chapter), by painting the shape of the landscape, or as a combination of the
two. Terragen supports powerful surface and color maps for decorating the land-
scape, water effects, clouds, atmospheric elements, lighting, and shadows.

Terragen can import and export a wide range of file formats through the use of plug-
ins. For example, the Firmament plug-in allows Terragen to read BMPs, STMs, POV-
RAY height fields, and U.S. Geological Survey (USGS) DEM (digital elevation model)
and spatial data transfer standard (SDTS) files. The For Export Only (FEO) plug-in
permits exports to BMP, DXF, OBJ, and RIB files.

Figure 27-3. Class diagrams for Terra3D

This is the Title of the Book, eMatter Edition

Terragen | 715

My approach requires that Terragen exports its terrain to a Wave-
front OBJ file, so the FEO plug-in must be installed (http://
homepages.ihug.co.nz/~jomeder/feo/). Plug-ins are supported via the
TGPGuiLib plug-in interface (http://homepages.ihug.co.nz/~jomeder/
tgpguilib/).

Numerous tools can accept, manipulate, and help create Terragen landscapes. A long
list is available at http://www.planetside.co.uk/terragen/resources.shtml. For example,
3DEM can read a wide range of USGS and NASA map file formats and save them as
Terragen terrains (http://www.visualizationsoftware.com/3dem.html). For instance, you
could build a Martian terrain using real data from NASA’s Mars Surveys.

Using Terragen
A user guide explains the various menu items, dialog boxes, and other GUI elements
(http://www.planetside.co.uk/terragen/guide/). Carol Brooksbank’s tutorial takes a differ-
ent approach, based around explanations of common tasks (http://www.caroluk.co.uk/
terratut/). I highly recommended it.

Figure 27-4 shows the Landscape window inside Terragen after a random landscape
has been generated with the “Generate Terrain” button. The water level was set at
–10 meters with a surface map loaded for light snow. The Rendering Control window
is visible behind the Landscape window, showing a preview of the user’s current van-
tage point.

The screenshot in Figure 27-4 was taken from Terragen 0.8.68, Ver-
sion 0.9 has rearranged some of the Landscape window elements.

Clicking on the Render Image button in the Rendering Control window displays the
scene (see Figure 27-5). Varying levels of detail can be selected; more detail takes
longer to display.

The landscape mesh can be saved by selecting the FEO Wavefront OBJ item from
the Accessories button in the Landscape window. This will only be present if FEO
has been installed. Click Ok to save after unchecking the “Swap Y and Z axes” radio
box. This will make the floor of the mesh run along the XY plane with heights along
the z-axis.

A basic landscape like this one will usually generate a 5-MB OBJ file, taking a few
minutes to do so. An advantage of the OBJ file is its ASCII format, which means that
any text editor can open it (but the editor must be capable of viewing large files).

This is the Title of the Book, eMatter Edition

716 | Chapter 27: Terrain Generation with Terragen

Figure 27-4. Terragen in action

Figure 27-5. Rendered view

This is the Title of the Book, eMatter Edition

Terragen | 717

The resulting OBJ file (named test3.obj) contains two groups of data: the vertices
making up the mesh, and face information, with each face made from three vertices.
For example, here are the first few lines of vertex data in test3.obj:

v 0.000000 0.000000 198.037763
v 30.000000 0.000000 190.554714
v 60.000000 0.000000 177.648668
v 90.000000 0.000000 172.938180
v 120.000000 0.000000 170.091105
... // many more lines

The mesh’s floor is the XY plane; the z-values are the heights. Each vertex is 30 land-
scape units apart, and the vertices are ordered by increasing column (y-axis) and row
(x-axis) values. The bottom-left corner of the XY floor is at coordinate (0, 0).

The last few lines of v data are:

... // many lines, and then...
v 7620.000000 7680.000000 217.026916
v 7650.000000 7680.000000 212.388668
v 7680.000000 7680.000000 198.037763

The top righthand corner of the floor is at (7680, 7680).

Each v line has an implicit index, starting at 1, and the face lines use them to refer to
vertices:

f 1 2 258
f 2 259 258
f 2 3 259
f 3 260 259
f 3 4 260
... // many more lines

These define triangle strips and will be loaded into a TriangleStripArray by Java 3D,
a particularly efficient mesh data structure.

A good place to read about OBJ support in Java 3D is the documentation for the
ObjectFile class, which is used to load an OBJ file. A file may include information
about normals, textures, colors, and utilize a separate material file. A specification of
the complete OBJ format can be found at http://www.dcs.ed.ac.uk/home/mxr/gfx/3d/
OBJ.spec.

The OBJ file can be viewed graphically by many packages, including the ObjLoad

example in the Java 3D demos (which uses ObjectFile). One issue is the size of the
mesh created by Terragen, which may be too large for some software to handle. For
example, ObjLoad requires 128 MB of memory to run:

java –Xmx128m ObjLoad test3.obj

Figure 27-6 shows the landscape as displayed by ObjLoad. Face culling is switched on,
so the terrain becomes almost invisible if turned over.

This is the Title of the Book, eMatter Edition

718 | Chapter 27: Terrain Generation with Terragen

The beautiful Terragen surface texturing is missing but can be obtained by separate
means.

Extracting a Terragen Texture
The trick for obtaining a texture is to generate an orthographic projection of the ter-
rain when viewed from above. Terragen v.0.9 has an orthographic rendering option
in Camera Settings, making it simple to export a texture map. The discussion here is
for Version 0.8.68.

The camera’s viewpoint must be positioned directly above the terrain, looking
straight down. The view will suffer from distortion at the edges due to perspective
effects, but the effect can be reduced by setting the camera zoom to 1. Sky rendering
and terrain shadows should be switched off. Setting the sun’s altitude to 90 degrees
(directly overhead) helps to minimize shadow effects on the surface map.

The rendering window should be increased in size (e.g., to 800 × 800), and rendering
set to the highest resolution to produce a detailed image. The result is shown in
Figure 27-7.

The image can be saved as a BMP (around 2-MB file sizes seem common) and then
converted to a JPG by any number of graphics packages (reducing the image to
around 500 KB). The most important aspects of the conversion are to clip away the
black background and resize the image to form a square. This will remove some of
the terrain surface, but the loss isn’t noticeable inside Terra3D.

The image should be saved as a high-quality JPG. Figure 27-8 contains the final
image, ready to be used as a texture.

Figure 27-6. test3.obj in ObjLoad

This is the Title of the Book, eMatter Edition

Terragen | 719

Figure 27-9 shows the terrain as loaded into Terra3D, with the user standing in
roughly the same position as the view presented in Figure 27-5.

The poor texture resolution compared to the surface maps in Terragen means that a
lot of detail is lost, but what is left is sufficient for game play.

Figure 27-10 displays the users’ view after they have moved to the other side of the
lake and turned to look back toward the viewpoint employed in Figure 27-9.

Figure 27-7. The terrain from above

Figure 27-8. The terrain texture

This is the Title of the Book, eMatter Edition

720 | Chapter 27: Terrain Generation with Terragen

Scenery Creation
WrapTerra3D sets up the lighting and background, creates a Landscape object, and ini-
tializes the KeyControl object for managing user navigation. The background code
sets the sky to be medium blue, with stars added to its geometry:

private void addBackground()
{ Background back = new Background();
 back.setApplicationBounds(bounds);
 back.setColor(0.17f, 0.50f, 0.92f);
 back.setGeometry(addStars());
 sceneBG.addChild(back);
}

Figure 27-9. Terra3D’s view of the terrain

Figure 27-10. The other side of the lake

This is the Title of the Book, eMatter Edition

Scenery Creation | 721

The background geometry can be any type of Group node, but there are some restric-
tions on the shapes held inside the group. For example, Shape3D is fine, but
OrientedShape3D is prohibited. The geometry is restricted to a unit sphere but drawn
as if located at infinity.

addStars() creates a PointArray of coordinates at random places in the hemisphere
above the XZ plane (there’s no reason to have stars below the horizon). The colors of
the points are randomly chosen:

private BranchGroup addStars()
{
 PointArray starField = new PointArray(NUM_STARS,
 PointArray.COORDINATES | PointArray.COLOR_3);
 float[] pt = new float[3];
 float[] brightness = new float[3];
 Random rand = new Random();

 for (int i=0; i < NUM_STARS; i++) {
 pt[0] = (rand.nextInt(2) == 0) ? -rand.nextFloat() : rand.nextFloat();
 pt[1] = rand.nextFloat(); // only above the XZ plane
 pt[2] = (rand.nextInt(2) == 0) ? -rand.nextFloat() : rand.nextFloat();
 starField.setCoordinate(i, pt);

 float mag = rand.nextFloat();
 brightness[0] = mag;
 brightness[1] = mag;
 brightness[2] = mag;
 starField.setColor(i, brightness);
 }

 BranchGroup bg = new BranchGroup();
 bg.addChild(new Shape3D(starField));
 return bg;
} // end of addStars()

This coding approach was suggested by Kevin Duling in an applet at
http://home.earthlink.net/~kduling/Java3D/Stars/.

Setting Up the User’s Controls
createUserControls() is similar to the same named method in WrapFractalLand3D in
Chapter 26; it adjusts the clip distances and sets up the KeyBehavior object. The front
clip distance is adjusted to reduce the chance of the terrain being clipped away when
the user’s viewpoint is close to it.

An additional line sets up depth sorting for transparent objects in the world:

View view = su.getViewer().getView();
view.setTransparencySortingPolicy(View.TRANSPARENCY_SORT_GEOMETRY);

This is the Title of the Book, eMatter Edition

722 | Chapter 27: Terrain Generation with Terragen

Sorting multiple transparent objects is necessary in Terra3D since ground cover
objects are implemented as transparent GIFs textured over shapes. It’s likely that the
user’s viewpoint will include many overlapping instances of these. The default
behavior of Java 3D is to do no depth sorting, which may cause the transparent
objects to be drawn in the wrong order, so trees and bushes in the distance are
drawn in front of nearer ones.

The TRANSPARENCY_SORT_GEOMETRY policy only sorts independent geometries (i.e., each
Shape3D object must contain only a single geometry). It won’t correctly order multi-
ple geometries in a shape, but I’ve not used this approach; each ground cover shape
holds a single quad covered with an image.

Building the Landscape
The Landscape object is created by WrapTerra3D, and is passed a reference to the
world’s scene (sceneBG) and the filename supplied on the command line (e.g., test1).

Landscape’s primary purpose is to display a terrain composed from a mesh and a tex-
ture. Landscape looks in the models/ subdirectory for a OBJ file containing the mesh
(e.g., test1.obj) and for a JPG (e.g., test1.jpg) to act as the texture. The OBJ file is
loaded, becoming the landBG BranchGroup linked to sceneBG. The texture is laid over
the geometry stored within landBG.

Landscape can add two kinds of scenery to the terrain:

3D shapes
Loaded with PropManager. This type of scenery includes irregular objects that the
user can move around and perhaps enter (e.g., the castle shown in Figure 27-1).

Ground cover
Represented by 2D images that rotate to face the user. This kind of scenery is for
simple, symmetrical objects that decorate the ground, such as trees and bushes
(see Figures 27-1 and 27-2). Ground cover shapes are managed by a GroundCover

object.

The terrain is surrounded by walls covered in a mountain range image.

Loading the Mesh
The Landscape() constructor loads the mesh, checks that the resulting Java 3D sub-
graph has the right characteristics, and extracts various mesh dimensions. At the end
of the constructor, the land is added to the world and the texture laid over it:

// globals
private BranchGroup sceneBG;
private BranchGroup landBG = null;
private Shape3D landShape3D = null;

This is the Title of the Book, eMatter Edition

Building the Landscape | 723

// various mesh dimensions, set in getLandDimensions()
private double landLength, minHeight, maxHeight;
private double scaleLen;

public Landscape(BranchGroup sceneBG, String fname)
{
loadMesh(fname); // initialize landBG
getLandShape(landBG); // initialize landShape3D

 // set the picking capabilities so that intersection
 // coords can be extracted after the shape is picked
 PickTool.setCapabilities(landShape3D, PickTool.INTERSECT_COORD);

getLandDimensions(landShape3D); // extracts sizes from landShape3D

 makeScenery(landBG, fname); // add any scenery
 addWalls(); // walls around the landscape
 GroundCover gc = new GroundCover(fname);
 landBG.addChild(gc.getCoverBG()); // add any ground cover

 addLandtoScene(landBG);
 addLandTexture(landShape3D, fname);
}

loadMesh() uses Java 3D’s utility class, ObjectFile, to load the OBJ file. If the load is
successful, the geometry will be stored in a TriangleStripArray below a Shape3D node
and BranchGroup. loadMesh() assigns this BranchGroup to the global landBG:

private void loadMesh(String fname)
{
 FileWriter ofw = null;
 String fn = new String("models/" + fname + ".obj");
 System.out.println("Loading terrain mesh from: " + fn +" ...");
 try {
 ObjectFile f = new ObjectFile();
 Scene loadedScene = f.load(fn);
 if(loadedScene == null) {
 System.out.println("Scene not found in: " + fn);
 System.exit(0);
 }

 landBG = loadedScene.getSceneGroup(); // the land's BG
 if(landBG == null) {
 System.out.println("No land branch group found");
 System.exit(0);
 }
 }
 catch(IOException ioe)
 { System.err.println("Terrain mesh load error: " + fn);
 System.exit(0);
 }
}

This is the Title of the Book, eMatter Edition

724 | Chapter 27: Terrain Generation with Terragen

getLandShape() checks that the subgraph below landBG has a Shape3D node and the
Shape3D is holding a single GeometryArray. The Shape3D node is assigned to the
landShape3D global:

private void getLandShape(BranchGroup landBG)
{
 if (landBG.numChildren() > 1)
 System.out.println("More than one child in land branch group");
 Node node = landBG.getChild(0);
 if (!(node instanceof Shape3D)) {
 System.out.println("No Shape3D found in land branch group");
 System.exit(0);
 }
 landShape3D = (Shape3D) node;
 if (landShape3D == null) {
 System.out.println("Land Shape3D has no value");
 System.exit(0);
 }
 if (landShape3D.numGeometries() > 1)
 System.out.println("More than 1 geometry in land BG");
 Geometry g = landShape3D.getGeometry();
 if (!(g instanceof GeometryArray)) {
 System.out.println("No Geometry Array found in land Shape3D");
 System.exit(0);
 }
}

getLandDimensions() is called from Landscape’s constructor to initialize four globals
related to the size of the mesh:

landLength

The length of the X (and Y) sides of the floor of the landscape.

scaleLen

The scaling necessary to fit landLength into LAND_LEN units in the world. scaleLen
will be used to scale the landscape.

minHeight

maxHeight

Minimum and maximum heights of the landscape.

The underlying assumptions are that the floor runs across the XY plane, is square,
with its lower lefthand corner at (0,0), and the positive z-axis holds the height
values:

private void getLandDimensions(Shape3D landShape3D)
{
 // get the bounds of the shape
 BoundingBox boundBox = new BoundingBox(landShape3D.getBounds());
 Point3d lower = new Point3d();
 Point3d upper = new Point3d();
 boundBox.getLower(lower); boundBox.getUpper(upper);
 System.out.println("lower: " + lower + "\nupper: " + upper);

This is the Title of the Book, eMatter Edition

Building the Landscape | 725

 if ((lower.y == 0) && (upper.x == upper.y)) {
 // System.out.println("XY being used as the floor");
 }
 else if ((lower.z == 0) && (upper.x == upper.z)) {
 System.out.println("Error: XZ set as the floor; change to XY in Terragen");
 System.exit(0);
 }
 else {
 System.out.println("Cannot determine floor axes");
 System.out.println("Y range should == X range, and start at 0");
 System.exit(0);
 }

 landLength = upper.x;
 scaleLen = LAND_LEN/landLength;
 System.out.println("scaleLen: " + scaleLen);
 minHeight = lower.z;
 maxHeight = upper.z;
} // end of getLandDimensions()

The lower and upper corners of the mesh can be obtained easily by extracting the
BoundingBox for the shape. However, this approach only works correctly if the
shape contains a single geometry, which is checked by getLandShape() before
getLandDimensions() is called.

Placing the Terrain in the World
The floor of the landscape runs across the XY plane, starting at (0, 0), with sides of
landLength units and heights in the z-direction. The world’s floor is the XZ plane,
with sides of LAND_LEN units and the y-axis corresponding to up and down.

Consequently, the landscape (stored in landBG) must be rotated to lie on the XZ
plane and must be scaled to have floor sides of length LAND_LEN. The scaling is a mat-
ter of applying the scaleLen global, which equals LAND_LEN/landLength. In addition,
the terrain is translated so the center of its floor is at (0, 0) in the world’s XZ plane.
These changes are illustrated by Figure 27-11.

Figure 27-11. Placing the terrain

x

z

y

(0,0)

terrain

landLength

x

z

y

terrain

LAND_LEN

This is the Title of the Book, eMatter Edition

726 | Chapter 27: Terrain Generation with Terragen

Here’s the relevant code:

private void addLandtoScene(BranchGroup landBG)
{
 Transform3D t3d = new Transform3D();
 t3d.rotX(-Math.PI/2.0); // so land's XY resting on XZ plane
 t3d.setScale(new Vector3d(scaleLen, scaleLen, scaleLen));
 TransformGroup sTG = new TransformGroup(t3d);
 sTG.addChild(landBG);

 // center the land, which starts at (0,0) on the XZ plane,
 // so move it left and forward
 Transform3D t3d1 = new Transform3D();
 t3d1.set(new Vector3d(-LAND_LEN/2, 0, LAND_LEN/2));
 TransformGroup posTG = new TransformGroup(t3d1);
 posTG.addChild(sTG);

 sceneBG.addChild(posTG); // add to the world
}

The subgraph added to sceneBG is shown in Figure 27-12.

An essential point is that any nodes added to landBG will be affected by the transla-
tion, rotation, and scaling applied to the landscape. This includes the scenery nodes
(i.e., the 3D models and ground cover), but the landscape walls are connected to
sceneBG and aren’t transformed.

The principal reason for connecting nodes to landBG is so their positioning in space
can utilize the local coordinate system in landBG. These are the coordinates specified
in Terragen: the floor in the XY plane and heights along the z-axis.

Adding Texture to the Terrain
The texture is stretched to fit the terrain stored in landShape3D below landBG. The
texture coordinates (s, t), which define a unit square, must be mapped to the (x, y)

Figure 27-12. Subgraph for the landscape

BG

TG

TG

BG

sceneBG

posTG
(translation)

sTG
(rotation and scaling)

landBG

This is the Title of the Book, eMatter Edition

Building the Landscape | 727

coordinates of the terrain whose lower lefthand corner is at (0, 0), and the top right-
hand corner at landLength, landLength. The intended mapping is captured by
Figure 27-13. The simplest way of doing this is define generation planes to translate
(x, y) coordinates to (s, t) values.

Generation planes were first seen in Chapter 16.

addLandTexture() sets up the generation planes via a call to stampTexCoords(). It cre-
ates an Appearance node for landShape3D and loads the texture:

private void addLandTexture(Shape3D shape, String fname)
{
 Appearance app = shape.getAppearance();

 // generate texture coords
 app.setTexCoordGeneration(stampTexCoords(shape));

 // combine texture with colour and lighting of underlying surface
 TextureAttributes ta = new TextureAttributes();
 ta.setTextureMode(TextureAttributes.MODULATE);
 app.setTextureAttributes(ta);

 // apply texture to shape
 Texture2D tex = loadLandTexture(fname);
 if (tex != null) {
 app.setTexture(tex);
 shape.setAppearance(app);
 }
}

The generation planes are specified using the following equations:

s = x/landLength
t = y/landLength

Figure 27-13. Mapping the terrain to the texture

x

z

y

(0,0)

terrain

landLength

s

t

(0,0)

texels

(1,1)

map using generation planes

This is the Title of the Book, eMatter Edition

728 | Chapter 27: Terrain Generation with Terragen

Here’s the code that puts this into action:

private TexCoordGeneration stampTexCoords(Shape3D shape)
{
 Vector4f planeS = new Vector4f((float)(1.0/landLength), 0.0f, 0.0f, 0.0f);
 Vector4f planeT = new Vector4f(0.0f, (float)(1.0/landLength), 0.0f, 0.0f);

 // generate new texture coordinates for GeometryArray
 TexCoordGeneration texGen = new TexCoordGeneration();
 texGen.setPlaneS(planeS);
 texGen.setPlaneT(planeT);
 return texGen;
}

Making 3D Scenery
3D scenes are models which the user may enter, move around, and view from differ-
ent angles. An example is the castle in the test2.obj landscape, as seen in Figures 27-1
and 27-14.

The user can enter a model and can walk right through its walls.
Terra3D doesn’t enforce any constraints on the user’s movements
around models.

The placement of models and the user’s initial position in the terrain are specified in
a text file with the same name as the landscape’s OBJ file; for this example, the text
file is test2.txt in the directory models/:

start 3960 1800 255.64
Castle.cob 4100 4230 220 70

Figure 27-14. The castle in the test2.obj terrain

This is the Title of the Book, eMatter Edition

Making 3D Scenery | 729

bldg4.3ds 6780 3840 780 90
hand1.obj 1830 570 781.98 120

The file format is:

start x y z
<model file> x y z scale
<model file> x y z scale
// more model file lines

A start line must be included in the file because specifies where the user is initially
placed in the landscape, but the scenery objects are optional. The (x, y, z) values are in
landscape coordinates, and the scale value is used to adjust the model’s size in the terrain.

Each scenery object is loaded with a PropManager object (introduced back in
Chapter 16); the code assumes the existence of coords datafiles for the models.

A difficult task is deciding on suitable (x, y, z) and scale values. One approach is to
jot down likely coordinates while running Terragen. Another technique is to move
over the loaded terrain in Terra3D and print out the current position by pressing the w

button (w for “where”). This functionality is supported by KeyBehavior, described
later. Yet another possibility is to open the OBJ file with a text editor, and search
through the v lines for likely looking coordinates. None of these approaches help
with scale factors, which are mostly estimates.

The scenery models are attached to landBG, so will be translated, rotated, and scaled
in the same way as the landscape. The scale factor for the terrain is stored in scaleLen

(it’s 0.0078125 in the test2 example). Thus, to render the model at the same size as it
was created, the scaling must be undone by enlarging it by 1/scaleLen (scaleLen is
128 in test2).

Another consideration is the height of the user’s viewpoint. In KeyBehavior, the user’s
height above the XZ plane is set to the USER_HEIGHT constant (0.5 world units), which
is equivalent to 0.5/0.0078125, or 64 landscape units. In practice, it’s a good idea to
start with a scale factor between 64 and 128; 90 seems like a good value.

Landscape’s constructor calls makeScenery() to add scenery to landBG:

makeScenery(landBG, fname);

fname is the filename supplied on the command line (e.g., test2).

makeScenery() parses the scenery file, storing the user’s starting position in
originVec, and calls placeScenery() to place each model in the terrain.

originVec is used by KeyBehavior, so must be specified in world coordinates. How-
ever, the input from the scenery file is in terrain coordinates. The translation between
the two coordinate systems is done through a call to landToWorld():

// called in makeScenery()
originVec = landToWorld(xCoord, yCoord, zCoord);

This is the Title of the Book, eMatter Edition

730 | Chapter 27: Terrain Generation with Terragen

private Vector3d landToWorld(double xCoord, double yCoord, double zCoord)
{ double x = (xCoord * scaleLen) - LAND_LEN/2;
 double y = zCoord * scaleLen; // z-axis -> y-axis
 double z = (-yCoord * scaleLen) + LAND_LEN/2; // y- -> z-axis
 return new Vector3d(x, y, z);
}

landToWorld() applies the rotation, scaling, and translation utilized when the terrain
is connected to the world, as illustrated in Figure 27-12. The rotation is achieved by
swapping the terrain (z, y) values to become world (y, z) coordinates. The scaling
must be done before the translation to mimic the ordering of the transforms in
Figure 27-12.

Placing the Models
placeScenery() attaches a model to landBG. However, some additional transforma-
tions must be applied, as shown in Figure 27-15.

The translation and scaling values are supplied for the model in the scenery file.
These are given in terms of terrain coordinates because the model is being added to
landBG. The rotation is harder to fathom.

The landscape is rotated –90 degrees around the x-axis, and this is applied to the
model as well. However, the model is correctly oriented to rest on the XZ plane, so
the terrain rotation must be undone by rotating the model +90 degrees back around
the x-axis:

private void placeScenery(BranchGroup landBG, TransformGroup modelTG,
 double x, double y, double z, double scale)
{
 modelTG.setPickable(false); // so not pickable in scene

 Transform3D t3d = new Transform3D();
 t3d.rotX(Math.PI/2.0); // to counter the -ve land rotation

Figure 27-15. A Model subgraph below landBG

BG

TG

TG

TG

landBG

posTG
(translation)

scaleTG
(rotation and scaling)

modelTG

This is the Title of the Book, eMatter Edition

Adding Landscape Walls | 731

 t3d.setScale(new Vector3d(scale, scale, scale)); // scaled
 TransformGroup scaleTG = new TransformGroup(t3d);
 scaleTG.addChild(modelTG);

 Transform3D t3d1 = new Transform3D();
 t3d1.set(new Vector3d(x,y,z)); // translated
 TransformGroup posTG = new TransformGroup(t3d1);
 posTG.addChild(scaleTG);

 landBG.addChild(posTG);
}

The model is made unpickable since picking could interact with it if
the user went inside the model at run time.

Adding Landscape Walls
The landscape walls surround the terrain and are covered with a mountain range
image. Calculating the walls’ position in space is somewhat simpler if they are added
to sceneBG, which permits world coordinates to be used. The walls surround the ter-
rain after it has been rotated and scaled, so lie in the XZ plane, with lengths LAND_LEN

(see Figure 27-16). Their y-axis extent is obtained from the minimum and maximum
heights for the terrain, scaled to world size.

The following code takes care of this:

 // Landscape globals
 private static final double LAND_LEN = 60.0;
 // length of landscape in world coordinates
 private static final String WALL_PIC = "models/mountain2Sq.jpg";

Figure 27-16. Landscape walls

LAND_LEN

minH

maxH
x

y

z

This is the Title of the Book, eMatter Edition

732 | Chapter 27: Terrain Generation with Terragen

 private void addWalls()
 { // heights used for the walls, in world coords
 double minH = minHeight * scaleLen;
 double maxH = maxHeight * scaleLen;

 // the eight corner points
 // back, left
 Point3d p1 = new Point3d(-LAND_LEN/2.0f, minH, -LAND_LEN/2.0f);
 Point3d p2 = new Point3d(-LAND_LEN/2.0f, maxH, -LAND_LEN/2.0f);

 // front, left
 Point3d p3 = new Point3d(-LAND_LEN/2.0f, minH, LAND_LEN/2.0f);
 Point3d p4 = new Point3d(-LAND_LEN/2.0f, maxH, LAND_LEN/2.0f);

 // front, right
 Point3d p5 = new Point3d(LAND_LEN/2.0f, minH, LAND_LEN/2.0f);
 Point3d p6 = new Point3d(LAND_LEN/2.0f, maxH, LAND_LEN/2.0f);

 // back, right
 Point3d p7 = new Point3d(LAND_LEN/2.0f, minH, -LAND_LEN/2.0f);
 Point3d p8 = new Point3d(LAND_LEN/2.0f, maxH, -LAND_LEN/2.0f);

 // load texture; set magnification filter since the image is enlarged
 TextureLoader loader = new TextureLoader(WALL_PIC, null);
 Texture2D texture = (Texture2D) loader.getTexture();
 if (texture == null)
 System.out.println("Cannot load wall image from " + WALL_PIC);
 else {
 System.out.println("Loaded wall image: " + WALL_PIC);
 texture.setMagFilter(Texture2D.BASE_LEVEL_LINEAR);
 }

 // left wall
 sceneBG.addChild(new TexturedPlane(p3, p1, p2, p4, texture));
 // front wall
 sceneBG.addChild(new TexturedPlane(p5, p3, p4, p6, texture));
 // right wall
 sceneBG.addChild(new TexturedPlane(p7, p5, p6, p8, texture));
 // back wall
 sceneBG.addChild(new TexturedPlane(p1, p7, p8, p2, texture));
 } // end of addWalls()

The same image is used for each wall: mountain2Sq.jpg, which is shown in Figure 27-17.

It was originally a wide, thin image but resized to form a square suitable for a tex-
ture. It’s only 7 KB, so it becomes pixilated when viewed up close inside Terra3D. For
that reason, magnification filtering is switched on to smooth the image’s enlarge-
ment. Another way of improving the image quality is to use a more detailed, larger
image.

Figure 27-18 shows one of the walls in the test1.obj terrain.

This is the Title of the Book, eMatter Edition

Adding Landscape Walls | 733

A Wall as a Textured Plane
Each wall is an instance of the TexturedPlane class, which is a simplified descendent
of TexturedPlanes in FractalLand3D from Chapter 26.

// in addWalls()
// add the left wall to the scene
sceneBG.addChild(new TexturedPlane(p3, p1, p2, p4, texture));

The geometry is simpler since only one QuadArray is created to hold the wall’s four
corners. No normals are specified since the node’s appearance doesn’t enable lighting

Figure 27-17. mountain2Sq.jpg: the mountain range

Figure 27-18. A landscape wall in Terra3D

This is the Title of the Book, eMatter Edition

734 | Chapter 27: Terrain Generation with Terragen

or utilize a Material node. The appearance is represented by the texture, with no
lighting effects.

The complete TexturedPlane class is shown as Example 27-1.

Creating Ground Cover
Ground cover is the 2D scenery that decorates a landscape. An item of ground cover
is represented by a transparent GIF pasted onto a quad that stands on the terrain’s

Example 27-1. The TexturedPlane class

public class TexturedPlane extends Shape3D
{
 private static final int NUM_VERTS = 4;

 public TexturedPlane(Point3d p1, Point3d p2, Point3d p3, Point3d p4,
 Texture2D tex)
 { createGeometry(p1, p2, p3, p4);

 Appearance app = new Appearance();
 app.setTexture(tex); // set the texture
 setAppearance(app);
 } // end of TexturedPlane()

 private void createGeometry(Point3d p1, Point3d p2, Point3d p3, Point3d p4)
 {
 QuadArray plane = new QuadArray(NUM_VERTS,
 GeometryArray.COORDINATES |
 GeometryArray.TEXTURE_COORDINATE_2);

 // anti-clockwise from bottom left
 plane.setCoordinate(0, p1);
 plane.setCoordinate(1, p2);
 plane.setCoordinate(2, p3);
 plane.setCoordinate(3, p4);

 TexCoord2f q = new TexCoord2f();
 q.set(0.0f, 0.0f);
 plane.setTextureCoordinate(0, 0, q);
 q.set(1.0f, 0.0f);
 plane.setTextureCoordinate(0, 1, q);
 q.set(1.0f, 1.0f);
 plane.setTextureCoordinate(0, 2, q);
 q.set(0.0f, 1.0f);
 plane.setTextureCoordinate(0, 3, q);

 setGeometry(plane);
 } // end of createGeometry()

} // end of TexturedPlane class

This is the Title of the Book, eMatter Edition

Creating Ground Cover | 735

surface and is always oriented towards the viewer. The quad is implemented as a
four-sided QuadArray inside a GroundShape object (a subclass of OrientedShape3D). The
pasting uses blended transparency so the quad is invisible and only the opaque parts
of the GIF are rendered.

Typical ground cover includes trees, bushes, and road signs. Such elements will
appear many times inside a scene, and it would be inefficient to create a separate
shape for each one. Instead, the GroundShape object (e.g., a tree) is embedded in a
SharedGroup node, which allows the geometry to be shared by multiple
TransformGroups. Each TransfromGroup specifies a location for a particular ground
cover element, but the object is a shared node.

The approach is illustrated by Figure 27-19.

Since a GroundShape object is attached to landBG, terrain coordinates can be used to
set its position inside the landscape.

The constructor for Landscape() adds ground cover by calling:

GroundCover gc = new GroundCover(fname);
landBG.addChild(gc.getCoverBG());

The GroundCover object, gc, manages the creation of the subgraph holding the ground
cover items. The call to getCoverBG() returns the coverBG BranchGroup, the top-level
of the subgraph.

Figure 27-19. A subgraph using a shared GroundShape object

TG

TG

Link

BG

BG

TG

TG

Link

TG

TG

Link

BG

GroundShape

landBG

posTG
(translation)

rotTG
(rotation)

coverBG

gcSG
(a SharedGroup)

This is the Title of the Book, eMatter Edition

736 | Chapter 27: Terrain Generation with Terragen

The Ground Cover
Information about what ground cover should be added to the terrain is given in a
<fname>GC.txt text file, where <fname> is the name of the landscape OBJ file. For
instance, the information for the test2 scene is stored in test2GC.txt in models/:

range 0 500
tree1.gif 90 200
tree2.gif 90 200
tree3.gif 90 200
tree4.gif 90 200

Here is the format of a GC file:

range [min max]
<GS file1> scale1 number1
<GS file2> scale2 number2
// more gs image lines

The range line specifies the height range within which ground cover may appear. A
range restriction is useful for stopping scenery appearing on the surface of lakes or
the tops of mountains.

A GS file contains a transparent GIF image, which is loaded into its own GroundShape

object. The scale argument is used to set the size of the screen, and number deter-
mines the number of copies of the ground cover placed in the scene. As with 3D
models, the best scale value is largely a matter of trial and error, but 90 is a good
starting value since it makes the cover a bit taller than the user’s viewpoint.

I don’t supply terrain coordinates for the scenery, which would further complicate
the example. Instead, to keep things simple, the scenery is positioned at random
locations. Even this is difficult, since the (x, y, z) data must be obtained from some-
where. The solution used in GroundCover is to read in the OBJ file (e.g., test2.obj) as a
text file and record the v data (the (x, y, z) coordinates of its mesh) as Vector3d

objects in a coords ArrayList. Positioning becomes a matter of randomly selecting a
coordinate from the coords list. This approach is surprisingly fast though memory
intensive. The selection of the coordinates is done by the code instead of being
forced on the programmer. Arguably, this may be a drawback since there’s no pro-
grammer control over placement, including the inability to clump ground cover
together: each mesh coordinate is 30 terrain units apart.

Figure 27-20 gives class diagrams for GroundCover and GroundShape, showing all the
data and methods.

In GroundCover, loadCoverInfo() loads and parses the GC text file. It calls loadObj()

and readObj() to parse the coordinates information extracted from the OBJ file, stor-
ing them in the coords ArrayList. Each GS file line from the GC file triggers a call to
loadGC(), which attaches a subgraph to coverBG similar to the one in Figure 27-19.

private void loadGC(String gcFnm, double scale, int gcNo)
{
 String gcFile = new String("models/" + gcFnm);

This is the Title of the Book, eMatter Edition

Creating Ground Cover | 737

 SharedGroup gcSG = new SharedGroup();
 gcSG.addChild(new GroundShape((float) scale, gcFile));
 gcSG.setPickable(false); // so not pickable in scene

 Vector3d coordVec;
 for(int i=0; i < gcNo; i++) { // make multiple TGs using same SG
 coordVec = selectCoord();

placeCover(gcSG, coordVec);
 }
}

The arguments passed to loadGC() are the three values supplied on the GS file line in
the GC file. A single GroundShape object is created, and multiple transforms are con-
nected to it by repeatedly calling placeCover():

private void placeCover(SharedGroup gcSG, Vector3d coordVec)
{
 Transform3D t3d = new Transform3D();
 t3d.rotX(Math.PI/2.0); // to counter rotation of the land
 TransformGroup rotTG = new TransformGroup(t3d);
 rotTG.addChild(new Link(gcSG));

 Transform3D t3d1 = new Transform3D();
 t3d1.set(coordVec);
 TransformGroup posTG = new TransformGroup(t3d1);
 posTG.addChild(rotTG);

 coverBG.addChild(posTG);
}

placeCover() creates a single branch down from coverBG to the GroundShape node
(see Figure 27-19). A common coding error when using a SharedGroup node is to
attempt to link it directly to the rest of the scene graph. Each link must be through a
Link node.

Figure 27-20. GroundCover and GroundShape classes

This is the Title of the Book, eMatter Edition

738 | Chapter 27: Terrain Generation with Terragen

Figure 27-19 shows that each branch from coverBG to a Link node holds two
TransformGroups. The first (posTG) moves the shape to a location on the terrain’s sur-
face; its value comes from a call to selectCoord() in loadGC():

private Vector3d selectCoord()
// randomly select a landscape coordinate
{ int index = (int) Math.floor(Math.random()*coords.size());
 return (Vector3d) coords.get(index);
}

The second TransformGroup (rotTG) in Figure 27-19 plays a similar role to the sTG

node for 3D models (see Figure 27-12): it counters the –90-degree rotation around
the x-axis applied to the landscape.

The Ground Shape
A GroundShape object displays a transparent GIF drawn on the front face of a four-
sided QuadArray. The center of the quad’s base is at (0, 0, 0) and rests on the ground.
It has sides of screenSize and is always oriented toward the viewer. The orientation
is achieved by making GroundShape a subclass of OrientedShape3D and setting its axis
of rotation to be the y-axis.

GroundShape’s createAppearance() sets up the necessary transparency attributes for
the shape and loads the GIF as a texture:

private void createAppearance(String fnm)
{
 Appearance app = new Appearance();

 // blended transparency so texture can be irregular
 TransparencyAttributes tra = new TransparencyAttributes();
 tra.setTransparencyMode(TransparencyAttributes.BLENDED);
 app.setTransparencyAttributes(tra);

 // Create a two dimensional texture with min and mag filtering
 TextureLoader loader = new TextureLoader(fnm, null);
 Texture2D tex = (Texture2D) loader.getTexture();
 if (tex == null)
 System.out.println("Image Loading Failed for " + fnm);
 else {
 tex.setMinFilter(Texture2D.BASE_LEVEL_LINEAR);
 tex.setMagFilter(Texture2D.BASE_LEVEL_LINEAR);
 app.setTexture(tex);
 }

 setAppearance(app);
} // end of createAppearance()

Min filtering improves the texture’s appearance when it’s reduced in size, while mag-
filtering is used when the texture is enlarged.

This is the Title of the Book, eMatter Edition

Moving over the Surface | 739

Moving over the Surface
The KeyBehavior class is similar to the one in FractalLand3D in that it permits the user
to move over the surface of the terrain and to float above it. However, there’s one
small change and one large one. The small change is the addition of the w key, which
prints the user’s current location on the landscape to System.out.

The major change is that a move doesn’t immediately affect the user’s vertical posi-
tion on the terrain. The height calculation is delegated to a HeightFinder object,
which may take one or two seconds to obtain the result through picking. In the
meantime, KeyBehavior continues to use the old value. As a consequence, the user
can move inside mountains, but the vertical position will be corrected. The reason
for the slow picking is the large terrain size (e.g., over 66,000 vertices in test2.obj,
specifying 131,000 faces), all packaged inside a single GeometryArray.

This approach has the advantage that key processing is decoupled from the height
calculation. This means that the KeyBehavior object doesn’t have to wait those few
seconds after each move-related key press, which would quickly drive the user to dis-
traction. At the end of the chapter, I discuss various alternatives to this coding
technique.

Where Am I?
When the user presses the w key, printLandLocation() is called:

private void printLandLocation()
{ targetTG.getTransform(t3d);
 t3d.get(trans);
 trans.y -= MOVE_STEP*zOffset; // ignore user floating
 Vector3d whereVec = land.worldToLand(trans);

 System.out.println("Land location: (" + df.format(whereVec.x) + ", " +
 df.format(whereVec.y) + ", " + df.format(whereVec.z) + ")");
}

A slight problem is that the KeyBehavior object is attached to sceneBG, so it utilizes
world coordinates. However, printing the landscape coordinates is more helpful, and
so the (x, y, z) data maintained in KeyBehavior must be transformed. This is achieved
by calling worldToLand() in Landscape:

public Vector3d worldToLand(Vector3d worldVec)
{
 double xCoord = (worldVec.x + LAND_LEN/2) / scaleLen;
 double yCoord = (-worldVec.z + LAND_LEN/2) / scaleLen;
 // z-axis --> y-axis
 double zCoord = worldVec.y / scaleLen; // y-axis --> z-axis
 return new Vector3d(xCoord, yCoord, zCoord);
}

This is the Title of the Book, eMatter Edition

740 | Chapter 27: Terrain Generation with Terragen

The transformations apply the operations implicit in the subgraph in Figure 27-12:
the world coordinates are translated, scaled and rotated to make them into terrain
coordinates. The rotation (a –90-degree rotation around the x-axis) can be conve-
niently expressed as a switching of the y- and z-coordinates.

Another way of understanding worldToLand() is as the reverse of
landToWorld(), which is in Landscape.

The w key is quite useful when the programmer is deciding where to place scenery
on the terrain. The user can move over the landscape inside Terra3D, and press w
when a promising location is encountered. The outputted coordinates can be used in
the scenery file to position 3D models.

Strolling Around the Terrain
The principal method for moving is moveBy(), which is called with a predefined step
for moving forward, back, left, or right. The viewpoint is adjusted in four stages:

1. The next (x, z) position on the floor is calculated by carrying out the move but
doesn’t update the user’s actual position. This is done by tryMove().

2. The resulting (x, z) data is passed to a HeightFinder thread. HeightFinder uses
picking to get the floor height.

3. In the meantime, moveBy() uses the current floor height as the height of the new
location.

4. Later—perhaps a few seconds later—HeightFinder calls adjustHeight() in
KeyBehavior. adjustHeight() updates the user’s height by the difference between
the current floor height and the height at the new location.

Here’s that sequence of events in code:

private void moveBy(Vector3d theMove)
{
 Vector3d nextLoc = tryMove(theMove); // next (x,?,z) position
 if (!land.inLandscape(nextLoc.x, nextLoc.z)) // not on landscape
 return;

 hf.requestMoveHeight(nextLoc); // height request to HeightFinder

 Vector3d actualMove = new Vector3d(theMove.x, 0, theMove.z);
 // no y-axis change... yet
 doMove(actualMove);
}

public void adjustHeight(double newHeight)
{
 double heightChg = newHeight - currLandHeight - (MOVE_STEP*zOffset);

This is the Title of the Book, eMatter Edition

Finding the Surface Height | 741

 Vector3d upVec = new Vector3d(0, heightChg, 0);
 currLandHeight = newHeight; // update current height
 zOffset = 0; // back on floor, so no offset
 doMove(upVec);
}

moveBy() and adjustHeight() call doMove(), which updates the viewpoint position.
This method is unchanged from the one in FractalLand3D, except that it is now pre-
fixed with the synchronized keyword. This prevents KeyBehavior and HeightFinder

from calling it at the same time.

Finding the Surface Height
KeyBehavior interacts with HeightFinder by calling requestMoveHeight(), which
stores a (x, y, z) coordinate in the global theMove Vector3d object:

// globals
private Vector3d theMove; // current move request from KeyBehavior
private boolean calcRequested;

synchronized public void requestMoveHeight(Vector3d mv)
{ theMove.set(mv.x, mv.y, mv.z);
 // will overwrite any pending request in theMove
 calcRequested = true;
}

The (x, z) values in theMove are used for the picking calculation. The calcRequested

Boolean signals a pending request.

If the user presses the move keys rapidly, KeyBehavior will call requestMoveHeight()
frequently, causing theMove to be updated frequently. When HeightFinder processes
the next request, it will find only the most recent one in theMove, saving itself unnec-
essary work. This illustrates the decoupling of key processing from height calcula-
tion, so the users can move as fast (or as slow) as they like.

requestMoveHeight() returns immediately; KeyBehavior doesn’t wait for an answer,
or it might be waiting for one or two seconds. Instead, KeyBehavior uses the current
y-height for its move. HeightFinder’s run() method constantly loops, reads the cur-
rent move request from theMove(), and then calls getLandHeight(). At the end of
getLandHeight(), the new height is passed back to KeyBehavior:

public void run()
{ Vector3d vec;
 while(true) {
 if (calcRequested) {
 vec = getMove(); // get the requested move
 getLandHeight(vec.x, vec.z); // pick with it
 }
 else { // no pending request
 try {

This is the Title of the Book, eMatter Edition

742 | Chapter 27: Terrain Generation with Terragen

 Thread.sleep(200); // sleep a little
 }
 catch(InterruptedException e) {}
 }
 }
}

The data in theMove is obtained via getMove():

synchronized private Vector3d getMove()
{ calcRequested = false;
 return new Vector3d(theMove.x, theMove.y, theMove.z);
}

The method is synchronized as is requestMoveHeight() since the methods access and
change theMove() and calcRequested(), and I want to impose mutual exclusion on
those operations.

Picking in HeightFinder
getLandHeight() in HeightFinder implements picking on the landscape and uses the
same code as getLandHeight() in the Landscape class in FractalLand3D. Placing the
code in the HeightFinder class is a matter of taste: all the height calculations should
be located in a single object.

The HeightFinder constructor is passed a reference to the Landscape object so terrain-
related data and methods can be accessed:

// globals
private Landscape land;
private KeyBehavior keyBeh;
private PickTool picker;
private double scaleLen;

public HeightFinder(Landscape ld, KeyBehavior kb)
{
 land = ld;
 keyBeh = kb;
 picker = new PickTool(land.getLandBG()); //only check landscape
 picker.setMode(PickTool.GEOMETRY_INTERSECT_INFO);

 scaleLen = land.getScaleLen(); // scale factor for terrain
 theMove = new Vector3d();
 calcRequested = false;
}

The PickTool object, picker, is configured to examine only landBG. However, 3D
models and ground cover are attached to this node, so they should be made unpick-
able; I’m only interested in obtaining floor coordinates at pick time.

This is the Title of the Book, eMatter Edition

Accelerating Terrain Following | 743

One feature of getLandHeight() is the pick ray is specified in world coordinates even
though the PickTool is attached to landBG (which uses landscape coordinates):

// global
private final static Vector3d DOWN_VEC = new Vector3d(0.0,-1.0,0.0);

private void getLandHeight(double x, double z)
{
 // high up in world coords; shoot a ray downwards
 Point3d pickStart = new Point3d(x, 2000, z);
 picker.setShapeRay(pickStart, DOWN_VEC);

 PickResult picked = picker.pickClosest();
 if (picked != null) { // pick sometimes misses at edge/corner
 if (picked.numIntersections() != 0) { //sometimes no intersects
 PickIntersection pi = picked.getIntersection(0);
 Point3d nextPt;
 try { // handles 'Interp point outside quad' error
 nextPt = pi.getPointCoordinates();
 }
 catch (Exception e) {
 System.out.println(e);
 return; // don't talk to KeyBehavior as no height found
 }

 double nextYHeight = nextPt.z * scaleLen;
 // z-axis land --> y-axis world
 keyBeh.adjustHeight(nextYHeight); //tell KeyBehavior height
 }
 }
} // end of getLandHeight()

The intersection point is obtained in local (i.e., terrain) coordinates by calling
PickIntersection.getPointCoordinates(), which returns the point in world coordinates.

KeyBehavior utilizes world coordinates, so the height value (nextPt.z) must be con-
verted, but this can be done inexpensively by scaling the point directly to give
nextYHeight. This value is passed to KeyBehavior by calling adjustHeight(). The
world coordinates are needed since KeyBehavior uses the terrain’s height to adjust the
user’s position in the scene.

Accelerating Terrain Following
The code for terrain following sacrifices accuracy for speed, meaning that users can
move quickly over the terrain with the disadvantage that they move straight into the
side of a mountain or float off the edge of a cliff. Their vertical position will be cor-
rected, but a temporary position disparity is disconcerting. What can be done? A
number of tricks can be utilized without making any fundamental changes to the
application.

This is the Title of the Book, eMatter Edition

744 | Chapter 27: Terrain Generation with Terragen

The step distance used in KeyBehavior is 0.2 world units, which is 26 terrain units (0.
2/0.0078125). As a rough comparison, each mesh coordinate is 30 units apart. If the
step distance was reduced, the user would move over the terrain more slowly, and
height changes would occur more gradually. This would help the picking code keep
up with the height adjustments.

It’s possible to increase the user’s height, which is 0.5 world unit in KeyBehavior or is
64 terrain units. If the eyeline is higher off the floor, then a larger height change will
be required before the users notice that they’ve sunk beneath the surface.

Two other solutions are to create landscapes with gentler slopes and make it impos-
sible for users to move into rough terrain by imposing restrictions on KeyBehavior.
This latter kind of behavior is typical of racing games, where a vehicle can only move
a short distance off the racing track.

The terrain and scenery (the 3D and 2D ground cover) are different. Even when the
terrain is flat, the problem of walking through castle walls and trees remains. The
general approach I’ve used in previous examples (e.g., the maze walls in Chapter 25)
is to store information about the obstacles’ location and prevent the user from walk-
ing into them.

More Threads?
Since HeightFinder is a thread, why not throw more threads at the task? The single
HeightFinder thread takes a couple of seconds to finish a calculation before it can
start the next one, which adds a considerable delay to the processing time for the
next request. By having several threads, the turnaround time would be reduced since
the wait time would be less.

I tried this and discovered that picking on a geometry cannot be threaded. Multiple
threads can initiate picking at roughly the same time, but each operation is sequen-
tialized, and extra time is added in the process. Threads may be more successful if
the picking is carried out on different GeometryArrays, but I haven’t tried it.

Mesh Decomposition
The real problem is the mesh is too large for efficient picking. It should be divided
into pieces, perhaps based on the terrain’s latitude and longitude. Then, as a user
moves over the terrain, the relevant terrain piece can be selected easily and picking
would be faster due to the smaller size of the piece.

Multiple pieces lend themselves to the support of multiple levels of detail and
dynamic loading. Several of the approaches described in the next section use these
ideas.

This is the Title of the Book, eMatter Edition

More on Terrain Generation | 745

More on Terrain Generation
A great source for terrain generation information is the Virtual Terrain Project (http://
www.vterrain.org), which has sections on elevation models, ground detail, render-
ing, data sources and formats, scenery, software tools, and plants.

GameDev.net has a collection of good articles about landscape modeling at http://
www.gamedev.net/reference/list.asp?categoryid=45#88.

DEM and Terrain Generation
Though my focus is on gaming, terrain creation is used by simulation and GIS appli-
cations. A popular file format for geographic data is the Digital Elevation Model
(DEM), which represents grids of regularly spaced elevation values. The USGS pro-
duces five primary types of DEM data, which represent different levels of geographi-
cal detail: 7.5-minute DEM, 30-minute DEM, 1-degree DEM, 7.5-minute Alaska
DEM, and 15-minute Alaska DEM. Here are some useful DEM links:

• http://www.cis.ksu.edu/~dha5446/topoweb/demtutorial.html

• http://www.vterrain.org/Elevation/dem.html

• http://edcwww.cr.usgs.gov/products/elevation/dem.html

Terragen can understand various USGS and NASA file formats when used in con-
junction with plug-ins and/or other terrain-based applications, such as 3DEM. This
makes the data available to Terra3D once saved as OBJ and JPG files.

j3d.org
The j3d.org code repository (http://code.j3d.org) contains a DEM loader in org.

j3d.loaders.dem, but it’s poorly documented with no examples of its use. How-
ever, the loader is used as part of the GeoSim application, to display DEM files
(http://www.bulletprf.com/lab-index.htm). The program comes with source code.

The org.j3d.geom.terrain package contains classes for creating height maps
from images, and the org.j3d.loaders package supports the loading of grid-
aligned data, treating the data as height values.

JLand
JLand is a Java 3D applet/application for displaying and generating landscapes
(http://www.cyberhipster.com/j3d/jland). It can read elevation maps stored as
compressed (GZIP) or uncompressed PGM, DEM, or POV TGA files. Only the
class files are available at the moment.

DEM viewer
The JavaWorld article “Navigate through Virtual Worlds using Java 3D” by
Mark O. Pendergast is an excellent tutorial on utilizing DEM files and includes

This is the Title of the Book, eMatter Edition

746 | Chapter 27: Terrain Generation with Terragen

fly-through navigation controls using the keyboard and mouse, and level-of-
detail (LOD) displays of the data (http://www.javaworld.com/javaworld/jw-07-
2003/jw-0704-3d_p.html). All the source code can be downloaded and includes a
Grand Canyon example.

The data is stored internally in TriangleStripArrays using interleaving and by-
reference, which is the most efficient format in terms of memory and processor
usage. Interleaving is utilized to support color and normal information along-
side the coordinates. The normals are generated in the code rather than via a
NormalGenerator. Texturing isn’t used. Though interleaved data complicate the
coding, the data accelerate rendering.

Rather than using a single TriangleStripArray (as in Terra3D), Pendergast
employs many arrays so LOD features can be offered. The terrain is divided into
segments, with each segment represented by several TriangleStripArrays hold-
ing varying amounts of (by-reference) mesh detail. By-reference means that the
mesh data is shared between the various segments, saving considerable space.
Switch nodes multiplex between the arrays at runtime: as the user approaches a
segment (or moves away from one), more (or less) mesh detail is displayed.

ROAM
A crucial problem for an industrial-strength landscape representation is the enor-
mous amount of memory required for a large map. For example, a height map made
up of floats for (x, z) coordinates at 1mm intervals, covering a 10-meter square area,
would require about 400 MB of RAM, and that’s before the cost of rendering and
adding objects to the scene. The obvious answer is to reduce the sampling density,
but that will reduce the map’s resolution.

A better solution is adaptive meshing, as typified by Realtime Optimally Adapting
Meshes (ROAM). It’s adaptive in the sense that areas that are flat or distant from the
viewpoint are covered by low resolution submeshes, and nearby or rocky areas use
more detailed grids. Since viewpoints can move, the level of detail apparent at a par-
ticular terrain location will vary over time, as users come closer and move away.

ROAM creates its dynamic mesh with triangle bintrees (a close relative of the
quadtree), which are split/merged to increase/decrease the resolution. The standard
reference on ROAM is the paper by Mark Duchaineau and others: “ROAMing Ter-
rain: Real-time Optimally Adapting Meshes” in Proc. IEEE Visualization ‘97, pp.81–
88, 1997 (http://www.llnl.gov/graphics/ROAM/).

There’s a Java 3D implementation of ROAM in the j3d.org code package org.j3d.

terrain.roam. Each terrain tile is implemented as a Shape3D, so view frustum culling
and intersection testing can be accelerated. A tile’s geometry is stored in a
TriangleArray so the overhead of translating down to triangles at the hardware level

This is the Title of the Book, eMatter Edition

More on Terrain Generation | 747

is reduced. Changes to a tile’s geometry is performed with a GeometryUpdater object
which recalculates its vertices.

TransformGroups are avoided; instead a tile is positioned at its intended location
directly. This means the shape’s coordinate system doesn’t need to be mapped to
world coordinates when being manipulated, making costly transforms unnecessary.

The ROAM package is explained in Chapter 14 of the textbook Java Media APIs:
Cross-Platform Imaging, Media, and Visualization by Alejandro Terrazas, John
Ostuni, and Michael Barlow (Sams Publishing; http://www.samspublishing.com/title/
0672320940). I recommend this book for its coverage of other advanced Java 3D
topics, such as sensors, stereo viewing, head tracking, and JMF integration.

The CLOD Algorithm
Martin Barbisch implemented a Java 3D application for his student project which
illustrates the Continuous Level of Detail (CLOD) algorithm (http://wwwvis.
informatik.uni-stuttgart.de/javatevi/). The amount of detail visible to the user is
adjusted at run time as the viewer moves. The drawback is a “popping” effect as
details suddenly appear as the user gets closer to some part of the terrain. The solu-
tion is geomorphing, a form of mesh morphing.

Other Java 3D Projects
DTV applet

Nathan Bower has written a Java 3D applet which displays a UK ordinance survey
map, textured over a height field for the same area (http://www.nathanbower.com/
cms?page_id=03_Java3D_Applet.htm&folder=/02_My_Work). No source code is
available, but the information supplied on the web page suggests that he’s imple-
mented most of the components himself: the triangulation scheme, viewpoint clip-
ping, the mouse controls. He mentions an application that can display multiple
ordinance survey maps, tiled together, sufficient in number to cover the entire UK.

Integrated Data Viewer (IDV)
IDV is a framework for visualizing and analyzing 2D and 3D geoscience data
(http://my.unidata.ucar.edu/content/software/metapps/), such as weather satellite
imagery and radar. Source code is available.

The Virtual Globe
The Virtual Globe is a client-server application for displaying large terrain mod-
els (http://globe.sintef.no/). The terrain database is stored on a server, and the cli-
ent fetches the data required for generating an image at the required resolution.

JCanyon
JCanyon is a flight simulator which visualizes its large data set (about 300 MB)
using JOGL or GL4Java (often called “OpenGL for Java”) rather than Java 3D
(http://java.sun.com/products/jfc/tsc/articles/jcanyon/).

This is the Title of the Book, eMatter Edition

748 | Chapter 27: Terrain Generation with Terragen

The terrain is divided into tiles, and multiple samples are prepared for each tile,
with varying coordinate and texture resolutions. Only the data for the required
resolution is mapped into memory at any given time. Tiles are fetched from the
disk in a background thread.

Two novelties of JCanyon are its texture selection technique and a method for
eliminating cracks between tiles, called filleting.

The 3D land navigator
The navigator displays land surfaces in 3D and lets the viewer fly over them.

Aerial photos of the landscape must be divided into map cells. Each map cell is
then converted into a 3D geometry with texture mapping for the details. As the
user flies over the landscape, the map cells near to the user’s viewpoint are
loaded and displayed. The software is built using the WorldShow3D browser
(http://worldshow3d.home.comcast.net/map3d.html).

A Java 3D loader for Terragen
Jean-Marc Jung and Pierre Henry have written a loader for Terragen TER height-
map files (http://www.hta-bi.bfh.ch/Projects/diggersim/). The loader is part of
their “Digger Simulation” project for training the pilots of mine clearance vehicles.

This is the Title of the Book, eMatter Edition

749

Chapter 28 CHAPTER 28

Trees That Grow

The last two chapters have been about creating landscapes: the fractal terrain in
Chapter 26 was empty, but the Terragen-generated landscape in Chapter 27 was dec-
orated with 3D models and ground cover (2D images that always face the user). This
mix of models and images is enough in most situations but still lacking in one area:
the scenery doesn’t change. For example, the trees don’t sway in the wind, and the
sagebrush doesn’t tumble.

As the title of this chapter suggests, this chapter focuses on making trees grow. Each
tree starts from a tiny sampling, then young green shoots turn brown, grow, branch,
and sprout leaves. However, the underlying aim is to describe a rule-based approach
to animation, which can be applied to many kinds of 3D shapes. This approach has
the following characteristics:

Use of if-then rules
Each rule is a Java if-then statement. If all the conditions of a rule evaluate to
true, then the rule’s actions are carried out.

I’m not using a rule-based language such as Prolog, or a Java rules
engine such as JESS. There’s no need to step beyond standard Java.

Time-based sequential evaluation
The rules are evaluated at regular intervals during the program’s execution.
They’re executed in a fixed, sequential order, defined by their textual order in
the applyRules() method in the GrowthBehavior class.

Each rule is applied to every tree limb
When it’s time for a rule to be evaluated, it’s applied to every tree limb (tree
branch) in the scene. For example, for two trees—one with five branches and the
other with nine—each rule is executed 14 times (5 + 9), once for each limb.

I can express this idea in more general terms: in each time interval, a rule is
applied to every animation component in the scene. The choice of animation

This is the Title of the Book, eMatter Edition

750 | Chapter 28: Trees That Grow

component depends on the application domain; in this case, the components are
the branches of the trees.

An animation component is an object
In this example, each tree limb is an instance of the TreeLimb class. This
approach hiding a tree limb’s implementation and most of the rules processing
behind the class’ methods.

Linked animation components form a hierarchy
Animation components are coupled together to form a hierarchy, where each
component has a single parent (except the root component) and zero or more
children. This allows rules to talk about parents and children, which adds to
their expressiveness. Many 3D models are made from smaller parts, structured
into a hierarchy, including trees, humanoids (e.g., the articulated figure in
Chapter 20), and buildings (a building is composed of floors and walls).

Rules carry out incremental change
The rules change an animation component. For example, a tree limb will get
longer and change color over a period of seconds. It is possible to add and delete
animation components (e.g., new branches can start sprouting), but this is less
common than changing an existing component.

A rule can behave randomly
A rule must behave randomly to introduce variation into the animation. For
instance, the same rule may make one branch shoot up but delay another
branch’s growth. Randomness is easily achieved with Math.random().

The animation is efficiently implemented
Animation efficiency is important since the rules may have to deal with thou-
sands of animation components, each of which is updated 10 or more times a
second.

The incremental nature of the rules means that the 3D structures don’t need to
be generated from scratch in every time interval, which would be time-consum-
ing. Instead, existing structures are modified.

Another optimization is that the geometry of an animation component (e.g., the
cylinder representing the tree limb) is unchanged. Instead, changes such as trans-
lations, rotations, and scaling are done to TransformGroup nodes connected to the
shape. Similarly, changes to the component’s appearance are applied to its
Appearance node. Since the component’s geometry is unaffected, you won’t need
to employ the complex GeometryUpdater interface used in the particle systems in
Chapter 21.

An approach not used here are rules in the style of a Lindenmayer sys-
tem (L-system), which suffer from the complexity and inefficiency I’ve
tried to avoid throughout the book. I’ll briefly compare my rule mech-
anism with L-systems in the section “Comparison with L-Systems.”

This is the Title of the Book, eMatter Edition

Class Diagrams for Trees3D | 751

Figure 28-1 shows a sequence of screenshots of the Trees3D application. Five trees
grow from saplings, green shoots turn brown, and leaves sprout, all taking place over
a period of a few seconds.

Each time Trees3D is executed, the trees will look different, due to random elements
in the rules.

Class Diagrams for Trees3D
Figure 28-2 shows the class diagrams for the Trees3D application. The class names
and public methods are shown.

Trees3D is the top-level JFrame for the application, and WrapTrees3D sets up the scene.
It initially creates five TreeLimb objects, representing five tree limbs. New limbs
sprout from these, creating trees like those in Figure 28-1.

TreeLimb encodes the animation component, so it offers many methods for changing
a limb (e.g., making it grow longer, thicker, and changing color). The leaves at the
end of a tree limb are represented by two ImagesCsSeries screens that show pictures
of leaves. The images can be changed to give the effect the leaves are changing.

The rules are implemented in the GrowthBehavior object and evaluated every 100 ms.

Figure 28-1. Growing trees

This is the Title of the Book, eMatter Edition

752 | Chapter 28: Trees That Grow

The application can be found in the Trees3D/ directory.

Creating the Scene
The WrapTrees3D class creates the scene: the checkerboard floor, the background, the
lights, and an OrbitBehavior allow the user to move around.

Most of the tree-related activity is started in growTrees(), which creates five
TransformGroups and five TreeLimb objects. The code fragment shows one of these
TransformGroups and TreeLimbs:

// starting position for the first tree: (0,0,-5)
Transform3D t3d = new Transform3D();
t3d.set(new Vector3f(0,0,-5));
TransformGroup tg0 = new TransformGroup(t3d);
sceneBG.addChild(tg0);

Figure 28-2. Class diagrams for Trees3D

This is the Title of the Book, eMatter Edition

Creating the Scene | 753

// create the tree
TreeLimb t0 = new TreeLimb(Z_AXIS, 0, 0.05f, 0.5f, tg0, null);

The TransformGroup reference (tg0) is passed to the TreeLimb constructor, where it’s
used to position the limb.

Loading Leaves
growTrees() loads a sequence of leaf images, storing them in an ImageComponent2D

array. This increases efficiency because each TreeLimb will utilize this array if it
requires leaves rather than loading its own copy of the images:

// load the leaf images used by all the trees
ImageComponent2D[] leafIms = loadImages("images/leaf", 6);

The loadImages() method is shown here:

private ImageComponent2D[] loadImages(String fNms, int numIms)
/* Load the leaf images: they all start with fNms, and there are
 numIms of them. */
{
 String filename;
 TextureLoader loader;
 ImageComponent2D[] ims = new ImageComponent2D[numIms];
 System.out.println("Loading " + numIms +" textures from "+ fNms);
 for (int i=0; i < numIms; i++) {
 filename = new String(fNms + i + ".gif");
 loader = new TextureLoader(filename, null);
 ims[i] = loader.getImage();
 if(ims[i] == null)
 System.out.println("Load failed for: " + filename);
 ims[i].setCapability(ImageComponent2D.ALLOW_SIZE_READ);
 }
 return ims;
}

The leaf images are in the files images/leaf0-5.gif, as shown in Figure 28-3.

The gray and white squares in Figure 28-3 indicate that the GIFs’
backgrounds are transparent.

The idea here is that the ImageCsSeries screens will iterate through the images from
leaf0.gif to leaf5.gif. The resulting effect will be growing leaves, turning darker.

The drawing style has some room for artistic improvement. However, the effect is
still good, especially when viewed at some distance, with many leaves overlapping.
Later images were created by modifying earlier ones, so the transition from one
image to the next is smooth.

This is the Title of the Book, eMatter Edition

754 | Chapter 28: Trees That Grow

Depth-Sorting for Transparency
Since the scene will contain numerous semi-transparent textures wrapped over quads
(i.e., the leaves on the trees), it’s necessary to turn on Java 3D’s depth-sorting of
transparent objects on a per-geometry basis:

View view = su.getViewer().getView();
view.setTransparencySortingPolicy(View.TRANSPARENCY_SORT_GEOMETRY);

This is carried out in the WrapTrees3D() constructor. If depth-sorting isn’t switched
on, the relative ordering of the leaf images will frequently be wrong as the viewer
moves around the trees.

Getting Ready for Growth
WrapTrees3D’s growTrees() initializes the GrowthBehavior object:

// the behavior that manages the growing of the trees
GrowthBehavior grower = new GrowthBehavior(leafIms);
grower.setSchedulingBounds(bounds);

// add the trees to GrowthBehavior
grower.addLimb(t0);
grower.addLimb(t1);
grower.addLimb(t2);
grower.addLimb(t3);
grower.addLimb(t4);

sceneBG.addChild(grower);

Figure 28-3. The leaf images in leaf0-5.gif

This is the Title of the Book, eMatter Edition

Building a Tree Limb | 755

Building a Tree Limb
Each tree limb is represented by a TreeLimb object, which internally builds a sub-
graph such as the one in Figure 28-4.

Several of the TransformGroup nodes (those with “TG” in their name) are used to sup-
port translation, rotation, and scaling effects, leaving the basic geometry (a cylinder)
unaffected. This means that I could avoid using the complicated GeometryUpdater

interface.

The startBG BranchGroup is linked to a parent limb via the parent’s endLimbTG node.
Since the link is made at execution time, Java 3D requires the use of a BranchGroup.

orientTG holds the orientation of the limb (its initial axis of rotation and angle to that
axis). Once set, this cannot change during execution. This restriction is in place to
simplify the class’s implementation. scaleTG manages the scaling of the x-, y-, and
z-dimensions of the cylinder. The x- and z-values are kept the same (they represent
the radius); the y-axis is for the length.

The center point for Java 3D’s Cylinder is its middle, but I want the origin to be its
base at the place where the cylinder connects to the parent limb. baseTG moves the
cylinder up the y-axis by length/2 to achieve it. The capabilities for the Cylinder’s
Material node component are set so that its color can be adjusted at runtime.

Figure 28-4. The TreeLimb subgraph

startBG

orientTG

scaleTG

baseTG

AppearanceGeometry

Material

endLimbTG

limbLen

radius

This is the Title of the Book, eMatter Edition

756 | Chapter 28: Trees That Grow

Child limbs or leaves are attached to this limb through endLimbTG. The transform
inside endLimbTG is an offset of almost the cylinder’s scaled length. It is a little less
than the length, so child limbs will overlap with their parent. This partly hides any
gaps between the limbs when a child is oriented at an extreme angle.

The endLimbTG node is unattached to Cylinder since that would make it prone to scal-
ing, which would affect any child limbs attached to endLimbTG. Scaling is restricted to
the limb’s cylinder.

Storing Tree Limb Information
Aside from the subgraph data structure, TreeLimb maintains various other informa-
tion related to a tree limb, including a reference to its parent, current color, cur-
rent age, level in the overall tree (the first branch is at level 1), and whether it is
showing leaves.

The age is a counter, set to 0 when the limb is created, and incremented in each time
interval by the GrowthBehavior object. Each limb will have a different age depending
on when it was added to the tree.

The large number of public methods in TreeLimb can be roughly classified into five
groups:

• Scaling of the cylinder’s radius or length

• Color adjustment

• Parent and children methods

• Leaf-related

• Others (e.g., for accessing the limb’s current age)

To simplify matters, many of the parameters used by these methods (e.g., scale fac-
tors, color changes) are hardwired into the rules found in the GrowthBehavior object
(which I explain later). The arguments passed to the TreeLimb constructor are con-
cerned with the new limb’s size, position, and orientation relative to its parent:

public TreeLimb(int axis, double angle, float rad, float len,
 TransformGroup startLimbTG, TreeLimb par)

axis and angle are used by orientTG; rad and len become the radius and length of the
new cylinder. startLimbTG will be assigned the TransformGroup of the parent limb
where this limb will be attached. par is a reference to the parent as a TreeLimb object.

Subgraph Creation
The subgraph in Figure 28-4 is constructed by buildSubgraph():

private void buildSubgraph(TransformGroup startLimbTG)
/* Create the scene graph.
 startLimbTG is the parent's endLimbTG. */

This is the Title of the Book, eMatter Edition

Building a Tree Limb | 757

{
 BranchGroup startBG = new BranchGroup();

 // set the limb's orientation
 TransformGroup orientTG = new TransformGroup();
 if (orientAngle != 0) {
 Transform3D trans = new Transform3D();
 if (orientAxis == X_AXIS)
 trans.rotX(Math.toRadians(orientAngle));
 else if (orientAxis == Y_AXIS)
 trans.rotY(Math.toRadians(orientAngle));
 else // must be z-axis
 trans.rotZ(Math.toRadians(orientAngle));
 orientTG.setTransform(trans);
 }

 // scaling node
 scaleTG = new TransformGroup();
 scaleTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 scaleTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 // limb subgraph's sequence of TGs
 startBG.addChild(orientTG);
 orientTG.addChild(scaleTG);
 scaleTG.addChild(makeLimb());

 TransformGroup endLimbTG = locateEndLimb();
 orientTG.addChild(endLimbTG);

 startBG.compile();

 startLimbTG.addChild(startBG); //connect to parent's endLimbTG
} // end of buildSubgraph()

The cylinder and its components are built inside makeLimb():

private TransformGroup makeLimb()
// a green cylinder whose base is at (0,0,0)
{
 // fix limb's start position
 TransformGroup baseTG = new TransformGroup();
 Transform3D trans1 = new Transform3D();
 trans1.setTranslation(new Vector3d(0, limbLen/2, 0));
 // move up length/2
 baseTG.setTransform(trans1);

 Appearance app = new Appearance();
 limbMaterial = new Material(black, black, green, brown, 50.f);
 limbMaterial.setCapability(Material.ALLOW_COMPONENT_READ);
 limbMaterial.setCapability(Material.ALLOW_COMPONENT_WRITE);
 // can change colors; only the diffuse color will be altered

 limbMaterial.setLightingEnable(true);

This is the Title of the Book, eMatter Edition

758 | Chapter 28: Trees That Grow

 app.setMaterial(limbMaterial);
 Cylinder cyl = new Cylinder(radius, limbLen, app);

 baseTG.addChild(cyl);
 return baseTG;
} // end of makeLimb()

The Material’s capabilities must be set since color change will be carried out at
runtime. Initially, the limb is green.

The radius and length of the cylinder are stored in the radius and limbLen globals.
They will never change (the cylinder’s geometry isn’t updated). Instead, scaling is
applied to the cylinder through the scaleTG node.

The endLimbTG node is connected to the subgraph in locateEndLimb():

private TransformGroup locateEndLimb()
{
 // fix limb's end position, and store in endLimbTG
 endLimbTG = new TransformGroup();
 endLimbTG.setCapability(TransformGroup.ALLOW_CHILDREN_EXTEND);
 endLimbTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 endLimbTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 Transform3D trans2 = new Transform3D();
 trans2.setTranslation(new Vector3d(0, limbLen*(1.0-OVERLAP), 0));
 /* The end position is just short of the actual length of the
 limb so that any child limbs will be placed so they overlap
 with this one. */
 endLimbTG.setTransform(trans2);

 return endLimbTG;
} // end of locateEndLimb()

It’s important to set the necessary capabilities in locateEndLimb(). The ALLOW_

CHILDREN_EXTEND bit will permit BranchGroup nodes to be attached to this node.

Scaling
The public scaling methods employ a scale factor or scale so the radius (or length)
becomes a desired value. Consider setLength(), which scales the cylinder’s length
until it’s the specified amount:

// global for storing scaling info
private Vector3d scaleLimb;

public void setLength(float newLimbLen)
// change the cylinder's length to newLimbLen
// (by changing the scaling)
{ double scaledLimbLen = ((double) limbLen) * scaleLimb.y;
 double lenChange = ((double) newLimbLen) / scaledLimbLen;
scaleLength(lenChange);

}

This is the Title of the Book, eMatter Edition

Building a Tree Limb | 759

To simplify the calculations, the current scaling factors (in the x-, y-, and z-directions)
are maintained in scaleLimb. The current scaled limb length is stored in scaledLimbLen.
The desired scaling is the factor to take the length from scaledLimbLen to the required
newLimbLen value.

The scaling is done by scaleLength():

public void scaleLength(double yChange)
{ scaleLimb.y *= yChange;
 applyScale();
}

private void applyScale()
{
moveEndLimbTG(scaleLimb.y);

 scaleTG.getTransform(currTrans);
 currTrans.setScale(scaleLimb);
 scaleTG.setTransform(currTrans);
}

applyScale() applies the new scaling to scaleTG, which changes the perceived length
of the cylinder. However, this change won’t automatically affect the endLimbTG node
(the node that represents the end of the limb) since it’s unattached to the graph
below scaleTG. The call to moveEndLimbTG() adjusts the node’s position so it stays
located at the end of the cylinder:

private void moveEndLimbTG(double yScale)
/* yScale is the amount that the Cylinder is about to
 be scaled. Apply it to the y- value in endLimbTG */
{
 endLimbTG.getTransform(currTrans);
 currTrans.get(endPos); // current posn of endLimbTG
 double currLimbLen = endPos.y;
 // current y-posn, the cylinder length including scaling

 double changedLen =
 ((double) limbLen*(1.0-OVERLAP) * yScale) - currLimbLen;
 // change in the y- value after scaling has been applied

 endPos.set(0, changedLen, 0); // store the length change
 toMove.setTranslation(endPos); // overwrite previous trans
 currTrans.mul(toMove);
 endLimbTG.setTransform(currTrans); // move endLimbTG
} // end of moveEndLimbTG()

endLimbTG’s (x, y, z) position is extracted to the endPos vector. This position corre-
sponds to the end of the scaled cylinder.

The necessary position change is calculated by multiplying the cylinder’s physical
length by the new scale factor in yScale, and subtracting the endPos y-value. I factor
in an overlap, which cause limbs to overlap when linked together.

This is the Title of the Book, eMatter Edition

760 | Chapter 28: Trees That Grow

Changing the Limb’s Color
The capabilities for changing the limb’s Material were set up in makeLimb(),
described earlier. A global, limbMaterial, stores a reference to the node to make it
simple to change:

public void setCurrColour(Color3f c)
// Change the limb's color to c.
{ currColor.x = c.x;
 currColor.y = c.y;
 currColor.z = c.z;
 limbMaterial.setDiffuseColor(currColour);
}

To achieve an aging effect, the limb’s color is changed from green to brown incre-
mentally, spread out over several frames. This is achieved by precalculating red,
green, and blue transitions that will change the RGB values for green to brown over
the course of MAX_COLOR_STEP steps:

// globals
private final static int MAX_COLOR_STEP = 15;

private final static Color3f green = new Color3f(0.0f, 1.0f, 0.1f);
private final static Color3f brown = new Color3f(0.35f, 0.29f, 0.0f);

// incremental change in terms of RGB to go from green to brown
private float redShift = (brown.x - green.x)/((float) MAX_COLOR_STEP);
private float greenShift = (brown.y - green.y)/((float) MAX_COLOR_STEP);
private float blueShift = (brown.z - green.z)/((float) MAX_COLOR_STEP);

The redShift, greenShift, and blueShift values are utilized in stepToBrown():

public void stepToBrown()
// Incrementally change the limb's color from green to brown
{
 if (colorStep <= MAX_COLOR_STEP) {
 currColor.x += redShift;
 currColor.y += greenShift;
 currColor.z += blueShift;
 limbMaterial.setDiffuseColor(currColour);
 colorStep++;
 }
}

stepToBrown() will be repeatedly called until the limb has turned brown.

Leaves on Trees
Two ImageCsSeries objects display leaves at the end of a branch. This makes the
mass of the leaves seem greater, especially since the images are offset from each

This is the Title of the Book, eMatter Edition

Executing the Rules | 761

other. The two objects are connected to the limb via BranchGroup nodes since the
links are formed at runtime:

public void addLeaves(ImageCsSeries fls, ImageCsSeries bls)
// Leaves are represented by two ImageCsSeries 'screens'
{
 if (!hasLeaves) {
 frontLeafShape = fls;
 backLeafShape = bls;

 // add the screens to endLimbTG, via BranchGroups
 BranchGroup leafBG1 = new BranchGroup();
 leafBG1.addChild(frontLeafShape);
 endLimbTG.addChild(leafBG1);

 BranchGroup leafBG2 = new BranchGroup();
 leafBG2.addChild(backLeafShape);
 endLimbTG.addChild(leafBG2);

 hasLeaves = true;
 }
}

The positioning of the ImageCsSeries objects is done when they are created, inside
GrowthBehavior.

The other leaf-related methods in TreeLimbs pass requests to the ImageCsSeries

objects; the requests change the image currently being displayed:

public void showNextLeaf()
// show the next leaf image
{ if (hasLeaves) {
 frontLeafShape.showNext();
 backLeafShape.showNext();
 }
}

Executing the Rules
The rules are located in the GrowthBehavior class, a subclass of Behavior. The
GrowthBehavior object created by WrapTrees3D maintains an ArrayList of TreeLimb

objects and an ImageComponent2D array of leaf pictures. The pictures are passed to it at
construction time, while storing the first five TreeLimb objects via calls to addLimb():

// globals
private final static int TIME_DELAY = 100; //ms

private WakeupCondition timeOut;
private ArrayList treeLimbs; // of TreeLimb objects
private ImageComponent2D[] leafIms; // a sequence of leaf images

This is the Title of the Book, eMatter Edition

762 | Chapter 28: Trees That Grow

public GrowthBehavior(ImageComponent2D[] lfIms)
{ timeOut = new WakeupOnElapsedTime(TIME_DELAY);
 treeLimbs = new ArrayList();
 leafIms = lfIms;
}

public void addLimb(TreeLimb limb)
{ treeLimbs.add(limb); }

processStimulus() is called every TIME_DELAY milliseconds (100 ms), which calls
applyRulesToLimbs(). applyRulesToLimbs() cycles through the TreeLimb objects in
the ArrayList, calling applyRules() for each one:

private void applyRulesToLimbs()
{
 TreeLimb limb;
 for(int i=0; i < treeLimbs.size(); i++) {
 limb = (TreeLimb) treeLimbs.get(i);

applyRules(limb);
 limb.incrAge(); // a limb gets older after each iteration
 }
}

Seven rules controlling the modification of a tree limb are placed in applyRules():

private void applyRules(TreeLimb limb)
// Apply rules to the tree limb.
{
 // get longer
 if ((limb.getLength() < 1.0f) && !limb.hasLeaves())
 limb.scaleLength(1.1f);

 // get thicker
 if ((limb.getRadius() <= (-0.05f*limb.getLevel()+0.25f))
 && !limb.hasLeaves())
 limb.scaleRadius(1.05f);

 // get more brown
 limb.stepToBrown();

 // spawn some child limbs
 int axis;
 if ((limb.getAge() == 5) && (treeLimbs.size() <= 256)
 && !limb.hasLeaves() && (limb.getLevel() < 10)) {
 axis = (Math.random() < 0.5) ? Z_AXIS : X_AXIS;
 if (Math.random() < 0.85)
 makeChild(axis, randomRange(10,30), 0.05f, 0.5f, limb);

 axis = (Math.random() < 0.5) ? Z_AXIS : X_AXIS;
 if (Math.random() < 0.85)
 makeChild(axis, randomRange(-30,-10), 0.05f, 0.5f, limb);
 }

 // start some leaves
 if ((limb.getLevel() > 3) && (Math.random() < 0.08) &&

This is the Title of the Book, eMatter Edition

Executing the Rules | 763

 (limb.getNumChildren() == 0) && !limb.hasLeaves())
 makeLeaves(limb);

 // grow the leaves
 if (limb.getAge()%10 == 0)
 limb.showNextLeaf();

 // turn the base limb into a "blue bucket"
 if ((limb.getAge() == 100) && (limb.getLevel() == 1)) {
 limb.setRadius(2.0f*limb.getRadius());
 // limb.setLength(2.0f*limb.getLength());
 limb.setCurrColour(new Color3f(0.0f, 0.0f, 1.0f));
 }
} // end of applyRules()

Almost all the rules have an if-then form, where the action is only carried out if the
conditions evaluate to true for the current limb. Due to the repeating nature of
GrowthBehavior, each rule will be applied to each tree limb in each time interval. This
means that the rules express change in incremental terms.

The rule controlling a limb’s thickness looks like this:

 if ((limb.getRadius() <= (-0.05f*limb.getLevel()+0.25f))
 && !limb.hasLeaves())
 limb.scaleRadius(1.05f);

The equation –0.05*limb.getLevel()+0.25 relates the maximum radius to the limb’s
level. For example, a limb touching the ground (level = 1) can have a larger maxi-
mum radius than a branch higher up the tree. This means that branches will get less
thick the higher up the tree they appear as in nature. The hasLeaves() part of the
condition stops branches from growing thicker once they have leaves.

The rule for generating child limbs looks like this:

if ((limb.getAge() == 5) && (treeLimbs.size() <= 256)
 && !limb.hasLeaves() && (limb.getLevel() < 10)) {
 axis = (Math.random() < 0.5) ? Z_AXIS : X_AXIS;
 if (Math.random() < 0.85)

makeChild(axis, randomRange(10,30), 0.05f, 0.5f, limb);

 axis = (Math.random() < 0.5) ? Z_AXIS : X_AXIS;
 if (Math.random() < 0.85)

makeChild(axis, randomRange(-30,-10), 0.05f, 0.5f, limb);
}

The four conditions only permit a child limb to appear if the parent is at least five
time intervals old, the total number of limbs in the scene is less or equal to 256, the
parent has no leaves, and the branch isn’t too far up the tree.

Math.random() is used to randomize the orientation axis and make it less certain that
two children will be spawned. randomRange() returns a random number (in this case,
an angle) in the specified range.

This is the Title of the Book, eMatter Edition

764 | Chapter 28: Trees That Grow

makeChild()’s definition is:

private void makeChild(int axis, double angle, float rad,
 float len, TreeLimb par)
{ TransformGroup startLimbTG = par.getEndLimbTG();
 TreeLimb child = new TreeLimb(axis, angle, rad, len, startLimbTG, par);
 treeLimbs.add(child); // add new limb to the ArrayList
} // end of makeChild()

Leaves are spawned with the following rule:

if ((limb.getLevel() > 3) && (Math.random() < 0.08) &&
 (limb.getNumChildren() == 0) && !limb.hasLeaves())
makeLeaves(limb);

If a limb is far enough up the tree and has no children or existing leaves, then it will
have a small chance of bursting into leaf. makeLeaves() packages up the creation of
two ImageCsSeries objects, which are passed to the TreeLimb object:

private void makeLeaves(TreeLimb limb)
{
 ImageCsSeries frontLeafShape = new ImageCsSeries(0.5f, 2.0f, leafIms);
 ImageCsSeries backLeafShape = new ImageCsSeries(-0.5f, 2.0f, leafIms);
 limb.addLeaves(frontLeafShape, backLeafShape);
}

Displaying Leaves
An ImagesCsSeries object is a quadrilateral (quad), centered at (0, 0, 0), that can dis-
play an image from a series passed to it in an ImageComponent2D array. Only the
opaque parts of the image are shown, and the quad is invisible. The quad is a sub-
class of OrientedShape3D, configured to rotate around the point (0, 0, zCoord) relative
to its origin.

The first image in the array is automatically displayed, but then methods must be
called to change the picture; there is no default animation.

A version of ImageCsSeries with animation can be found in FPShooter3D
in Chapter 24.

The constructor sets up the rotation point:

public ImageCsSeries(float zCoord, float screenSize, ImageComponent2D[] ims)
{ this.ims = ims;
 imIndex = 0;
 numImages = ims.length;

This is the Title of the Book, eMatter Edition

Displaying Leaves | 765

 // set the orientation mode
 setAlignmentMode(OrientedShape3D.ROTATE_ABOUT_POINT);
 setRotationPoint(0.0f, 0.0f, zCoord);

 createGeometry(screenSize);
 createAppearance();
}

A look back at the makeLeaves() method, used by the leaf creation rule, shows that
two ImageCsSeries screens are created with different rotation points: one 0.5 units in
front of its location and the other 0.5 units behind. This means that the two screens
will rotate differently as the user’s viewpoint moves around a tree. This creates a
much larger mass of leaves that always seems to surround the tree limb, as illus-
trated by Figure 28-5.

The createGeometry() and createAppearance() methods are unchanged from the
version of the class in FPShooter3D in Chapter 24. The geometry is a mix of coordi-
nates and texture information. The appearance employs a blended form of transpar-
ency so transparent parts of the image won’t be rendered.

The ImageCsSeries class in FPShooter3D uses a time-delayed loop triggered by a call to
showSeries(). The Trees3D version has several methods for replacing the currently
displayed image with another one. Here is one example:

public void showNext()
// show the next image in the sequence
{ if (imIndex < numImages-1) {
 imIndex++;
 texture.setImage(0, ims[imIndex]);
 }
}

Figure 28-5. Leaves around each limb

This is the Title of the Book, eMatter Edition

766 | Chapter 28: Trees That Grow

Comparison with L-Systems
L-systems consist of rewrite rules and have been widely used for plant modeling and
simulation. Perhaps surprisingly, there is a direct mapping between the string expan-
sions of a rule system and the visual representation of a plant. An example, using a
bracketed L-system, will give an idea of how this works.

The L-system contains one start string F and rewrite rule:

F --> F [-F] F [+F] F

The start symbol represents the initial plant form; in this case, F is a single plant
limb. The rewrite rule specifies how the symbol on the left of the --> should be
replaced or expanded to create the longer sequence of symbols on the right of the -->.
The rewrite rule replaces F with the sequence F[-F]F[+F].

The visual characterization is obtained by thinking of each F in the sequence as a
limb of the plant. The bracketed notation is viewed as a branch-creation operator;
the - is a rotation to the right for the branch, and the + is a left rotation. Conse-
quently, the rewrite of F to F[-F]F[+F] can be seen as the plant expansion in
Figure 28-6.

The rewrite rule can be applied again to each F symbol in the F[-F]F[+F]sequence,
producing a longer sequence. Repeated application of the rewrite rule creates ever
larger sequences with more complex plant-like shapes as in Figure 28-7.

Perhaps the richest L-system language is cpfg, available from http://www.cpsc.
ucalgary.ca/Research/bmv/. It includes a full range of programming constructs, data
structures, library functions, and various extensions, such as parameterized L-system
symbols and sub-L-systems.

Two good introductions to L-Systems, both available online, are “An Introduction to
Lindenmayer Systems” by Gabriela Ochoa (http://www.cogs.susx.ac.uk/lab/nlp/
gazdar/teach/atc/1998/web/ochoa/) and “Simulating Plant Growth” by Marco Gru-
bert in ACM Crossroads Student Magazine (http://www.acm.org/crossroads/xrds8-2/
plantsim.html).

Figure 28-6. First rewrite of F

This is the Title of the Book, eMatter Edition

Comparison with L-Systems | 767

Java 3D and L-Systems
Java 3D was used by René Gressly to implement L-systems for growing bushes, trees, and
flowers in a landscape. The user chooses where to place plants and then walks around
the scene as the plants grow (http://www.hta-bi.bfh.ch/~swc/DemoJ3D/VirtualPlants/).

Chris Buckalew implemented a Java 3D L-Systems engine that uses recursion to parse
the start string and replace string elements. It’s part of a lab exercise in his CSC 474
Computer Graphics course (http://www.csc.calpoly.edu/~buckalew/474Lab7-W02.html).

Scott Teresi has written code that reads a 2D L-System and renders it in 3D (http://
teresi.us/html/main/programming.html)

So Why Not Use L-Systems?
The truth is that originally I did use L-systems. A student and I developed code along
the lines of Chris Buckalew’s example. Unfortunately, the heavy use of recursion
meant that only one or two trees of perhaps 10 or so levels could be generated before
Java required a major memory extension.

The real problem is with the L-system formalism, which has difficulty representing
incremental change using L-system rewrite rules. As Figure 28-7 indicates, each
expansion creates a more complex tree, but it is hard to see how the fancier tree has
grown out of the simpler one. What part of the current tree is new wood, and which
is old wood that has grown a bit?

An L-system sees growth as a new tree completely replacing the old one. That doesn’t
matter when the tree is a mathematical abstraction but has consequences when imple-
menting growth in Java 3D. The natural approach, and the most disastrous from an

Figure 28-7. A sequence of rewrites

This is the Title of the Book, eMatter Edition

768 | Chapter 28: Trees That Grow

efficiency point of view, is to discard the current tree at the start of a rewrite and gen-
erate a new one matching the new string expansion.

The rules notation used here, as typified by the rules in applyRules(), are phrased in
terms of incremental change to existing limbs. New limbs can be added, but only by
explicitly spawning children. This has the practical benefit that thousands of limbs
can be created before the application needs additional heap space.

Another drawback of the Lindenmayer notation is its lack of tree nomenclature. For
instance, it’s impossible to talk about the parent of a node, its children, its level in
the tree, and so on. To be fair, some of these capabilities can be programmed by
using parameterized L-system rules, and basic L-systems have no notion of global
time or the age of individual limbs. This can be remedied with additional parameters
in rules.

L-system rules tend to be embedded in procedural languages, so it’s difficult to cre-
ate new plant node types (or classes) with their own data, operators, and behavior.
This presents no problem to Java of course; I could start by subclassing TreeLimb.

This is the Title of the Book, eMatter Edition

769

Chapter 29 CHAPTER 29

Networking Basics

This chapter runs through networking fundamentals and explains basic network pro-
gramming with sockets, URLs, and servlets. It serves as background for the next
three chapters on networked games. Chapter 30 is about online chat, the “hello
world” of network programming. I will look at three chat variants: one using a cli-
ent/server model, one employing multicasting, and one illustrating chatting with
servlets. Chapter 32 describes a networked version of the FourByFour application, a
turn-based game demo in the Java 3D distribution and revisits the Tour3D applica-
tion in Chapter 18 (the robot walking about a checkerboard landscape) and adds
networking to allow multiple users to share the world. I will discuss some of the
advanced issues concerning networked virtual environments (NVEs), of which
NetTour3D is a simple example.

This chapter provides:

• Descriptions of the core attributes of network communication

• Explanations of IP, User Datagram Protocol (UDP), Transmission Control
Protocol (TCP), network addresses, and sockets

• Overviews of the client/server and peer-to-peer models

• Four client/server applications, illustrating the sequential, threaded, nonblock-
ing multiplexing, and UDP multiplexing techniques

• A small peer-to-peer application, as an example of UDP multicasting

• A discussion of the programming problems caused by firewalls, motivating an
introduction to URLs and servlets for HTTP tunneling

• A few words about Java networking with JSSE, RMI, and Jini

The various programming examples in this chapter can be found in
the NetBasics/ directory.

This is the Title of the Book, eMatter Edition

770 | Chapter 29: Networking Basics

The Elements of Network Communication
Network communication is often characterized by five attributes: topology, band-
width, latency, reliability, and protocol. I’ll consider each one briefly.

Topology
Topology is the interconnection shape of machines linked over a network. Popular
shapes are the ring, star, and all-to-all, illustrated by Figure 29-1.

Choosing the best topology for an application is a complicated matter depending on
many network characteristics, such as bandwidth, latency, and the particular com-
munication patterns inherent in the system.

The star topology, present in client/server applications, is the most popular; the all-
to-all topology appears (in modified forms) in peer-to-peer systems.

Bandwidth
Bandwidth is the rate at which the network can deliver data from a sender to the des-
tination host. Modems can typically deliver anywhere from 14,400 to 56,000 bits per
second (14.4 to 56 Kbps), Ethernet can attain 10 to 100 Mbps (million bits per sec-
ond), with newer technologies offering 1 Gbps (gigabits per second). Fiber-optic
cable exhibits speeds of up to 10 Gbps.

Figure 29-1. Some network topologies

host1

host2

host3host4

host5

Ring Topology

host1

host2

host3host4

host5

Star Topology
host1

host2

host3host4

host5

All-to-All Topology

server

This is the Title of the Book, eMatter Edition

The Elements of Network Communication | 771

Dial-up usage is declining rapidly in the United States, but 49.31% of users still con-
nect with modems, according to July 2004 figures from Nielsen/NetRatings (http://
www.nielsen-netratings.com/). Specifically, 40.49% use 56-Kbps modems, 6.22%
have 28/33.3 Kbps, and 2.60% are stuck with 14.4-Kbps modems. Also, 66.2% of
people used modems the previous year, in March 2003.

An estimated 150 million broadband lines were in place worldwide by the end of
2004, including all kinds of mass-market broadband services, such as DSL, cable
modems, and fiber optic. Usage is growing even faster than the uptake of mobile
phones (http://www.internetworldstats.com/articles/art030.htm).

Research by Bolt Lab from January 2005 indicates that 70% of the Gen-Y group
(15–22-year-olds) in the United States use broadband to access the Internet (http://
biz.yahoo.com/prnews/050114/nyf005_1.html). Of those teens, 50% use a cable
modem, 44% use DSL, and 6% a T1/T3 line.

Nevertheless, 56 Kbps is probably a realistic bandwidth estimate for most users, at
least for 2005.

Bandwidth restricts the number of players in a game: too many participants will
swamp the network with data traffic. However, the nature of the extra load depends
on topology. For example, a message sent around a ring will have to travel through
many links, occupying bandwidth for a longer amount of time. A message traveling
through a star topology only requires two links to go from any sender to any receiver,
and a message in an all-to-all topology goes directly to its destination.

A knowledge of the available bandwidth allows us to estimate upper limits for the
amount of data that can be transferred per each frame rendered in a game and to sug-
gest a likely maximum for the number of users.

A 56-Kbps modem means 7,000 bytes can be transferred per second. I’ll assume that
the game updates at 30 frames per second (FPS), and each player sends and receives
data from all the other players during each frame update. The total amount of data
that can be transferred to each frame is 7,000/30 ≈ 233 bytes per frame. This is about
117 bytes for output, 117 bytes for input.

If there are n players, then each player will send (n – 1) output messages and receive
(n – 1) input messages at each frame update. As n increases, the 117 bytes limit will
be quickly reached.

I can estimate the maximum number of users by starting with a lower bound for the
amount of data that must be transferred during each frame update. For instance, if
the lower bound is 20 bytes and there’s 117 bytes available for output, then a maxi-
mum of about six messages can be sent out (117/20), which means seven players in
the game.

These kinds of ballpark figures explain why games programmers try hard to avoid
broadcast models linked to frame rate and why transmitted data is kept as small as

This is the Title of the Book, eMatter Edition

772 | Chapter 29: Networking Basics

possible. Some techniques for reducing data transmission in multiplayer games are dis-
cussed in Chapter 32, when I develop a networked version of the Tour3D application.

A network protocol solution is to move from a broadcast model to multicasting.
Multicasting is a form of subscription-based message distribution: a player sends a
single message to a multicast group, where it’s automatically distributed to all the
other players currently subscribed to that group. The saving is in the number of mes-
sages sent out: one instead of n – 1.

A similar saving can be made in a star topology: a player sends a single message to
the server, which then sends copies to the other players. This is a software solution,
dependent on the server’s implementation, which allows for further server-side opti-
mizations of the communication protocols.

Latency
Latency is the amount of time required to transfer data from one place to another
(typically from one player’s machine to another). In a Massively Multiplayer Online
Role-Playing Game (MMORPG), latency exhibits itself as the delays when two play-
ers are interacting (e.g., shooting at each other); the goal is to reduce latency as much
as possible.

Most latency can be accounted for by the modems involved in the network: typically
each one adds 30–40 ms to the transfer time. A client/server system may involve four
modems between the sending of a message and its reception by another user: the
sender’s modem, the modem inbound to the server, the modem outbound from the
server, and the receiver’s modem result in a total latency of perhaps 160 ms.

Another major contributor, especially over the Internet, are routers, which may eas-
ily add hundreds of milliseconds. This is due to their caching of data before forward-
ing and delays while a router decides where to send a message. Routers may drop
data when overloaded, which can introduce penalties in the 400–500 ms range for
protocols (like TCP), which detect lost data and resend it.

Another issue is the speed of light because games would certainly benefit if it were
faster. A message sent from the East Coast to the West Coast of the United States
will take about 20 ms to get there. In general, about 8 ms are added to the travel time
for each time zone that a message passes through.

Designers often incorporate tolerances of 250 ms into the communication models
used in games. A key observation is that most games don’t require complete synchro-
nization between all the players all the time. Synchronization is usually important
only for small groups of players (e.g., those in close proximity inside the game world)
and then only at certain moments.

This is the Title of the Book, eMatter Edition

The Elements of Network Communication | 773

This relaxing of the synchronization requirement opens the door to various
approaches based on temporarily “guessing” information about other players. For
instance, the game running on the user’s machine estimates other players’ current
positions and velocities and corrects them when the correct data arrive over the
network.

Another implementation strategy is to decouple general game play from the network-
ing side of the application. A separate thread (or process) waits for incoming data, so
the rest of the application can continue unaffected.

Latency is essentially a WAN or Internet issue; applications running over a LAN
rarely need to consider latency, which may total less than 10 ms.

Reliability
Increased network reliability may increase latency time. For example, the possibility
that a message could be lost while traveling over the network led to the development
of the TCP protocol, which deals with data loss by resending. The disadvantage is
that the actual arrival time of a message can increase, affecting latency.

A desire to measure reliability has led to more complex checking of data based on
cyclic redundancy checks (CRCs), which add further overheads.

An alternative approach is to live with a certain degree of unreliability, reducing
overheads as a consequence. Many forms of Internet-based multimedia, such as
streaming audio and video, take this view because losing small amounts of data only
means a momentary loss in sound or picture quality. The rapid transmission of the
data is a more valued attribute.

Protocol
A protocol is a notation for specifying the communication patterns between the com-
ponents of a networked application. Different protocols support different capabili-
ties, with the choice of protocol depending on many factors, such as the type of data
being transmitted, the number of destinations, and the required reliability. Most
gaming application uses multiple protocols: one for data, another for control, and
perhaps others specialized for particular types of data such as audio or video.

Different protocols exist for different levels of communication, which are defined in
the ISO OSI model (see Figure 29-2).

A protocol suite is a collection of related protocols for different layers of the OSI
model. The most popular is TCP/IP, originally developed by DARPA in the early
1980s. Its wide popularity stems from being implemented on everything from PCs to
supercomputers, not being vendor-specific, and its suitability for all kinds of net-
works, from LANs up to the Internet.

This is the Title of the Book, eMatter Edition

774 | Chapter 29: Networking Basics

This isn’t a book about data communications, so I’ll only consider TCP/IP within a
simplified version of the OSI model, limited to four layers. Communication between
two networked systems can be viewed (see Figure 29-3).

Figure 29-3 shows that application-level protocols, which include FTP, HTTP (the
web protocol), and SMTP (the email protocol), are implemented on top of lower-
level protocols (TCP or UDP).

At a particular layer, the data appears to cross directly to the equivalent layer on the other
system. In fact, data is passed down through the layers, across the physical network, and
back up through the layers of the other system. As each layer is descended, the user’s
data is wrapped inside more header (and footer) information. The headers (and footers)
are removed as the data rises through the layers on the other system.

Figure 29-2. The ISO OSI model

Figure 29-3. Communication between two systems

7

6

5

Application

Presentation

Session

4

3

2

1

high-level protocol

low-level protocol

Transport

Network

Data Link

Physical

Application
e.g., FTP Client

The Physical Network

Transport
e.g., TCP

Network
e.g., IP

Data Link
e.g., ethernet controller

Application
e.g., FTP Server

Transport
e.g., TCP

Network
e.g., IP

Data Link
e.g., ethernet controller

FTP protocol

TCP protocol

IP protocol

ethernet frames

This is the Title of the Book, eMatter Edition

The Elements of Network Communication | 775

The data link layer corresponds to the OSI physical and data layers. Frames are deliv-
ered between two directly connected machines.

The network layer delivers datagrams between any two machines on the Internet,
which may be separated by intervening gateways/routers. Each datagram is routed
independently, which means that two datagrams sent from the same source may
travel along different paths and may arrive in a different order from the way they
were sent. Since a gateway/router has limited memory, it may discard datagrams if
too many arrive at once. A node or link in the network may fail, losing packets. For
these reasons, the IP protocol makes no guarantees that a datagram will arrive at its
destination.

A datagram has size constraints, which often force a single piece of user data to be
divided into multiple datagrams. The data arriving at the receiver may, therefore,
have missing pieces and parts in the wrong order.

A datagram is sent to an IP address, which represents a machine’s address as a 32-bit
integer. Programs usually employ IP addresses in dotted-decimal form (e.g., 172.30.0.5)
or as a dotted-name (e.g., fivedots.coe.psu.ac.th). Translation of dotted-name form to
an IP address is carried out using a combination of local machine configuration informa-
tion and network naming services such as the Domain Name System (DNS).

The IP protocol is currently in transition from Version 4 to Version 6 (IPv6), which
supports 128-bit addresses, a simpler header, multicasting, authentication, and secu-
rity elements. Java supports IPv4 and IPv6 through its InetAddress class.

The transport layer delivers datagrams between transport endpoints (machine ports)
for any two machines on the Internet. An application’s location is specified by the IP
address of its host, and the number of the port where it is “listening.” A port num-
ber is a 16-bit integer.

The TCP/IP transport layer protocols are UDP and TCP.

UDP is a connectionless transport service: a user message is split into datagrams and
each datagram is sent along an available path to its destination. There is no (expen-
sive) long-term, dedicated link created between the two systems. UDP inherits the
drawbacks of the IP protocol: datagrams may arrive in any order, and a datagram has
no guarantee of arriving. UDP is often compared to the postal service.

TCP is a connection-oriented transport service. From the user’s point of view, a long-
term, dedicated link is set up between the sender and receiver, and two-way stream-
based communication then becomes possible. For this reason, TCP is often com-
pared to the telephone service.

However, the dedicated link is implemented on top of IP, so packets of information are
still being sent with the chance of reordering and loss. Consequently, TCP employs
sophisticated internal error-checking to ensure that its component TCP datagrams

This is the Title of the Book, eMatter Edition

776 | Chapter 29: Networking Basics

arrive in the order they were sent and that none will be lost. This overhead may be too
severe for gaming applications that value low latency.

UDP and TCP use a socket data structure to represent an endpoint in the communi-
cation. For UDP, the socket is something like a mailbox; for TCP socket it is more
like a telephone.

Java supports both TCP and UDP. A programmer uses the Socket class for creating a
sender’s TCP socket and the ServerSocket class for the recipient. Java offers the
DatagramSocket for both sides of UDP communication and a DatagramPacket class for
creating UDP packets.

The Client/Server Model
The client/server model is the most common networking architecture employed in
distributed applications. A server is a program (or collection of cooperating pro-
grams) that provides services and/or manages resources on the behalf of other pro-
grams, known as its clients. Figure 29-4 shows a typical client/server environment.

A key advantage of the client/server approach is the ability for the server to control
its clients by localizing important processing and data within itself. For example, in
online games, decisions about the outcome of a player’s actions (e.g., the shooting of
a monster) will be made by the server. The alternative is to delegate this to the cli-
ent’s application, which may lead to abuse by hackers.

Figure 29-4. A simple client/server

network

Server

Users/Clients

Database

This is the Title of the Book, eMatter Edition

The Client/Server Model | 777

A central location for client data and processing makes it easier to monitor users,
administer them, and charge them for game playing. These are significant benefits
for commercial multiplayer gaming.

The server is an arbiter for conflicting client requests. For instance, it’s impossible for
two clients to update the same data state simultaneously.

Placing state information in one place makes changing it straightforward and avoids
inconsistencies arising when updating multiple copies stored on clients.

Concentrating processing on the server side permits the client side to run on a less
powerful machine, an important consideration for network applications on PDAs or
phones.

Concentrating most of the application in the server makes it is easier to maintain and
update, compared to upgrading code spread over a large, possibly nontechnical,
user base.

The main disadvantage of a “fat” server is the potential for it to become a bottle-
neck, overloaded by too many clients, and increasing latency to unacceptable levels.
Excessive numbers of clients may overload the server’s data storage capacity.

Another significant issue is reliability in that if the server fails, then everyone will be
affected. Almost as bad as failure is the (temporary) nonavailability of the server
because it’s currently dealing with too many users, due to a hacker attack, or it’s
been taken offline for servicing or upgrades.

These concerns have led to the widespread use of multiple servers, sometimes spe-
cialized for different elements of client processing, or acting as duplicates, ready to
substitute for a server that fails. Different servers may be in different geographical
locations, catering only to clients in those areas, which improves latency times.

Many MMORPGs map areas of their virtual world to different physical servers (e.g.,
Ultima Online). When clients move across a boundary in the world, they are
switched to a different server. This acts as a form of load balancing, though its suc-
cess depends on the different zones having roughly the same levels of popularity.

High-powered servers are expensive, especially ones with complex database manage-
ment, transaction processing, security, and reliability capabilities.

A successful application (game) will require an expensive, high-speed Internet con-
nection. A predicted trend is that gaming companies will start to offer their own
backbone networks, giving them greater control over bandwidth, latency, and the
specification of firewall access. This latter point will make it easier for applications to
use multiple protocols (e.g., UDP for data, TCP for commands) without worrying
about clients being unable to create the necessary communication links due to fire-
wall restrictions.

This is the Title of the Book, eMatter Edition

778 | Chapter 29: Networking Basics

The Peer-to-Peer Model
Peer-to-peer (P2P) encourages users to share their resources with others; resources
include hard-disk storage, CPU time, and files (audio, video). This is different from
today’s Web/Internet in which business/government/university servers present infor-
mation, and the rest of us read it. The difference is illustrated by Figure 29-5.

P2P isn’t a new idea: the early Internet (at that time, the ARPANET) was designed to
be P2P so U.S. universities and government installations could share computing
resources.

Many of the killer apps of the 1980s, such as Telnet and email, were client/server-
based but their usage patterns were symmetric—i.e., most machines ran clients and
servers. Usenet (net news) is a P2P application: it employs a decentralized file-sharing
model for distributing news, but an unofficial backbone has developed over time,
based around server inequalities in storage capacity, processing speeds, and network
connectivity.

Things started to change with the growth of the Web. It’s a client/server model like
most of the earlier applications, but differences lie in its political and social compo-
nents. Most users only browse the Web; they don’t run their own web servers. This
is due to the user’s lack of technical knowledge, the difficulty of setting up a server,
and because commercial ISPs prohibit server installation. Many ISPs allocate
dynamic addresses only to clients, making the running of servers impossible, and
impose firewall restrictions that only permit web-page access. Broadband connec-
tions, such as cable modems, offer asymmetric bandwidth, which makes the serving
of material slow.

The restrictions on users (e.g., firewalls) are recent, triggered by the lack of account-
ability mechanisms in the IP: the protocol lacks technological barriers to stop users
sending spam and attacking machines. Its designers made the fatal assumption that

Figure 29-5. Client/server versus P2P

Server

P2P

Clients

This is the Title of the Book, eMatter Edition

The Peer-to-Peer Model | 779

users are responsible. The problem is sometimes called the Tragedy of the Commons:
a commonly owned resource will be overused until it degrades, due to its users put-
ting self-interest first.

The issue of accountability has led to better support for cryptography in IPv6 and
experimental technologies such as micropayments and reputation schemes.

With micropayments, a person wishing to use someone else’s resource (e.g., one of
their files) must compensate that person in some way. This might be in the form of
digital money or another valuable resource. Micropayments have the benefit of solv-
ing many forms of hacker attack, such as spam and distributed denial of service
(DDoS), since hackers must pay an excessive amount to flood the network with their
datagrams.

A reputation scheme typically requires a respected user to verify the reliability of a
new user. This idea is well-known in Java, which utilizes encrypted signatures and
third-party verifiers to identify trusted JAR files and applets. Some of the technicali-
ties are explored in Appendix B, where I consider how to sign files that are down-
loaded and installed using Java Web Start.

Many P2P systems are concerned with anonymity to prevent external agencies know-
ing who is in a P2P group, where files are stored, and who has published what. These
aims make accountability and trust harder to support.

Part of the drive behind these P2P features was the fate of Napster, which was closed
down because it published music files that it hadn’t authored. Napster could be tar-
geted because it was a hybrid of P2P and client/server: a Napster server stored details
about who was logged on and the published files. Unfortunately, this is a common
situation; most current P2P systems require some server capabilities. For instance,
games must validate new players, maintain account information, supply current sta-
tus information for the game, and notify other users when a player joins or leaves.

Pure P2P has the advantage that there’s no central point (no server) whose demise
would cause the entire system to come crashing down. This makes P2P resistant to
attacks such as DDoS and legal rulings!

The main drawback of pure P2P is paradoxically its lack of a server, which makes it
difficult to control and manage the overall application. With no server, how does a
new user discover what’s available?

The P2P diagram in Figure 29-5 suggests that participants use broadcasting to com-
municate, but this approach soon consumes all the available bandwidth for reasons
outlined earlier. Large-scale P2P applications use IP multicasting with UDP packets,
which currently relies on the MBone, a virtual overlay installed on the Internet to
facilitate multicasting. A special pseudo-IP address, called a multicast IP address or
class D address, is employed, which can be in the range 224.0.0.0 to 239.255.255.255

(though some addresses are reserved).

This is the Title of the Book, eMatter Edition

780 | Chapter 29: Networking Basics

Multicasting avoids the potential for loops and packet duplication inherent in broad-
casting since it creates a tree-based communication pattern between the multicast
group members. Java supports IP multicasting with UDP.

JXTA provides core functionality so that developers can build P2P services and appli-
cations (see http://www.jxta.org/). The core JXTA layer includes protocols and build-
ing blocks to enable key mechanisms for P2P networking. These include discovery,
transport (e.g., firewall handling and limited security), and the creation of peers and
peer groups.

The JXTA specification isn’t tied to any particular programming language or plat-
form/device. Its communication model is general enough so that it can be imple-
mented on top of TCP/IP, HTTP, Bluetooth, and many other protocols. Currently
JXTA utilizes Java; it was initiated at Sun Microsystems by Bill Joy and Mike Clary.
A good site for finding out about P2P is O’Reilly’s http://www.openp2p.com/.

Client/Server Programming in Java
The four examples in this section have a similar structure: the server maintains a high
scores list, and the clients read and add scores to the list. Here are the four variants
of this idea:

1. A client and sequential server. The server can process only one client at a time.
The TCP/IP protocol is utilized.

2. The same client and the same protocol as (1), but the server is threaded, enabling
it to process multiple clients at the same time. Synchronization issues arise
because the high score list may be accessed by multiple threads at the same time.

3. The same client and the same protocol as (1) and (2), but Java’s NIO is used to
implement a multiplexing server without the need of threads.

4. A client and server using UDP. The server exhibits multiplexing due to the self-
contained nature of datagram communication.

TCP Client and Sequential Server
The communications network created by the client and server is shown in
Figure 29-6.

The server instantiates a ServerSocket object at port 1234 and waits for a connection
from a client by calling accept(). When a connection is established, a new socket is
created (some people call this a rendezvous socket), which is used for the subsequent
communication with the client. Input and output streams are layered on top of the
socket, utilizing the bidirectional nature of a TCP link. When the client has finished,
the rendezvous socket is closed (terminated), and the server waits for another
connection.

This is the Title of the Book, eMatter Edition

Client/Server Programming in Java | 781

The client instantiates a Socket object to link to the server at its specified IP address
and port. When a connection is obtained, the client layers input and output streams
on top of its socket and commences communication.

A great aid to understanding networked applications is to understand the protocol
employed between clients and the server. In simple examples (such as the ones in
this chapter), that means the message interactions between network entities.

A client can send the following messages, which terminate with a newline character:

get

The server returns the high score list.

score name & score &

The server adds the name/score pair to its list.

bye

The server closes the client’s connection.

A client only receives one kind of message from the server, the high scores list, which
is sent in response to a get request. The list is sent as a string terminated with a new-
line character. The string has this format:

HIGH$$ name1 & score1 & nameN & scoreN &

The server stores only 10 names and scores at most, so the string is unlikely to be
excessively long.

Class diagrams

The class diagrams for this example are given in Figure 29-7. Only the public meth-
ods are shown.

A HighScores object manages the high scores list, with each name/score pair held in a
ScoreInfo object.

The client code (ScoreClient) can be found in the NetBasics/ direc-
tory, while the sequential server (ScoreServer and its support classes)
is in NetBasics/Sequential/. ScoreClient is used as the client for the
sequential, threaded, and multiplexing servers.

Figure 29-6. Client and sequential server

ScoreClient ScoreServer
socket for client comms.

1234

Initial Internet connection

input and
output
streams

input and
output

streams

This is the Title of the Book, eMatter Edition

782 | Chapter 29: Networking Basics

The sequential score server

The constructor for the ScoreServer creates the ServerSocket object, then enters a
loop that waits for a client connection by calling accept(). When accept() returns,
the server processes the client and goes back to waiting for the next connection:

public ScoreServer()
{
 hs = new HighScores();
 try {
 ServerSocket serverSock = new ServerSocket(PORT);
 Socket clientSock;
 BufferedReader in; // i/o for the server
 PrintWriter out;

 while (true) {
 System.out.println("Waiting for a client...");
 clientSock = serverSock.accept();
 System.out.println("Client connection from " +
 clientSock.getInetAddress().getHostAddress());

 // Get I/O streams from the socket
 in = new BufferedReader(new InputStreamReader(
 clientSock.getInputStream()));
 out = new PrintWriter(clientSock.getOutputStream(), true);

 processClient(in, out); // interact with a client

 // Close client connection
 clientSock.close();
 System.out.println("Client connection closed\n");
 hs.saveScores(); // backup scores after client finish
 }
 }
 catch(Exception e)

Figure 29-7. Classes for the client and sequential server

This is the Title of the Book, eMatter Edition

Client/Server Programming in Java | 783

 { System.out.println(e); }
} // end of ScoreServer()

The server-side socket is created with the ServerSocket class:

ServerSocket serverSock = new ServerSocket(PORT);

The waiting for a connection is done via a call to accept():

Socket clientSock;
clientSock = serverSock.accept();

When accept() returns, it instantiates the rendezvous socket, clientSock. clientSock
can be used to retrieve client details, such as its IP address and host name.

The input stream is a BufferedReader to allow calls to readLine(). Since client mes-
sages end with a newline, this is a convenient way to read them. The output stream is
a PrintWriter, allowing println() to be employed. The stream’s creation includes a
Boolean to switch on auto-flushing, so there’s no delay between printing and output
to the client:

in = new BufferedReader(new InputStreamReader(clientSock.getInputStream()));
out = new PrintWriter(clientSock.getOutputStream(), true);

The client is processed by a call to processClient(), which contains the application-
specific coding. Almost all the rest of ScoreServer is reusable in different sequential
servers.

When processClient() returns, the communication has finished and the client link
can be closed:

clientSock.close();

The call to saveScores() in the HighScores object is a precautionary measure: it saves
the high scores list to a file, so data won’t be lost if the server crashes.

Most of the code inside the constructor is inside a try-catch block to handle I/O and
network exceptions.

Processing a client

processClient() deals with message extraction from the input stream, which is com-
plicated by having to deal with link termination.

The connection may close because of a network fault, which is detected by a null
being returned by the read, or may be signaled by the client sending a "bye" message.
In both cases, the loop in processClient() finishes, passing control back to the
ScoreServer constructor:

private void processClient(BufferedReader in, PrintWriter out)
{
 String line;
 boolean done = false;
 try {
 while (!done) {

This is the Title of the Book, eMatter Edition

784 | Chapter 29: Networking Basics

 if((line = in.readLine()) == null)
 done = true;
 else {
 System.out.println("Client msg: " + line);
 if (line.trim().equals("bye"))
 done = true;
 else
 doRequest(line, out);
 }
 }
 }
 catch(IOException e)
 { System.out.println(e); }
} // end of processClient()

The method uses a try-catch block to deal with possible I/O problems.

processClient() does a very common task and is portable across various applica-
tions. It requires that the termination message ("bye") can be read using readLine().

doRequest() deals with the remaining two kinds of client message: "get" and
"score". Most of the work in doRequest() involves the checking of the input mes-
sage embedded in the request string. The score processing is carried out by the
HighScores object:

private void doRequest(String line, PrintWriter out)
{
 if (line.trim().toLowerCase().equals("get")) {
 System.out.println("Processing 'get'");
 out.println(hs.toString());
 }
 else if ((line.length() >= 6) && // "score"
 (line.substring(0,5).toLowerCase().equals("score"))) {
 System.out.println("Processing 'score'");
 hs.addScore(line.substring(5)); // cut the score keyword
 }
 else
 System.out.println("Ignoring input line");
}

It’s a good idea to include a default else case to deal with unknown messages. In
doRequest(), the server only reports, problems to standard output on the server side.
It may be advisable to send a message back to the client.

Maintaining the scores information

The HighScores object maintains an array of ScoreInfo objects, which it initially pop-
ulates by calling loadScores() to load the scores.txt text file from the current direc-
tory. saveScores() writes the array’s contents back into scores.txt.

It’s preferable to maintain simple data (such as these name/score pairs) in text form
rather than a serialized object. This makes the data easy to examine and edit with
ordinary text-processing tools.

This is the Title of the Book, eMatter Edition

Client/Server Programming in Java | 785

The scores client

The ScoreClient class seems complicated because of its GUI interface, shown in
Figure 29-8.

The large text area is represented by the jtaMesgs object. Two text fields are used for
entering a name and score. Pressing Enter in the score field will trigger a call to
actionPerformed() in the object, as will pressing the Get Scores button.

ScoreClient calls makeContact() to instantiate a Socket object for the server at its
specified IP address and port. When the connection is made, input and output
streams are layered on top of its socket:

// global constants and variables
private static final int PORT = 1234; // server details
private static final String HOST = "localhost";

private Socket sock;
private BufferedReader in; // i/o for the client
private PrintWriter out;

private void makeContact()
{
 try {
 sock = new Socket(HOST, PORT);
 in = new BufferedReader(new InputStreamReader(sock.getInputStream()));
 out = new PrintWriter(sock.getOutputStream(), true);
 }
 catch(Exception e)
 { System.out.println(e); }
}

Figure 29-8. A ScoreClient object

This is the Title of the Book, eMatter Edition

786 | Chapter 29: Networking Basics

"localhost" is given as the server’s host name since the server is running on the same
machine as the client. "localhost" is a loopback address and can be employed even
when the machine is disconnected from the Internet, though the TCP/IP must be set
up in the OS. On most systems (including Windows), it’s possible to type the com-
mand ping localhost to check the functioning of the loopback.

actionPerformed() differentiates between the two kinds of user input:

public void actionPerformed(ActionEvent e)
 /* Either a name/score is to be sent or the "Get Scores"
 button has been pressed. */
{
 if (e.getSource() == jbGetScores)
 sendGet();
 else if (e.getSource() == jtfScore)
 sendScore();
}

sendGet() shows how the client sends a message to the server (in this case a "get"

string) and waits for a response (a "HIGH$$..." string), which it displays in the text
area:

private void sendGet()
{
// Send "get" command, read response and display it
// Response should be "HIGH$$ n1 & s1 & nN & sN & "
 try {
 out.println("get");
 String line = in.readLine();
 System.out.println(line);
 if ((line.length() >= 7) && // "HIGH$$ "
 (line.substring(0,6).equals("HIGH$$")))
 showHigh(line.substring(6).trim());
 // remove HIGH$$ keyword and surrounding spaces
 else // should not happen
 jtaMesgs.append(line + "\n");
 }
 catch(Exception ex)
 { jtaMesgs.append("Problem obtaining high scores\n");
 System.out.println(ex);
 }
}

Figure 29-9 shows how the high score list looks in the text area window.

sendGet() makes the client wait for the server to reply:

out.println("get");
String line = in.readLine();

This means the client will be unable to process further user commands until the
server has sent back the high scores information. This is a bad design strategy for
more complex client applications. The chat client from Chapter 30 shows how

This is the Title of the Book, eMatter Edition

Client/Server Programming in Java | 787

threads can be employed to separate network interaction from the rest of the
application.

The client should send a "bye" message before breaking a connection, and this is
achieved by calling closeLink() when the client’s close box is clicked:

public ScoreClient()
{ super("High Score Client");

 initializeGUI();
 makeContact();

 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e)
 { closeLink(); }
 });

 setSize(300,450);
 setVisible(true);
} // end of ScoreClient();

private void closeLink()
{ try {
 out.println("bye"); // tell server
 sock.close();
 }
 catch(Exception e)
 { System.out.println(e); }

 System.exit(0);
}

Figure 29-9. High scores output in the client

This is the Title of the Book, eMatter Edition

788 | Chapter 29: Networking Basics

A simple alternative client

Since the client is communicating with the server using TCP/IP, it’s possible to
replace the client with the telnet command:

telnet localhost 1234

This will initiate a TCP/IP link at the specified host address and port, where the
server is listening. The advantage is the possibility of testing the server without writ-
ing a client. The disadvantage is that the user must type the messages directly, with-
out the help of a GUI interface. Figure 29-10 shows a Telnet window after the server
has responded to a "get" message.

It may be necessary to switch on the Local Echo feature in Telnet’s preferences dia-
log before the user’s typing (e.g., the "get" message) is seen on-screen.

TCP Client and Multithreaded Server
The ScoreServer class of the previous example is inadequate for real server-side appli-
cations because it can only deal with one client at a time. The ThreadedScoreServer

class described in this section solves that problem by creating a thread (a
ThreadedScoreHandler object) to process each client who connects. Since a thread
interacts with each client, the main server is free to accept multiple connections.
Figure 29-11 shows this in diagram form.

The ScoreClient class needn’t be changed: a client is unaware that it’s talking to a
thread.

The HighScores object is referenced by all the threads (indicated by the dotted lines
in Figure 29-11), so the scores can be read and changed. The possibility of change
means that the data inside HighScores must be protected from concurrent updates by
multiple threads and from an update occurring at the same time as the scores are
being read. These synchronization problems are quite easily solved, as detailed in the
rest of this section.

Figure 29-10. A Telnet client

This is the Title of the Book, eMatter Edition

Client/Server Programming in Java | 789

The code for the multithreaded server (ThreadedScoreServer and its sup-
port classes) is in NetBasics/Threaded/. The client code (ScoreClient)
can be found in the NetBasics/ directory.

ThreadedScoreServer is simpler than its sequential counterpart since it no longer pro-
cesses client requests. It consists only of a constructor that sets up a loop waiting for
client contacts, handled by threads:

public ThreadedScoreServer()
{
 hs = new HighScores();
 try {
 ServerSocket serverSock = new ServerSocket(PORT);
 Socket clientSock;
 String cliAddr;

 while (true) {
 System.out.println("Waiting for a client...");
 clientSock = serverSock.accept();
 cliAddr = clientSock.getInetAddress().getHostAddress();
 new ThreadedScoreHandler(clientSock, cliAddr, hs).start();
 }
 }
 catch(Exception e)
 { System.out.println(e); }
} // end of ThreadedScoreServer()

Each thread gets a reference to the client’s rendezvous socket and the HighScores

object.

ThreadedScoreHandler contains almost identical code to the sequential ScoreServer

class; for example, it has processClient() and doRequest() methods. The main dif-
ference is the run() method:

public void run()
{
 try {

Figure 29-11. Clients and multithreaded server

1234
ScoreClient objects

network links

HighScores
object

Threaded ScoreServer

Threaded
ScoreHandler
objects

This is the Title of the Book, eMatter Edition

790 | Chapter 29: Networking Basics

 // Get I/O streams from the socket
 BufferedReader in = new BufferedReader(
 new InputStreamReader(clientSock.getInputStream()));
 PrintWriter out = new PrintWriter(clientSock.getOutputStream(), true);

processClient(in, out); // interact with a client

 // Close client connection
 clientSock.close();
 System.out.println("Client (" + cliAddr +
 ") connection closed\n");
 }
 catch(Exception e)
 { System.out.println(e); }
}

A comparison with the sequential server shows that run() contains code like that
executed in ScoreServer’s constructor after a rendezvous socket is created.

Maintaining scores information

The ThreadedScoreHandler objects call HighScores’s toString() and addScore()

methods. toString() returns the current scores list as a string, addScore() updates
the list. The danger of concurrent access to the scores list is easily avoided since the
data is maintained in a single object referenced by all the threads. Manipulation only
occurs through the toString() and addScore() methods.

A lock can be placed on the object by making the toString() and addScore() meth-
ods synchronized:

synchronized public String toString()
{ ... }

synchronized public void addScore(String line)
{ ... }

The lock means that only a single thread can be executing inside toString() or
addScore() at any time. Concurrent access is no longer possible. This approach is
relatively painless because of my decision to wrap the shared data (the scores list)
inside a single shared object. A possible concern may be the impact on response
times by prohibiting concurrent access, but toString() and addScores() are short,
simple methods that quickly return after being called.

One advantage of the threaded handler approach isn’t illustrated by this example: each
handler can store client-specific data locally. For instance, each ThreadedScoreHandler

could maintain information about the history of client communication in its session.
Since this data is managed by each thread, the main server is relieved of unnecessary
complexity.

This is the Title of the Book, eMatter Edition

Client/Server Programming in Java | 791

TCP Client and Multiplexing Server
J2SE 1.4. introduced nonblocking sockets, which allow networked applications to
communicate without blocking the processes/threads involved. This makes it possi-
ble to implement a server that can multiplex (switch) between different clients with-
out the need for threads.

At the heart of this approach is a method called select(), which may remind the
Unix network programmers among you of the select() system call. They’re closely
related, and the coding of a multiplexing server in Java is similar to one written in C
on Unix.

An advantage of the multiplexing server technique is the return to a single server
without threads. This may be an important gain on a platform with limited
resources. A related advantage is the absence of synchronization problems with
shared data because there are no threads. The only process is the server.

A disadvantage is that any client-specific state (which had previously been placed in
each thread) must be maintained by the server. For instance, if multiple clients are
connected to the server, each with a communications history to be maintained, then
those histories will have to be held by the server.

Nonblocking sockets mean that method calls that might potentially block forever,
such as accept() and readLine(), need to be executed only when data is known to
be present or can be wrapped in timeouts. This is particularly useful for avoiding
some forms of hacker attack or dealing with users who are too slow.

Figure 29-12 shows the various objects involved in the multiplexing server.

Figure 29-12. Clients and multiplexing server

1234ScoreClient objects
SelectScoreServer

network links

HighScores
object

selector

HashMap of ClientInfo objects

This is the Title of the Book, eMatter Edition

792 | Chapter 29: Networking Basics

Selector is the main new class in the nonblocking additions to Java. A Selector

object can monitor multiple socket channels and returns a collection of keys (client
requests) as required. A socket channel is a new type of socket (built using the
SocketChannel class).

Each ClientInfo object in the hash map in Figure 29-12 contains details about a cli-
ent and methods for receiving and sending messages to the client. The principal com-
plexity of ClientInfo is in its handling of nonblocking client input.

The main purpose of the server is to listen to several socket channels at once by using
a Selector object. Initially, the server’s own socket channel is added to the selector,
and subsequent connections by new clients, represented by new socket channels, are
also added.

When input arrives from a client, it’s read immediately. However, the input may
contain only part of a message: there’s no waiting for a complete message.

The code for the multiplexing server (SelectScoreServer and its sup-
port classes) is in NetBasics/NIO/. The client code (ScoreClient) can
be found in the NetBasics/ directory.

The multiplexing scores server

A pseudocode algorithm for the server is given below:

create a SocketChannel for the server;
create a Selector;
register the SocketChannel with the Selector (for accepts);

while(true) {
 wait for keys (client requests) in the Selector;
 for each key in the Selector {
 if (key is Acceptable) {
 create a new SocketChannel for the new client;
 register the SocketChannel with the Selector (for reads);
 }
 else if (key is Readable) {
 extract the client SocketChannel from the key;
 read from the SocketChannel;
 store partial message, or process full message;
 }
 }
}

The server waits inside a while loop for keys to be generated by the Selector. A key
contains information about a pending client request. A Selector object may store
four types of key:

• A request by a new client to connect to the server (an isAcceptable key)

• A request by an existing client to deliver some input (an isReadable key)

This is the Title of the Book, eMatter Edition

Client/Server Programming in Java | 793

• A request by an existing client for the server to send it data (an isWriteable key)

• A request by a server accepting a client connection (an isConnectable key)

The first two request types are used in my multiplexing server. The last type of key is
typically employed by a nonblocking client to detect when a connection has been
made with a server.

The socket channel for the server is created in the SelectScoreServer() constructor:

ServerSocketChannel serverChannel = ServerSocketChannel.open();
serverChannel.configureBlocking(false); // use nonblocking mode

ServerSocket serverSocket = serverChannel.socket();
serverSocket.bind(new InetSocketAddress(PORT_NUMBER));

The nonblocking nature of the socket is achieved by creating a ServerSocketChannel

object and then by extracting a ServerSocket.

The server’s socket channel has a Selector registered with it to collect connection
requests:

Selector selector = Selector.open();
serverChannel.register(selector, SelectionKey.OP_ACCEPT);

Other possible options to register() are OP_READ, OP_WRITE, and OP_CONNECT, corre-
sponding to the different types of keys.

The while loop in the pseudocode can be translated fairly directly into real code:

while (true) {
 selector.select(); // wait for keys
 Iterator it = selector.selectedKeys().iterator();
 SelectionKey key;
 while (it.hasNext()) { // look at each key
 key = (SelectionKey) it.next(); // get a key
 it.remove(); // remove it
 if (key.isAcceptable()) // a new connection?

newChannel(key, selector);
 else if (key.isReadable()) // data to be read?

readFromChannel(key);
 else
 System.out.println("Did not process key: " + key);
 }
}

Having the server accept a new client

newChannel() is called when a new client has requested a connection. The connec-
tion is accepted and registered with the selector to make it collect read requests (i.e.,
notifications that client data have arrived):

private void newChannel(SelectionKey key, Selector selector)
{
 try {

This is the Title of the Book, eMatter Edition

794 | Chapter 29: Networking Basics

 ServerSocketChannel server = (ServerSocketChannel) key.channel();
 SocketChannel channel = server.accept(); // get channel
 channel.configureBlocking (false); // use nonblocking
 channel.register(selector, SelectionKey.OP_READ);
 // register it with selector for reading

 clients.put(channel, new ClientInfo(channel, this)); // store info
 }
 catch (IOException e)
 { System.out.println(e); }
}

The call to accept() is nonblocking: it’ll raise a NotYetBoundException if there’s no
pending connection. The connection is represented by a SocketChannel (a nonblock-
ing version of the Socket class), and this is registered with the Selector to collect its
read requests.

Since a new client has just accepted, a new ClientInfo object is added to the HashMap.
The key for the HashMap entry is the client’s channel, which is unique.

Having the server accept a request from an existing client

readFromChannel() is called when there’s a request by an existing client for the server
to read data. As mentioned earlier, this may not be a complete message, which intro-
duces some problems. It’s necessary to store partial messages until they’re com-
pleted (a complete message ends with a \n). The reading and storage is managed by
the ClientInfo object for the client:

private void readFromChannel(SelectionKey key)
// process input that is waiting on a channel
{
 SocketChannel channel = (SocketChannel) key.channel();
 ClientInfo ci = (ClientInfo) clients.get(channel);
 if (ci == null)
 System.out.println("No client info for channel " + channel);
 else {
 String msg = ci.readMessage();
 if (msg != null) {
 System.out.println("Read message: " + msg);
 if (msg.trim().equals("bye")) {
 ci.closeDown();
 clients.remove(channel); // delete ci from hash map
 }
 else
 doRequest(msg, ci);
 }
 }
} // end of readFromChannel()

readFromChannel() extracts the channel reference from the client request and uses it
to look up the associated ClientInfo object in the hash map. The ClientInfo object
deals with the request via a call to readMessage(), which returns the full message or
null if the message is incomplete.

This is the Title of the Book, eMatter Edition

Client/Server Programming in Java | 795

If the message is "bye", then the server requests that the ClientInfo object closes the
connection, and the object is discarded. Otherwise, the message is processed using
doRequest():

private void doRequest(String line, ClientInfo ci)
/* The input line can be one of:
 "score name & score &"
 or "get" */
{
 if (line.trim().toLowerCase().equals("get")) {
 System.out.println("Processing 'get'");
 ci.sendMessage(hs.toString());
 }
 else if ((line.length() >= 6) && // "score "
 (line.substring(0,5).toLowerCase().equals("score"))) {
 System.out.println("Processing 'score'");
 hs.addScore(line.substring(5)); // cut the score keyword
 }
 else
 System.out.println("Ignoring input line");
}

The input line can be a "get" or a "score" message. If it’s a "get", then the
ClientInfo object will be asked to send the high scores list to the client. If the mes-
sage is a new name/score pair, then the HighScores object will be notified.

Storing client information

ClientInfo has three public methods: readMessage(), sendMessage(), and closeDown().
readMessage() reads input from a client’s socket channel. sendMessage() sends a mes-
sage along a channel to the client, and closeDown() closes the channel.

Data is read from a socket channel into a Buffer object holding bytes. A Buffer

object is a fixed-size container for items belonging to a Java base type, such as byte,
int, char, double, and Boolean. It works in a similar way to a file: there’s a “current
position,” and after each read or write operation, the current position indicates the
next item in the buffer.

There are two important size notions for a buffer: its capacity and its limit. The
capacity is the maximum number of items the buffer can contain, and the limit is a
value between 0 and capacity, representing the current buffer size.

Since data sent through a socket channel is stored in a ByteBuffer object (a buffer of
bytes), it’s necessary to translate the data (decode it) into a String before being tested
to see if the data is complete or not. A complete message is a string ending with a \n.

The constructor for ClientInfo initializes the byte buffer and the decoder:

// globals
private static final int BUFSIZ = 1024; // max size of a message

private SocketChannel channel; // the client's channel
private SelectScoreServer ss; // the top-level server

This is the Title of the Book, eMatter Edition

796 | Chapter 29: Networking Basics

private ByteBuffer inBuffer; // for storing input

private Charset charset; // for decoding bytes --> string
private CharsetDecoder decoder;

public ClientInfo(SocketChannel chan, SelectScoreServer ss)
{
 channel = chan;
 this.ss = ss;
 inBuffer = ByteBuffer.allocateDirect(BUFSIZ);
 inBuffer.clear();

 charset = Charset.forName("ISO-8859-1");
 decoder = charset.newDecoder();

 showClientDetails();
}

The buffer is a fixed size, 1,024 bytes. The obvious question is whether this is suffi-
cient for message passing. The only long message is the high scores list, which is sent
from the server back to the client, and 1,024 characters (bytes) should be enough.

Reading a message

readMessage() is called when the channel contains data:

public String readMessage()
{
 String inputMsg = null;
 try {
 int numBytesRead = channel.read(inBuffer);
 if (numBytesRead == -1) { // channel has gone
 channel.close();
 ss.removeChannel(channel); // tell SelectScoreServer
 }
 else
 inputMsg = getMessage(inBuffer);
 }
 catch (IOException e)
 { System.out.println("rm: " + e);
 ss.removeChannel(channel); // tell SelectScoreServer
 }

 return inputMsg;
} // end of readMessage()

A channel read() will not block, returning the number of bytes read (which may be
0). If it returns –1, then something has happened to the input channel; the channel is
closed and the ClientInfo object removed by calling removeChannel() in the main
server. read() may raise an IOException, which triggers the same removal.

This is the Title of the Book, eMatter Edition

Client/Server Programming in Java | 797

The real work of reading a message is done by getMessage():

private String getMessage(ByteBuffer buf)
{
 String msg = null;
 int posn = buf.position(); // current buffer sizes
 int limit = buf.limit();

 buf.position(0); // set range of bytes for translation
 buf.limit(posn);
 try { // translate bytes-->string
 CharBuffer cb = decoder.decode(buf);
 msg = cb.toString();
 }
 catch(CharacterCodingException cce)
 { System.out.println(cce); }

 // System.out.println("Current msg: " + msg);
 buf.limit(limit); // reset buffer to full range of bytes
 buf.position(posn);

 if (msg.endsWith("\n")) { // I assume '\n' is the last char
 buf.clear();
 return msg;
 }
 return null; // since I still only have a partial mesg
} // end of getMessage()

position() returns the index position of the next empty spot in the buffer: bytes are
stored from position 0 up to posn-1. The current limit for the buffer is stored and
then changed to be the current position. This means that when decode() is called,
only the part of the buffer containing bytes will be considered. After the translation,
the resulting string is checked to see if it ends with a \n, in which case the buffer is
reset (treated as being empty) and the message returned.

There’s a potential problem with this approach: the assumption that the last charac-
ter in the buffer will be \n. This depends on what data is present in the channel when
read() is called in readMessage(). It might be that the channel contains the final
bytes of one message and some bytes of the next, as illustrated by Figure 29-13.

The read() call in Figure 29-13 will add the bytes for a\nbbb to the byte buffer, plac-
ing \n in the midst of the buffer rather than at the end. Consequently, an endsWith()

test of the extracted string is insufficient:

if (msg.endsWith("\n")) {. . .}

In my tests, this problem never appeared since read() was called quickly, adding
each incoming byte to the buffer as soon as it arrived; an \n was always read before
the next byte appeared in the channel.

This is the Title of the Book, eMatter Edition

798 | Chapter 29: Networking Basics

Sending a message

sendMessage() sends a specified message along the channel back to the client:

public boolean sendMessage(String msg)
{
 String fullMsg = msg + "\r\n";

 ByteBuffer outBuffer = ByteBuffer.allocateDirect(BUFSIZ);
 outBuffer.clear();
 outBuffer.put(fullMsg.getBytes());
 outBuffer.flip();

 boolean msgSent = false;
 try {
 // send the data; don't assume it goes all at once
 while(outBuffer.hasRemaining())
 channel.write(outBuffer);
 msgSent = true;
 }
 catch(IOException e)
 { System.out.println(e);
 ss.removeChannel(channel); // tell SelectScoreServer
 }

 return msgSent;
} // end of sendMessage()

Two issues are at work here:

• The need to translate the string to bytes in a buffer before transmission

• Dealing with the case that the message requires several writes before it’s all
placed onto the channel

The buffer is filled with the message. The flip() call sets the buffer limit to the cur-
rent position (i.e., the position just after the end of the message) and then sets the
current position back to 0.

Figure 29-13. Reading bytes in a channel

read()

socket channel

server

end of msg 1 start of msg 2

a \n b b b

This is the Title of the Book, eMatter Edition

Client/Server Programming in Java | 799

The while loop uses hasRemaining(), which returns true as long as elements remain
between the current position and the buffer limit. Each write() calls advances the
position through the buffer. One write() call should be sufficient to place all the
bytes onto the channel unless the buffer is large or the channel overloaded.

write() may raise an exception, which causes the channel and the ClientInfo object
to be discarded.

Waiting to send

There’s a potential problem with sendMessage(), pointed out to me by Marcin Mank.
The offending code is in its while loop:

while(outBuffer.hasRemaining())
 channel.write(outBuffer);

If the channel’s output buffer cannot accept any more data, the write() call will
return 0. outBuffer won’t be emptied, and the while loop will keep iterating. This
looping will cause sendMessage() to wait, which in turn will cause the server to wait
in doRequest(), thereby stopping any other clients from being processed.

Though this is a problem, it’s unlikely to occur in this example since the channel is
only being written to by a single process. This means that any delays will be brief and
probably acceptable.

Implementing a decent solution involves a considerable increase in complexity, so I’ll
only sketch out what the code might look like.

When sendMessage() tries to write outBuffer to the channel and only some (or none) of
it is written, the method must request a notification when the write can be completed.
The unsent message must be stored until that notification arrives. The ideas are shown
in trySendMessage():

private void trySendMessage()
{
 int len = outBuffer.hasRemaining(); // outBuffer must now be global
 try {
 int nBytes = channel.write(outBuffer);
 if (nBytes != len) // data not all sent
 channel.register(selector, SelectionKey.OP_READ|SelectionKey.OP_WRITE);
 // need a way of referring to server's top-level selector
 else { // data all sent
 outBuffer.clear();
 channel.register(selector, SelectionKey.OP_READ); // remove OP_WRITE
 }
 }
 catch(IOException e)
 { System.out.println(e);
 ss.removeChannel(channel); // tell SelectScoreServer
 }
}

This is the Title of the Book, eMatter Edition

800 | Chapter 29: Networking Basics

The notification technique relies on registering an interest in the OP_WRITE key for
that channel. When the channel becomes writeable, the key change will be caught by
the while loop in SelectScoreServer, triggering a call to a new finishSend() method:

// in SelectScoreServer while-loop
else if (key.isWritable()) // data can now be written
 finishSend(key);

private void finishSend(SelectionKey key)
// send remaining output
{
 SocketChannel channel = (SocketChannel) key.channel();
 ClientInfo ci = (ClientInfo) clients.get(channel);
 if (ci == null)
 System.out.println("No client info for channel " + channel);
 else
 ci.trySendMessage();
} // end of finishSend()

An example of this approach in a complete server can be found in Chapter 12 of Java
Threads by Scott Oaks and Henry Wong (O’Reilly).

Unfortunately, this coding approach isn’t good enough. The server may want to send
several messages to the client, so it would have to store each one until the channel
becomes writeable. This suggests the need for a buffer list of delayed messages.

The example in Java Threads avoids the messiness of a buffer list by
canceling all further sends to the client until the single output buffer
has been emptied.

The client

The ScoreClient class from previous examples can stay as the client-side application,
unchanged. The advantage is that high-level I/O can be used on the client side
instead of byte buffers.

A nonblocking client may be useful for attempting a connection without having to
wait for the server to respond. Whether a connection operation is in progress can be
checked by calling isConnectionPending().

UDP Client and Server
All the previous examples use TCP, but the client and server in this section are
recoded to utilize UDP communication. The result is another form of multiplexing
server but without the need for nonblocking sockets. The complexity of the code is
much less than in the last example.

This is the Title of the Book, eMatter Edition

Client/Server Programming in Java | 801

The downsides of this approach are the usual ones related to UDP: the possibility of
packet loss and reordering (these problems didn’t occur in my tests, which were run
on the same machine) and machines connected by a LAN.

Another disadvantage of using UDP is the need to write a client before the server can
be tested. Telnet uses TCP/IP and can’t be employed.

Figure 29-14 illustrates the communication between ScoreUDPClient objects and the
ScoreUDPServer.

Since no long-term connection exists between a client and the server, multiple cli-
ents could send datagrams at the same time. The server will process them in their
order of arrival. A datagram automatically includes the hostname and IP address of
its sender, so response messages can be easily sent back to the right client.

The code for the UDP client and server can be found in the NetBasics/
udp/ directory.

The UDP-based scores server

The server sets up a DatagramSocket listening at port 1234, enters a loop to wait for a
packet, processes it, and then repeats:

// globals
private static final int PORT = 1234;
private static final int BUFSIZE = 1024; // max size of a message

private HighScores hs;
private DatagramSocket serverSock;

Figure 29-14. UDP clients and server

c1

client 2 server

client 1

client N

c1
c1

c1

c2
c2 c1 cN

cNcN

cN

c2

1234c2 c2

This is the Title of the Book, eMatter Edition

802 | Chapter 29: Networking Basics

public ScoreUDPServer()
{
 try { // try to create a socket for the server
 serverSock = new DatagramSocket(PORT);
 }
 catch(SocketException se)
 { System.out.println(se);
 System.exit(1);
 }
waitForPackets();

}

private void waitForPackets()
{
 DatagramPacket receivePacket;
 byte data[];
 hs = new HighScores();

 try {
 while (true) {
 data = new byte[BUFSIZE]; // set up an empty packet
 receivePacket = new DatagramPacket(data, data.length);
 System.out.println("Waiting for a packet...");
 serverSock.receive(receivePacket);

 processClient(receivePacket);
 hs.saveScores(); // backup scores after each package
 }
 }
 catch(IOException ioe)
 { System.out.println(ioe); }
} // end of waitForPackets()

The data in a packet is written to a byte array of a fixed size. The size of the array
should be sufficient for the kinds of messages being delivered.

processClient() extracts the client’s address and IP number and converts the byte
array into a string:

InetAddress clientAddr = receivePacket.getAddress();
int clientPort = receivePacket.getPort();
String clientMesg = new String(receivePacket.getData(), 0,
 receivePacket.getLength());

These are passed to doRequest(), which deals with the two possible message types:
get and score. There’s no bye message because no long-term connection needs to be
broken. Part of the reason for the simplicity of coding with UDP is the absence of
processing related to connection termination (whether intended or due to an error).

A reply is sent by calling sendMessage():

private void sendMessage(InetAddress clientAddr, int clientPort, String mesg)
// send message to socket at the specified address and port

This is the Title of the Book, eMatter Edition

Client/Server Programming in Java | 803

{
 byte mesgData[] = mesg.getBytes(); // convert to byte[] form
 try {
 DatagramPacket sendPacket =
 new DatagramPacket(mesgData, mesgData.length,
 clientAddr, clientPort);
 serverSock.send(sendPacket);
 }
 catch(IOException ioe)
 { System.out.println(ioe); }
}

The UDP-based scores client

The client has the same GUI interface as before (see Figure 29-15), allowing the user
to send commands by clicking on the Get Scores button or by entering name/score
pairs into the text fields.

The application uses the implicit thread associated with Swing’s processing of GUI
events to send commands to the server. Processing of the messages returned by the
server is handled in the application’s main execution thread.

The constructor starts the application thread by setting up the client’s datagram
socket:

// globals
private static final int SERVER_PORT = 1234; // server details
private static final String SERVER_HOST = "localhost";
private static final int BUFSIZE = 1024; // max size of a message

Figure 29-15. The UDP client GUI

This is the Title of the Book, eMatter Edition

804 | Chapter 29: Networking Basics

private DatagramSocket sock;
private InetAddress serverAddr;

public ScoreUDPClient()
{ super("High Score UDP Client");

 initializeGUI();
 try { // try to create the client's socket
 sock = new DatagramSocket();
 }
 catch(SocketException se) {
 se.printStackTrace();
 System.exit(1);
 }
 try { // try to turn the server's name into an internet address
 serverAddr = InetAddress.getByName(SERVER_HOST);
 }
 catch(UnknownHostException uhe) {
 uhe.printStackTrace();
 System.exit(1);
 }

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setSize(300,450);
 setResizable(false); // fixed-size display
 setVisible(true);

waitForPackets();
} // end of ScoreUDPClient();

waitForPackets() bears a striking resemblance to the same named method in the
server. It contains a loop that waits for an incoming packet (from the server), pro-
cesses it, and then repeats:

private void waitForPackets()
{ DatagramPacket receivePacket;
 byte data[];
 try {
 while (true) {
 // set up an empty packet
 data = new byte[BUFSIZE];
 receivePacket = new DatagramPacket(data, data.length);

 System.out.println("Waiting for a packet...");
 sock.receive(receivePacket);

 processServer(receivePacket);
 }
 }
 catch(IOException ioe)
 { System.out.println(ioe); }
}

This is the Title of the Book, eMatter Edition

P2P Programming in Java | 805

processServer() extracts the address, port number, and message string from the
packet, prints the address and port to standard output, and writes the message to the
text area.

The GUI thread is triggered by the system calling actionPerformed():

public void actionPerformed(ActionEvent e)
{
 if (e.getSource() == jbGetScores) {
 sendMessage(serverAddr, SERVER_PORT, "get");
 jtaMesgs.append("Sent a get command\n");
 }
 else if (e.getSource() == jtfScore)
 sendScore();
}

An important issue with threads is synchronization of shared data. The
DatagramSocket is shared, but the GUI thread only transmits datagrams; the applica-
tion thread only receives, so conflict is avoided.

The JTextArea component, jtaMesgs, is shared between the threads, as a place to
write messages for the user. However, there’s little danger of multiple writes occur-
ring at the same time due to the request/response nature of the communication
between the client and server: a message from the server only arrives as a response to
an earlier request by the client. Synchronization would be more important if the
server could deliver messages to the client at any time, as you’ll see in the chat sys-
tems developed in Chapter 30.

Another reason for the low risk of undue interaction is that the GUI thread only
writes short messages into the text area, which are added quickly.

P2P Programming in Java
The simplest form of P2P programming in Java employs UDP multicasting, which is
datagram packets with a MulticastSocket object. A MulticastSocket requires a multi-
cast IP address (a class D IP address) and a port number. Class D IP addresses fall in
the range 224.0.0.0 to 239.255.255.255, though certain addresses are reserved.

A peer wishing to subscribe to a multicast group must create a MulticastSocket rep-
resenting the group and use joinGroup() to begin receiving communication. A peer
leaves a group by calling leaveGroup() or by terminating.

Currently, applets aren’t allowed to use multicast sockets.

This is the Title of the Book, eMatter Edition

806 | Chapter 29: Networking Basics

The application described here takes a (welcome) break from accessing/modifying
high score lists, which doesn’t make for a particularly suitable P2P example. Instead,
a MultiTimeServer transmits a packet to a multicast group every second, containing
the current time and date. MultiTimeClient objects wait for packets to appear in the
group and to print them to standard output. The situation is shown in Figure 29-16.

The use of the words “client” and “server” are a little misleading since all the objects
involved in the group can potentially send and receive messages. It’s my choice to
restrict the server to sending and the clients to reading.

The code for the multicasting client and server can be found in the
NetBasics/Multicast/ directory.

The multicasting time server

The MultiTimeServer object creates a multicast socket for a group at IP address
228.5.6.7, port 6789, and enters a loop which sends a packet out every second:

public class MultiTimeServer
{
 private static final String MHOST = "228.5.6.7";
 private static final int PORT = 6789;

 public static void main(String args[]) throws Exception
 {
 InetAddress address = InetAddress.getByName(MHOST);
 MulticastSocket msock = new MulticastSocket(PORT);
 msock.joinGroup(address);

 DatagramPacket packet;
 System.out.print("Ticking");
 while(true){
 Thread.sleep(1000); // one-second delay

Figure 29-16. UDP multicasting clients and server

multicast group

MultiTime ServerMultiTimeClient Objects

This is the Title of the Book, eMatter Edition

P2P Programming in Java | 807

 System.out.print(".");
 String str = (new Date()).toString();
 packet = new DatagramPacket(str.getBytes(), str.length(), address, PORT);
 msock.send(packet);
 }
 }

} // end of MultiTimeServer class

The server is started this way:

>java MultiTimeServer
Ticking.......

The multicasting time client

The client creates a multicast socket for the same group and enters an infinite loop
waiting for packets to appear:

public class MultiTimeClient
{
 private static final String MHOST = "228.5.6.7";
 private static final int PORT = 6789;

 public static void main(String args[]) throws IOException
 {
 InetAddress address = InetAddress.getByName(MHOST);
 MulticastSocket msock = new MulticastSocket(PORT);
 msock.joinGroup(address);

 byte[] buf = new byte[1024];
 DatagramPacket packet = new DatagramPacket(buf, buf.length);
 String dateStr;
 while(true){
 msock.receive(packet);
 dateStr = new String(packet.getData()).trim();
 System.out.println(packet.getAddress() + " : " + dateStr);
 }
 }
}

A client’s execution is:

>java MultiTimeClient
/172.30.3.176 : Mon Jan 24 16:09:48 ICT 2005
/172.30.3.176 : Mon Jan 24 16:09:49 ICT 2005
/172.30.3.176 : Mon Jan 24 16:09:50 ICT 2005
/172.30.3.176 : Mon Jan 24 16:09:51 ICT 2005
/172.30.3.176 : Mon Jan 24 16:09:52 ICT 2005

Chapter 30 contains a UDP multicasting version of a chat application.

This is the Title of the Book, eMatter Edition

808 | Chapter 29: Networking Basics

Firewalls
Firewalls are unfortunately a part of today’s networking experience. Most compa-
nies, government institutions, universities, and so on, utilize firewalls to block access
to the wider Internet: socket creation on all nonstandard ports, and most standard
ones, are typically prohibited, and web pages must be retrieved through a proxy that
filters (limits) the traffic.

The firewall-related examples in this section can be found in the
NetBasics/Firewall/ directory.

This situation means that the code described so far may not work because it requires
the creation of sockets. The DayPing example given below is a Java application that
attempts to contact a “time-of-day” server. The example below uses the server at the
National Institute of Standards and Technology in Boulder, Colorado:

>java DayPing time-A.timefreq.bldrdoc.gov
time-A.timefreq.bldrdoc.gov is alive at

53394 05-01-24 09:16:12 00 0 0 525.7 UTC(NIST) *

DayPing opens a socket to the host at port 13, where the standard time-of-day service
is listening. The response is printed out using println() after layering a
BufferedReader stream on top of the network link:

public class DayPing
{
 public static void main(String args[]) throws IOException
 { if (args.length != 1) {
 System.out.println("usage: java DayPing <host> ");
 System.exit(0);
 }

 Socket sock = new Socket(args[0],13); // host and port
 BufferedReader br = new BufferedReader(
 new InputStreamReader(sock.getInputStream()));

 System.out.println(args[0] + " is alive at ");
 String line;
 while ((line = br.readLine()) != null)
 System.out.println(line);
 sock.close();
 }
} // end of DayPing class

The desired DayPing output is shown above, but this isn’t what’s returned to most
student machines in my department. For students, this is the result:

>java DayPing time-A.timefreq.bldrdoc.gov
 Exception in thread "main"

This is the Title of the Book, eMatter Edition

Firewalls | 809

 java.net.NoRouteToHostException: Operation timed out: no further information
 at java.net.PlainSocketImpl.
 socketConnect (Native Method)
 : // many lines, which I've edited out
 at DayPing.main(DayPing.java:34)

There’s a long delay (two to three minutes) before the exception is raised, due to the
OS waiting for a possible connection. The exception indicates the presence of a fire-
wall preventing the link.

With TCP client applications such as DayPing, it’s possible to check the server with
telnet:

>telnet time-A.timefreq.bldrdoc.gov 13

There’s a similar outcome: a delay of a few minutes, followed by an error message
saying that the connection couldn’t be made.

My university has a policy of disallowing socket creation for hosts outside the local
domain, and web pages can be retrieved only by going through a proxy located at
cache.psu.ac.th, port 8080. Therefore, there are two choices:

• Use a commercial ISP that does allow socket creation.

• Rewrite the DayPing application to utilize URLs.

The second approach is taken here.

Retrieving a Web Page
The simplest way of obtaining a web page in Java is with a URL object, which retrieves
it as a stream of text in a similar way to streams connected to sockets. The
GetWebPage application downloads a web page using a URL specified on the com-
mand line:

public class GetWebPage
{
 public static void main(String args[]) throws IOException
 { if (args.length != 1) {
 System.out.println("usage: java GetWebPage <url> ");
 System.exit(0);
 }

 URL url = new URL(args[0]);

 BufferedReader br = new BufferedReader(
 new InputStreamReader(url.openStream()));

 // print first ten lines of contents
 int numLine = 0;
 String line;
 while (((line = br.readLine()) != null) && (numLine <= 10)) {
 System.out.println(line);
 numLine++;

This is the Title of the Book, eMatter Edition

810 | Chapter 29: Networking Basics

 }
 if (line != null)
 System.out.println(". . .");

 br.close();
 }
} // end of GetWebPage class

GetWebPage can access any web page, including one giving the current time in Thai-
land at http://www.timeanddate.com/worldclock/city.html?n=28. However, the com-
mand line must include three proxy options (proxySet, proxyHost, and proxyPort) to
tell the JVM to employ the university’s proxy server. The call and result are:

>java -DproxySet=true -DproxyHost=cache.psu.ac.th -DproxyPort=8080 GetWebPage
http://www.timeanddate.com/worldclock/city.html?n=28
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<!-- scripts and programs that download content transparent to the user are not
allowed without permision -->
<html>
<head>
<title>Current local time in Bangkok - Thailand</title>
<link rel="stylesheet" type="text/css" href="/common/style.css">
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
</head>
<body>

...
>

GetWebPage only displays the first 11 lines of the retrieved web page, which isn’t
enough to reach the time information on this page.

An alternative to command line settings is to specify the proxy details within the
program:

Properties props = System.getProperties();
props.put("proxySet", "true");
props.put("proxyHost", "cache.psu.ac.th");
props.put("proxyPort", "8080");
System.setProperties(props);

This should be done before the creation of the URL object.

An important aspect of this coding style is the processing of the text stream arriving
from the web server. It’s often far from trivial to delve through the mix of HTML
tags, JavaScript, and others to find the required piece of information (e.g., that the
current time in Bangkok is 4:19 P.M.).

Another problem is that any text analysis code tends to break after awhile as the for-
mat of the web page is changed/updated.

This is the Title of the Book, eMatter Edition

Firewalls | 811

Proxy Authorization
Some proxy servers demand a login and password before pages can be downloaded
(this is true of one of the high bandwidth lines out of my department).

Supplying these from within a Java application requires the use of a URLConnection

object to permit greater control over the URL link:

URL url = new URL(args[0]);
URLConnection conn = url.openConnection();

The login and password strings must be passed to the proxy server as a single string
of the form “login:password” translated into Base64 encoding:

Base64Converter bc = new Base64Converter();
String encoding = bc.encode(login + ":" + password);

The Base64Converter class was written by David Wallace Croft and is available
with documentation from “Java Tip 47,” JavaWorld.com, April 6, 2000 (http://
www.javaworld.com/javaworld/javatips/jw-javatip47.html).

There is also an undocumented BASE64Encoder class in the sun.misc package of J2SE
used this way:

Base64Encoder bc = new Base64Encoder();
String mesg = login + ":" + password;
String encoding = bc.encode(mesg.getBytes());

The encoded string is sent to the proxy as an authorization request:

conn.setRequestProperty("Proxy-Authorization", "Basic " + encoding);

GetWebPageP.java contains all of this functionality; it reads the user’s password and
desired URL from the command line:

public class GetWebPageP
{
 private static final String LOGIN = "ad"; // modify this

 public static void main(String args[]) throws IOException
 { if (args.length != 2) {
 System.out.println("usage: java GetWebPageP <password> <url>");
 System.exit(0);
 }

 // set the properties used for proxy support
 Properties props = System.getProperties();
 props.put("proxySet", "true");
 props.put("proxyHost", "cache.psu.ac.th");
 props.put("proxyPort", "8080");
 System.setProperties(props);

 // create a URL and URLConnection
 URL url = new URL(args[1]); // URL string
 URLConnection conn = url.openConnection();

This is the Title of the Book, eMatter Edition

812 | Chapter 29: Networking Basics

 // encode the "login:password" string
 Base64Converter bc = new Base64Converter();
 String encoding = bc.encode(LOGIN + ":" + args[0]);

 // send the authorization
 conn.setRequestProperty("Proxy-Authorization",
 "Basic " + encoding);

 BufferedReader br = new BufferedReader (
 new InputStreamReader (conn.getInputStream()));

 // print first ten lines of contents
 int numLine = 0;
 String line;
 while (((line = br.readLine()) != null) && (numLine <= 10)) {
 System.out.println(line);
 numLine++;
 }
 if (line != null)
 System.out.println(". . .");

 br.close();
 System.exit(0);
 } // end of main()
} // end of GetWebPageP class

A Web-Based Client and Server
These time-of-day examples fit the familiar client/server model in the case when a
server exists. However, most applications require new clients and a new server. The
question then is how to make the server side of the program act as a web server,
deliver web pages, and satisfy the restrictions of the client-side firewall?

Enter the Java 2 Enterprise Edition (J2EE), aimed at the construction of web-based cli-
ent/server applications: it supports simplified networking, concurrency, transactions,
easy access to databases, and much more (http://java.sun.com/j2ee/). Aside from Sun’s
implementation, many companies offer J2EE compatible systems, including Tomcat
from the Jakarta Project (http://jakarta.apache.org/tomcat/) and JRun from Macrome-
dia (http://www.macromedia.com/software/jrun).

J2EE is a complex development environment, centered around servlets, Java Server
Pages (JSPs), and Enterprise JavaBeans (EJBs). Servlets are objects specialized for the
serving of web content, typically web pages, in response to client requests. JSPs are
web pages that may contain embedded Java. EJBs focus on server-side processing,
including the connection of server-side applications to other Java functionality, such
as the Java Transaction API (JTA), the Java Message Service (JMS), and Java Data-
base Connectivity (JDBC).

This is the Title of the Book, eMatter Edition

Firewalls | 813

Servlets deal with client requests using HTTP, which thankfully only contains a few
commands; the two principal ones are the GET and POST methods. A GET method
(request) is usually sent by a web browser when it asks for a page from a server. A
POST method (request) is more typically associated with the submission of details
taken from a web-page form.

A servlet that inherits the HttpServlet class will automatically call its doGet()

method when a GET request arrives from a client; there’s a doPost() for processing
POST requests.

My web-based client will communicate with a servlet that implements a time-of-day
service. The use of HTTP to “bypass” firewall restrictions on client/server communi-
cation is called HTTP Tunneling.

TimeServlet will be called when the TimeClient application refers to the servlet’s URL
(i.e., sends a GET request to the web server managing the servlet). The situation is
illustrated by Figure 29-17.

A servlet can output a stream of HTML that is displayed nicely in the client if it’s a
browser. However, TimeServlet will deliver ordinary text since the client doesn’t
require extraneous formatting around the result.

An excellent book on servlets and JSPs is Core Servlets and Java Server Pages by
Marty Hall (Sun Microsystems Press; http://www.coreservlets.com/). The complete
contents of the first edition can be downloaded from http://pdf.coreservlets.com/
source code and teaching materials are available for the second edition.

A servlet that serves up time

The doGet() method in TimeServlet is called automatically when the servlet’s URL is
sent to the web server:

public class TimeServlet extends HttpServlet
{
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 SimpleDateFormat formatter = new SimpleDateFormat("d M yyyy HH:mm:ss");
 Date today = new Date();

Figure 29-17. Client and servlet configuration

network
GET request

response

Web Server

TimeClient TimeServlet

This is the Title of the Book, eMatter Edition

814 | Chapter 29: Networking Basics

 String todayStr = formatter.format(today);
 System.out.println("Today is: " + todayStr);

 PrintWriter output = response.getWriter();
 output.println(todayStr); // send date & time
 output.close();
 }
}

Various client and request information is made available in the HttpServletRequest

object passed to doGet(), but TimeServlet doesn’t need it.

The other argument of doGet() is a HttpServletResponse object that permits various
forms of output to be delivered to the client. TimeServlet creates an output stream
and sends a formatted date and time string.

The time client

The TimeClient application is a variant of the GetWebPage program described earlier
except that the servlet’s URL is hardwired into it.

Since the client and servlet are running on the same machine, proxy settings aren’t
needed. The web server is running at port 8100 and stores its servlets in a fixed loca-
tion referred to by the URL http://localhost:8100/servlet/:

public class TimeClient
{
 public static void main(String args[]) throws IOException
 {
 URL url = new URL("http://localhost:8100/servlet/TimeServlet");
 BufferedReader br = new BufferedReader(
 new InputStreamReader(url.openStream()));
 String line;
 while ((line = br.readLine()) != null)
 System.out.println(line);
 br.close();
 }
}
Typical output from TimeClient is:
>java TimeClient
24 1 2548 16:27:18

>java TimeClient
24 1 2548 16:27:23

The output shows the year to be 2548, which is 2005 in the Buddhist calendar, the
system used in Thailand.

An advantage of (simple) servlets is they can be tested from a browser. Figure 29-18
shows the output when http://localhost:8100/servlet/TimeServlet is typed into the
Opera browser.

This is the Title of the Book, eMatter Edition

Firewalls | 815

A browser as client for TimeServlet enable clients to use HTTP for communication
with the server part of the application (i.e., the clients employ URLs to access the
server). This mode of communication is permitted by firewalls, which usually block
socket links.

The downside is that HTTP is a request/response protocol—i.e., the client must ini-
tiate the communication to receive a reply. It’s difficult for the server to send a mes-
sage to a client without first receiving one from it. This means that a web-based
server has trouble broadcasting (multicasting) a message received from one client to
all the others, which is a common requirement of multiplayer games and chat
applications.

In Chapter 30, I will implement a web-based version of a chat system by having a cli-
ent periodically query the server to collect messages from the other clients.

Applets as Clients
The default security associated with applets means they can only connect back to
their home server. This restriction applies to sockets and to the downloading of web
pages. However, the security can be modified with a policy file and by signing the
applet. However, most multiplayer games that utilize applets host them on their own
servers, so the default security policy is sufficient.

The real problem with applets is the excessive download time required to move the
necessary functionality and resources (e.g., images, sounds) to the client side. Com-
mercial games (e.g., Everquest) distribute CDs containing client applications.

Figure 29-18. A browser as client for TimeServlet

This is the Title of the Book, eMatter Edition

816 | Chapter 29: Networking Basics

Other Kinds of Java Networking
The networking support in Java is one of its greatest strengths. This section is a brief
tour of some of the capabilities that I haven’t previously mentioned.

J2SE 1.4 added support for secure sockets (using the SSL and TLS protocols) in the
Java Secure Socket Extension (JSSE) libraries. Security is a complex topic, but it’s
still fairly easy to do a common thing such as retrieve a web page using the HTTPS
protocol. The Core Java Technologies Tech Tip for August 2004 includes a good
introduction to JSSE (http://java.sun.com/developer/JDCTechTips/2004/tt0817.html).

Remote Method Invocation (RMI) allows Java objects on separate machines to com-
municate via remote method calls. This is considerably higher-level than data trans-
mission through sockets. RMI is based on a procedural programming technique, the
Remote Procedure Call (RPC), but with some powerful extensions. One is dynamic
code loading, which allows a client to download the communication code (called a
stub) for accessing a remote method at run time. Code loading from clients can be
carried out by a server.

RMI is the basis of a number of expressive networking models, including Jini men-
tioned below. RMI is integrated with the communications protocol for the Common
Object Request Broker Architecture (CORBA), which permits Java objects to inter-
act with objects coded in other languages.

Jini is a service discovery architecture that allows Jini-enabled clients to find and uti-
lize whatever services are available on a network, dynamically adjusting their connec-
tions as new services come on-stream and others leave. This is of key importance for
mobile devices. The starting point for Jini is http://www.jini.org/.

A good book on Java networking is Java Network Programming by Elliotte Rusty
Harold (O’Reilly).

This is the Title of the Book, eMatter Edition

817

Chapter 3000. CHAPTER 30

Network Chat

In the last chapter, I presented an overview of several types of network program-
ming, including client/server, peer-to-peer, and HTTP tunneling. This chapter revis-
its those topics to see how they can be employed to build networked chat
applications. Chat capabilities are found in almost every multiplayer game (e.g., in
shared virtual worlds).

The main characteristic of a chat system is its dynamic nature: clients can join or
leave at any time, and there’s no fixed order to when people can speak. A message
sent out by a user should be delivered to all the other clients, preferably labeled with
that user’s name or ID.

The chat space may be divided into distinct regions or groups, with varying levels of
access and communication privacy. The system may allow personal communication
between two users, unseen by other people. I’ll discuss ways of implementing pri-
vate messages in the examples.

In this chapter, I’ll code the same chat system using three different approaches: cli-
ent/server, UDP multicasting, and HTTP tunneling to a servlet. Chat messages are
broadcast, and a special who message returns a list of the other clients. A client leaves
the system by sending a bye message. The multicasting and servlet versions of the
application introduce a hi message for joining and support a simple form of private
one-to-one communication.

Here are the key technical details of the three systems:

Threaded TCP clients and server
The server uses threads to communicate with its clients and a shared object to
maintain client information. Each client employs a thread to watch for server
communications (typically copies of other users’ messages).

UDP multicasting clients and a name server
The clients send messages to each other via UDP multicasting. However, a cli-
ent wishing to join the chat group must first communicate with a name server,
which sends it the group address or rejects the request. A departing client must

This is the Title of the Book, eMatter Edition

818 | Chapter 30: Network Chat

notify the name server, so it can maintain a current list of participants. A client
wanting a list of other users sends a message to the server, rather than querying
the group.

Clients using a servlet as a server
The clients communicate with a chat servlet, sending messages as arguments of
the servlet’s URL. The servlet maintains client information, which is shared
between the multiple threads executing inside the servlet instance. Each client
has a separate thread which periodically queries the servlet for any new messages.

These examples can be found in the Chat/ subdirectory. The client/
server example is in Threaded/, the UDP multicasting version is in
Multicasting/, and the HTTP tunneling code is in ChatServlet/.

Threaded TCP Clients and Server
Figure 30-1 shows the various objects in the threaded chat application.

Each client is represented by a ChatClient object and a ChatWatcher thread. ChatClient
maintains the GUI, processes the user’s input, and sends messages to the server over a
TCP link. ChatWatcher waits for messages from the server and displays them in
ChatClient’s GUI text area.

ChatClient can send the following messages:

who

The server returns a string containing a list of the current chat users.

bye

The client sends this message just prior to exiting.

Figure 30-1. Objects in the threaded chat system

ChatGroup

Chatter objects for users

ChatClient ChatServer

1234
ChatServerHandler

objects
Network

Links

ChatWatcher

messages

messages

stores/uses info.in

stores/uses info.in

This is the Title of the Book, eMatter Edition

Threaded TCP Clients and Server | 819

Any message
Other text strings sent to the server are assumed to be messages and are broad-
cast to all the current users.

The server can send out two types of message:

WHO$$ cliAddr1 & port1 & ... cliAddrN & portN &

This is sent back to a client in response to a who message. Each client is identi-
fied by its address and port number, which are extracted from the TCP link
established when a client first connects to the server.

(cliAddr, port): message

This is a broadcast message, originally from the client with the specified address
and port number.

Server messages are received by the ChatWatcher thread, which is monitoring incom-
ing messages on the ChatClient’s TCP link.

ChatServer is the top-level server, which spawns a ChatServerHandler thread to han-
dle each new client. Since messages are to be transmitted between clients, the
ChatServer maintains pertinent client information, accessible by all the threads. The
shared data is held by a ChatGroup object, which offers synchronized methods to con-
trol the concurrency issues. A client’s details, such as its input stream, are stored in a
Chatter object.

Figure 30-2 gives the class diagrams for the application, showing the public methods.

The Chat Client
The GUI supported by ChatClient is shown in Figure 30-3.

The text area for displaying messages occupies the majority of the window. Outgo-
ing messages are typed in a text field and sent when the user presses enter. A who

message is outputted when the Who button is pressed. A bye message is transmitted
as a result of the user clicking on the window’s Close box.

Figure 30-2. Class diagrams for the threaded chat system

This is the Title of the Book, eMatter Edition

820 | Chapter 30: Network Chat

The server is contacted and the ChatWatcher thread is started in makeContact():

// globals
private static final int PORT = 1234; // server details
private static final String HOST = "localhost";

private Socket sock;
private PrintWriter out; // output to the server

private void makeContact()
{
 try {
 sock = new Socket(HOST, PORT);
 BufferedReader in = new BufferedReader(
 new InputStreamReader(sock.getInputStream()));
 out = new PrintWriter(sock.getOutputStream(), true);

 new ChatWatcher(this, in).start(); // watch for server msgs
 }
 catch(Exception e)
 { System.out.println(e); }
}

The output stream, out, is made global so messages can be sent from various meth-
ods in ChatClient. However, server input is only processed by ChatWatcher, so it is
declared locally in makeContact() before being passed to the thread.

Figure 30-3. The ChatClient GUI

This is the Title of the Book, eMatter Edition

Threaded TCP Clients and Server | 821

Sending messages is simple; for example, pressing the Who button results in:

out.println("who");

ChatWatcher is passed a reference to ChatClient, so it can write into the GUI’s text
area, jtaMesgs. This is done via the method showMsg().

Showing a Message and Threads
showMsg() adds a message to the end of the jtaMesgs text area and is called by the
ChatClient or ChatWatcher object. However, updates to Swing components must be
carried out by Swing’s event dispatcher thread; otherwise, synchronization problems
may arise between Swing and the user threads. The SwingUtilities class contains
invokeLater(), which adds code to the event dispatcher’s queue; the code must be
packaged as a Runnable object:

public void showMsg(final String msg)
{
 Runnable updateMsgsText = new Runnable() {
 public void run()
 { jtaMesgs.append(msg); // append message to text area
 jtaMesgs.setCaretPosition(jtaMesgs.getText().length());
 // move insertion point to the end of the text
 }
 };
 SwingUtilities.invokeLater(updateMsgsText); // add code to queue
} // end of showMsg()

Though showMsg() can be called concurrently by ChatClient and ChatWatcher, there’s
no need to synchronize the method; multiple calls to showMsg() will cause a series of
Runnable objects to be added to the event dispatcher’s queue, where they’ll be exe-
cuted in sequential order.

An invokeAndWait() method is similar to invokeLater() except that it doesn’t return
until the event dispatcher has executed the Runnable object. Details on these meth-
ods, and more background on Swing and threads, can be found at http://java.sun.com/
products/jfc/tsc/articles/threads/threads1.html.

My thanks to Rachel Struthers for pointing out the bug in the original
version of showMsg().

Waiting for Chat Messages
The core of the ChatWatcher class is a while loop inside run() that waits for a server
message, processes it, and repeats. The two message types are the WHO$$... response
and broadcast messages from other clients:

while ((line = in.readLine()) != null) {
 if ((line.length() >= 6) && // "WHO$$ "

This is the Title of the Book, eMatter Edition

822 | Chapter 30: Network Chat

 (line.substring(0,5).equals("WHO$$")))
 showWho(line.substring(5).trim());
 // remove WHO$$ keyword and surrounding space
 else // show immediately
 client.showMsg(line + "\n");
}

showWho() reformats the WHO$$... string before displaying it.

The Chat Server
The ChatServer constructor initializes a ChatGroup object to hold client information,
and then enters a loop that deals with client connections by creating ChatServerHandler

threads:

public ChatServer()
{ cg = new ChatGroup();
 try {
 ServerSocket serverSock = new ServerSocket(PORT);
 Socket clientSock;
 while (true) {
 System.out.println("Waiting for a client...");
 clientSock = serverSock.accept();
 new ChatServerHandler(clientSock, cg).start();
 }
 }
 catch(Exception e)
 { System.out.println(e); }
}

Each handler is given a reference to the ChatGroup object.

The Threaded Chat Handler
The ThreadedChatServerHandler class is similar to the ThreadedScoreHandler class
from Chapter 29. The main differences are the calls it makes to the ChatGroup object
while processing the client’s messages.

The run() method sets up the input and output streams to the client and adds (and
later removes) a client from the ChatGroup object:

public void run()
{ try {
 // Get I/O streams from the socket
 BufferedReader in = new BufferedReader(
 new InputStreamReader(clientSock.getInputStream()));
 PrintWriter out =
 new PrintWriter(clientSock.getOutputStream(), true);

cg.addPerson(cliAddr, port, out); // add client to ChatGroup

 processClient(in, out); // interact with client

This is the Title of the Book, eMatter Edition

Threaded TCP Clients and Server | 823

 // the client has finished when execution reaches here
cg.delPerson(cliAddr, port); // remove client details

 clientSock.close();
 System.out.println("Client (" + cliAddr + ", " +
 port + ") connection closed\n");
 }
 catch(Exception e)
 { System.out.println(e); }
}

processClient() checks for the client’s departure by looking for a bye message.
Other messages (who and text messages) are passed on to doRequest():

private void doRequest(String line, PrintWriter out)
{ if (line.trim().toLowerCase().equals("who")) {
 System.out.println("Processing 'who'");
 out.println(cg.who());
 }
 else // use ChatGroup object to broadcast the message
 cg.broadcast("("+cliAddr+", "+port+"): " + line);
}

Storing Chat Client Information
ChatGroup handles the addition/removal of client details, the answering of who mes-
sages, and the broadcasting of messages to all the clients. The details are stored in an
ArrayList of Chatter objects (called chatPeople), one object for each client.

A single ChatGroup object is used by all the ChatServerHandler threads, so methods
that manipulate chatPeople must be synchronized. An example of this is the
broadcast() method, which sends the specified message to all the clients, including
back to the sender:

synchronized public void broadcast(String msg)
{ Chatter c;
 for(int i=0; i < chatPeople.size(); i++) {
 c = (Chatter) chatPeople.get(i);
 c.sendMessage(msg);
 }
}

The Chatter Class
The client details managed by a Chatter object are its address, port, and PrintWriter

output stream. The address and port are employed to identify the client (a client has
no name). The output stream is used to send messages to the client. For example:

private PrintWriter out; // global

public void sendMessage(String msg)
{ out.println(msg); }

This is the Title of the Book, eMatter Edition

824 | Chapter 30: Network Chat

Discussion
Messages can only be broadcast, and there’s no capability to send private messages,
though that’s easily fixed, as you’ll see in later examples. The communication proto-
col is defined by the server, so creating a new message format is simple:

message / toName

The implementation would require that clients be named; then ChatServerHandler

could examine the toName part of the message and route the message only to that cli-
ent. The delivery would use a new method in ChatGroup (e.g., void sendPrivate(String

message, String toName)) to call the sendMessage() method of the Chatter object for
toName.

Other communication patterns (e.g., periodic announcements linked to the current
time) are straightforward to implement by extending the protocols supported by
ChatServer. This illustrates one of the advantages of localizing communication man-
agement in the server.

Central control has its drawbacks as well, namely that if ChatServer fails, then the
entire system fails. However, the nonfunctioning of a single ChatServerHandler

thread doesn’t affect the others. A likely scenario is one thread being made to wait
indefinitely by a client who doesn’t communicate with it.

UDP Multicasting Clients and a Name Server
Figure 30-4 shows the various objects in the multicasting chat application.

Each user is represented by a MultiChat object that can send and receive messages
from the multicast group. However, this isn’t a pure peer-to-peer example since a cli-
ent must first log in to the NameServer object and receive the address of the group.
Upon leaving the group, the client must log out from the server. Each client has a
name that is checked by NameServer for uniqueness. If the name is being used by a
group member, then NameServer rejects the request to log in.

Figure 30-4. Multicasting chat system

MultiChat objects

multicast group
228.5.6.7

5555

NameServer

groupMembers
(names of clients)

1234

datagrams

multicast
group
messages

This is the Title of the Book, eMatter Edition

UDP Multicasting Clients and a Name Server | 825

As a side effect of storing user names, NameServer can process who messages. Instead of
a client multicasting a who message to all the other group members and receiving mul-
tiple replies, a single who message is directed to the NameServer followed by a single
response. This approach significantly reduces the number of messages circulating in
the system.

As discussed in the context of the threaded chat server, the main drawback of using
NameServer is that it represents a single point of failure. However, NameServer’s disap-
pearance only prevents new clients from joining the group. Communication between
existing members can continue. The other consequence of NameServer’s demise is
that who messages will no longer be answered.

NameServer must be able to handle multiple concurrent accesses from clients (to log
in, log out, or request who information). The server uses UDP as its communication
protocol, permitting it to multiplex easily between the various requests (since each
request is a datagram).

The messages that a client can send to NameServer are:

hi <client name>

This is the login message, which results in NameServer sending the client the mul-
ticast address (as a string) or in a no message.

bye <client name>

This is the logout message, which allows NameServer to discard the client’s name
from its group members list.

who

This is the server, which returns the names of all the current group members.

A client can send messages to the group for transmission to the other members. The
message format is:

(<client name>): <message> [/ <toClientName>]

The client’s name is prepended to the front of the message. The square brackets
mean the message may have an optional / extension, which makes the message visi-
ble only to that particular client. For example:

Andrew: come in for dinner / John

is the message “come in for dinner” sent from Andrew to John. Whereas:

Andrew: has anyone seen John's football?

broadcasts the message “has anyone seen John’s football?” from Andrew to every-
one (including himself).

The class diagrams for the application are given in Figure 30-5 but are uninforma-
tive. Almost no public methods are required since communication is datagram-
based.

This is the Title of the Book, eMatter Edition

826 | Chapter 30: Network Chat

The Name Server
The NameServer class is similar to the top-level to the UDP-based server,
ScoreUDPServer, in Chapter 29. It creates a DatagramSocket for receiving client pack-
ets and then enters a loop waiting for them to arrive. The client’s address, port, and
the text of the message are extracted from an arriving packet and from the informa-
tion passed to a processClient() method.

processClient() employs a four-way branch to handle the various kinds of message
(hi, bye, who) along with a default catch-all branch:

// globals
private static final String GROUP_HOST = "228.5.6.7";
 // the multicast group address sent to new members

private ArrayList groupMembers;
 // holds the names of the current members of the multicast group

private void processClient(String msg, InetAddress addr, int port)
{
 if (msg.startsWith("hi")) {
 String name = msg.substring(2).trim();
 if (name != null && isUniqueName(name)) {
 groupMembers.add(name);
 sendMessage(GROUP_HOST, addr, port); // send multicast addr
 }
 else
 sendMessage("no", addr, port);
 }
 else if (msg.startsWith("bye")) {
 String name = msg.substring(3).trim();
 if (name != null)
 removeName(name); // removes name from list
 }
 else if (msg.equals("who"))
 sendMessage(listNames(), addr, port);
 else
 System.out.println("Do not understand the message");

} // end of processClient()

Figure 30-5. Class diagrams for the multicasting chat system

This is the Title of the Book, eMatter Edition

UDP Multicasting Clients and a Name Server | 827

The client’s name is added to an ArrayList called groupMembers if it isn’t present in
the list. A bye message removes the name. A who message triggers a call to listNames(),
which builds a string of all the groupMembers names.

sendMessage() creates a datagram that’s sent back to the client’s address and port:

private void sendMessage(String msg, InetAddress addr, int port)
{
 try {
 DatagramPacket sendPacket =
 new DatagramPacket(msg.getBytes(), msg.length(), addr, port);
 serverSock.send(sendPacket);
 }
 catch(IOException ioe)
 { System.out.println(ioe); }
}

Improving Client Login and Logout
The simplicity of processClient() in NameServer shows that the login and logout
mechanisms could be improved. There’s no password associated with the name used
in hi, so a client can use any name to log in. A bye message can come from any-
where, so it’s possible for any client to log out another client. In any case, the removal
of a client from the NameServer doesn’t force a client to leave the multicast group.

The introduction of a password, together with encryption of the message inside the
datagram would solve many of these problems. The remaining concern is that the
server cannot force a client to leave the multicast group. The protocol is supported at
the IP level, so beyond the reach of the Java MuticastSocket API. Indeed, the server
has no control over the group at all, aside from deciding who will be given the multi-
cast group address. This is hardly effective since the address can be shared between
clients once one user has it. This lack of control is a crucial difference between the
client/server approach and peer-to-peer.

Multicast Chatting
A MultiChat object is capable of two forms of network communication: it can send
ordinary UDP datagrams to the NameServer (and receive replies) and can post data-
grams to the multicast group (and receive messages from the group).

A MultiChat object is invoked with the client name supplied on the command line:

$ java MultiChat andy

Its GUI is similar to the one for the threaded chat client, as shown in Figure 30-6.

One obvious difference is that messages are now prefixed with the client’s name
rather than an address and port.

This is the Title of the Book, eMatter Edition

828 | Chapter 30: Network Chat

The MultiChat constructor creates a DatagramSocket for the NameServer and sends it a hi

<name> message requesting the multicast group’s address. If the address is sent back,
the group will be joined and a hi message sent to it (the message could be anything):

public MultiChat(String nm)
{
 super("Multicasting Chat Client for " + nm);
 userName = nm;
 initializeGUI();

 /* Attempt to register name and get multicast group
 address from the NameServer */
 makeClientSock();
 sendServerMessage("hi " + userName); // say "hi" to NameServer
 checkHiResponse();

 // Connect to the multicast group; say hi to everyone
 joinChatGroup();
 sendPacket("hi");

 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e)
 { sayBye(); } // say bye at termination time
 });

 setSize(300,450);
 show();

Figure 30-6. The multicasting chat client

This is the Title of the Book, eMatter Edition

UDP Multicasting Clients and a Name Server | 829

 waitForPackets();
} // end of MultiChat();

Having the client talk to the name server

makeClientSock() creates a DatagramSocket for sending and receiving communica-
tion from the NameServer. However, it’s given a timeout of five seconds:

clientSock = new DatagramSocket();
clientSock.setSoTimeout(5000);

A timeout is useful when the client is waiting for a datagram inside receive(). This
occurs after a hi message has been sent and after who queries. If the server has died,
the timeout will limit the wait to five seconds before a SocketTimeoutException is
raised.

The drawback is deciding on a reasonable timeout value. For instance, five seconds
would probably be too short if the link was across the internet, through slow
modems. This is why most programmers prefer to put blocking calls into separate
threads so they can wait as long as they like. An alternative for TCP is to use non-
blocking sockets, as illustrated in Chapter 29.

Messages are sent to the server from sendServerMessage() by creating a datagram
and sending it through clientSock. Messages coming from the server are read by
readServerMessage(). Its clientSock.receive() call is wrapped in a try-catch block
in case of a timeout (or other network problems).

A call is made to readServerMessage() immediately after a message is sent to the
server. There’s no attempt to use a separate thread for server processing. For exam-
ple, a who message is followed by a readServerMessage() call:

sendServerMessage("who");
String whoResponse = readServerMessage();

Having the client talk to the multicast group

The multicast group address string is extracted from the hi response and used by
joinChatGroup() to create the multicast socket. A code fragment that does this is:

groupAddr = InetAddress.getByName(hiResponse);

groupSock = new MulticastSocket(GROUP_PORT); // port 5555
groupSock.joinGroup(groupAddr);

sendPacket() is used to send a message to the group and adds the (userName): prefix
prior to delivery:

private void sendPacket(String msg)
{ String labelledMsg = "(" + userName + "): " + msg;
 try {
 DatagramPacket sendPacket =
 new DatagramPacket(labelledMsg.getBytes(),
 labelledMsg.length(), groupAddr, GROUP_PORT);

This is the Title of the Book, eMatter Edition

830 | Chapter 30: Network Chat

 groupSock.send(sendPacket);
 }
 catch(IOException ioe)
 { System.out.println(ioe); }
}

Text messages are sent to the group when the user hits Enter in the messages text
field. actionPerformed() calls sendMessage():

public void actionPerformed(ActionEvent e)
{ if (e.getSource() == jbWho)
 doWho();
 else if (e.getSource() == jtfMsg)
 sendMessage();
}

sendMessage() extracts the string from the text field, checks it for validity, and passes it
to sendPacket(). All of this is done inside the GUI thread of the MultiChat application.

Hearing from the multicast group

Multicast messages may arrive at any time, so must be handled in a separate thread.
Instead of creating a new Thread object, MultiChat uses the application thread by
entering an infinite loop inside waitForPackets():

private void waitForPackets()
{ DatagramPacket packet;
 byte data[];

 try {
 while (true) {
 data = new byte[PACKET_SIZE]; // set up an empty packet
 packet = new DatagramPacket(data, data.length);
 groupSock.receive(packet); // wait for a packet

processPacket(packet);
 }
 }
 catch(IOException ioe)
 { System.out.println(ioe); }
}

This is the same approach as in the ScoreUDPClient in Chapter 29.

processPacket() extracts the text from the incoming packet and displays it (if it’s vis-
ible to this client):

private void processPacket(DatagramPacket dp)
{ String msg = new String(dp.getData(), 0, dp.getLength());
 if (isVisibleMsg(msg, userName))
 showMsg(msg + "\n");
}

This is the Title of the Book, eMatter Edition

Clients Using a Servlet as a Server | 831

A message is visible if it has no / <name> part if / <name> contains the client’s name, or
if the message is originally from the client. This latter condition can be checked by
looking at the start of the message that has the sender’s name in brackets.

How Invisible Are Invisible Messages?
A message won’t appear in a client’s text display area if it has a / name extension that
refers to a different client. Is this sufficient for private communication between two
users? Unfortunately, this is not sufficient since the message is still being multicast to
every client. This means that a hacker could modify the MultiChat code to display
everything that arrives. Privacy requires that the messages be encrypted.

The other misleading thing about private communication is that it appears to be point-
to-point between users and seemingly more efficient than multicasting. Unfortunately,
this is false. True point-to-point communication would require another communica-
tion link, perhaps utilizing the DatagramSockets utilized for client/server interaction.

Ways to Implement who
MultiChat handles a who message by querying the server for a list of names. Another
approach would be to multicast the message to all the clients to gather responses.
The main benefit would be communication without relying on the server, which can
fail or otherwise stop responding.

I didn’t use multicasting to process a who message because of the large number of
messages it would add to the system. With multicasting, the client’s who query would
be sent to n clients. Each client would send a reply, multicasting to every client, not
just the one interested in the answer. This would mean a total of n × n messages cir-
culating through the group. The grand total for a single who query is n + n2. By using
the server, I replaced this large number with two messages: the request sent to
NameServer and its reply. Alternatives to multicasting should always be explored
since bandwidth is such a crucial commodity.

Clients Using a Servlet as a Server
Figure 30-7 shows the various objects in the servlet-based chat application.

Each client is represented by two objects: a URLChat object manages the GUI and
translates user input into messages for the web server. The URLChatWatcher thread
periodically queries the server for new messages sent by the other users.

The communication is implemented by sending the server a GET request for the
ChatServlet object, with message details added as arguments to the URL. A client is
identified by a name and a cookie. The cookie is presented to users when they send a

This is the Title of the Book, eMatter Edition

832 | Chapter 30: Network Chat

hi message to the servlet upon joining the chat system. Most messages require the
name and cookie information, which verify the identity of the message sender.

The servlet maintains a synchronized ChatGroup object, which bears many similari-
ties to the ChatGroup object used in the threaded chat application. Client information
is held in Chatter objects, while client messages are stored in a messages ArrayList.

A key difference between ChatServlet and the server in the first chat example is that
ChatServlet cannot initiate communication with its clients. It must wait for a
URLChatWatcher thread to ask for messages before it can send them out.

URLChat transmits its messages as arguments attached to the URL http://localhost:8100/
servlet/ChatServlet. The notation for an argument in a GET request is arg-name=arg-value,
with multiple argument name/value pairs separated by &. The argument pairs follow
a ? after the URL.

The four possible message types are:

ChatServlet?cmd=hi&name=??

This is a hi message, used by a client to ask for chat group membership. The
name parameter value (represented by ??) holds the client’s name. The servlet
returns a cookie containing a user ID (uid) or rejects the client.

ChatServlet?cmd=bye&name=?? and uid cookie
This is a bye message, which signals the client’s departure. The cookie is
included in the header part of the GET message, not as a URL argument.

ChatServlet?cmd=who

The who message requires no client name or cookie parameters. The servlet
returns the names of the clients currently using the application.

ChatServlet?cmd=msg&name=??&msg=?? and uid cookie
This message sends chat text to the servlet as the msg parameter value. The string
is added to the servlet’s messages list if the client name and uid are correct.

Figure 30-7. The servlet-based chat system

GET requests

Web Server

ChatServlet

URLChat

URLChat Watcher
ChatGroup

Chatter objects for users

messages

responses

more clients

stores/uses info.in

This is the Title of the Book, eMatter Edition

Clients Using a Servlet as a Server | 833

The chat message format is the same as in the multicasting example: if the text has a
/ toName extension, then it will be intended only for the client with that name.

URLChatWatcher periodically sends a read message:

ChatServlet?cmd=read&name=?? and uid cookie
This retrieves all the visible chat messages stored by the servlet since the last
read. Visible messages are intended for everyone (the default) or have a / toName

extension which matches this client’s name.

The cookie acts as an additional form of identification, paired with the client’s name.
However, cookies are not passwords, being passed in plain text form in the headers
of the messages. To act as a password, it would be necessary to add encryption to the
interaction, possibly by using HTTPS rather than HTTP.

Figure 30-8 gives the class diagrams for the application, showing the public methods.

The URL-Based Chat Client
Figure 30-9 shows the GUI for URLChat, which is identical to the earlier examples. A
hi message is generated when the client is first invoked, a bye message is sent when
the user clicks on the window’s close box, a who message is transmitted when the
Who button is pressed, and the entering of a string in the text field results in a msg

message.

The constructor carries out several tasks—it creates the GUI, sets timeout proper-
ties, sends a hi message, links the bye output to the close box, and invokes a
URLChatWatcher:

// globals
private String userName; // for this client
private String cookieStr = null;

public URLChat(String nm)
{ super("URL Chat Client for "+ nm);
 userName = nm;
 initializeGUI();

Figure 30-8. Class diagrams for the servlet-based chat system

This is the Title of the Book, eMatter Edition

834 | Chapter 30: Network Chat

 // set the properties used for URL timeouts (in ms)
 Properties props = System.getProperties();
 props.put("sun.net.client.defaultConnectTimeout", "2000");
 props.put("sun.net.client.defaultReadTimeout", "2000");
 System.setProperties(props);

sayHi();

 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e)
 { sayBye(); }
 });

 setSize(300,450);
 show();

 new URLChatWatcher(this, userName, cookieStr).start();
} // end of URLChat();

A client utilizes URL GET requests to communicate with the servlet. If the server is
down or the servlet is unavailable, then the client will have to wait for the URL
request to timeout. This often amounts to several minutes delay before an exception
is raised. Fortunately, J2SE 1.4 introduced two properties for adjusting the default
connection timeout and the reading timeout (how long to wait when the reading of a
web page is delayed). These are associated with every URLConnection object created in
the application. The main problem with timeouts, as always, is deciding on a reason-
able value that takes network latency into account.

Figure 30-9. The URLChat GUI

This is the Title of the Book, eMatter Edition

Clients Using a Servlet as a Server | 835

Another approach is to wrap each connection in a thread using Thread.join() as a
timeout mechanism. This has the advantage that different timeout values can be
assigned to different URLs.

sayHi() illustrates how a GET request is constructed using a URL object. The
response from the servlet may include a Set-Cookie header: this is the usual way that
a cookie is sent to a browser. Set-Cookie isn’t a part of the HTTP standard but is
used by all web servers and browsers. The need to read the response page’s headers
requires a URLConnection object.

The returned page is plain text consisting of a single line containing “ok” or “no”:

private void sayHi()
{
 try {
 URL url = new URL(SERVER + "?cmd=hi&name=" +
 URLEncoder.encode(userName, "UTF-8"));

 URLConnection conn = url.openConnection();
 cookieStr = conn.getHeaderField("Set-Cookie"); // get cookie

 System.out.println("Received cookie: " + cookieStr);
 if (cookieStr != null) {
 int index = cookieStr.indexOf(";");
 if (index != -1)
 cookieStr = cookieStr.substring(0, index); //remove extras
 }

 BufferedReader br = new BufferedReader(
 new InputStreamReader(conn.getInputStream()));
 String response = br.readLine().trim();
 br.close();

 if (response.equals("ok") && (cookieStr != null))
 showMsg("Server Login Successful\n");
 else {
 System.out.println("Server Rejected Login");
 System.exit(0);
 }
 }
 catch(Exception e)
 { System.out.println(e);
 System.exit(0);
 }
} // end of sayHi()

The client name must be URL-encoded prior to transmission. Essentially, this
replaces any spaces in the string by +s and alters certain other characters to a hexa-
decimal format.

The value of a Set-Cookie header is a string containing the cookie value separated
from various other things by a ; (these may include a comment, path and domain

This is the Title of the Book, eMatter Edition

836 | Chapter 30: Network Chat

qualifiers, a maximum age, and a version number). This additional information isn’t
required, so sayHi() strips it away before storing the string in the cookieStr global.
In fact, the servlet creates a cookie holding only a value, so the editing code is not
really necessary in this example.

The client will terminate if the response to the hi message is “no,” or the cookie
string is not initialized. All further communication with the servlet (aside from who

messages) requires the cookie value.

If a servlet (or its web server) is unavailable, then the URL request will timeout after
two seconds (due to the timeout properties set in the constructor), and raise an
exception. This allows a client to respond to the server’s absence by exiting.

sayHi() uses showMsg() to write into the GUI’s text area, which is implemented in
the same way as in the threaded client that I discussed first. The updates to the text
area are performed by Swing’s event dispatching thread.

Talking to the servlet

URLChat employs sendURLMessage() to send a chat message to the servlet. It’s quite
similar to sayHi() except that it adds the cookie value to the GET request by includ-
ing a Cookie header in the output.

The response page returned by the servlet is one line containing “ok” or “no”:

private void sendURLMessage(String msg)
{
 try {
 URL url = new URL(SERVER + "?cmd=msg&name=" +
 URLEncoder.encode(userName, "UTF-8") +
 "&msg=" + URLEncoder.encode(msg, "UTF-8"));
 URLConnection conn = url.openConnection();

 conn.setRequestProperty("Cookie", cookieStr); // add cookie

 BufferedReader br = new BufferedReader(
 new InputStreamReader(conn.getInputStream()));
 String response = br.readLine().trim();
 br.close();

 if (!response.equals("ok"))
 showMsg("Message Send Rejected\n");
 else // display message immediately
 showMsg("(" + userName + ") " + msg + "\n");
 }
 catch(Exception e)
 { showMsg("Servlet Error. Did not send: " + msg + "\n");
 System.out.println(e);
 }
} // end of sendURLMessage()

This is the Title of the Book, eMatter Edition

Clients Using a Servlet as a Server | 837

A small but significant part of sendURLMessage() is the call to showMsg() to display
the output message if the servlet’s response was “ok.” This means the message
appears in the client’s text area almost as soon as it is typed.

The alternative would be to wait until it was retrieved, together with the other recent
messages, by URLChatWatcher. The drawback of this approach is the delay before the
user sees a visual conformation that their message has been sent. This delay depends
on the frequency of URLChatWatcher’s requests to the servlet (currently every two sec-
onds). A message echoing delay like this gives an impression of execution slowness
and communication latency, which is best avoided.

The drawback of the current design (immediate echoing of the output message) is
that the user’s contribution to a conversation may not appear on screen in the order
that the conversation is recorded in the servlet.

Polling for Chat Messages
URLChatWatcher starts an infinite loop that sleeps for a while (two seconds) and then
sends a read request for new chat messages. The answer is processed and displayed
in the client’s text area, and the watcher repeats:

public void run()
{ URL url;
 URLConnection conn;
 BufferedReader br;
 String line, response;
 StringBuffer resp;

 try {
 String readRequest = SERVER + "?cmd=read&name=" +
 URLEncoder.encode(userName, "UTF-8") ;
 while(true) {
 Thread.sleep(SLEEP_TIME); // sleep for 2 secs

 url = new URL(readRequest); // send a "read" message
 conn = url.openConnection();

 // Set the cookie value to send
 conn.setRequestProperty("Cookie", cookieStr);

 br = new BufferedReader(new InputStreamReader(conn.getInputStream()));
 resp = new StringBuffer(); // build up the response
 while ((line = br.readLine()) != null) {
 if (!fromClient(line)) // if not from client
 resp.append(line+"\n");
 }
 br.close();

 response = resp.toString();
 if ((response != null) && !response.equals("\n"))
 client.showMsg(response); // show the response

This is the Title of the Book, eMatter Edition

838 | Chapter 30: Network Chat

 }
 }
 catch(Exception e)
 { client.showMsg("Servlet Error: watching terminated\n");
 System.out.println(e);
 }
} // end of run()

The try-catch block allows the watcher to respond to the server’s absence by issuing
an error message before terminating.

The response page may contain multiple lines of text, one line for each chat mes-
sage. The watcher filters out chat messages originating from its client since these will
have been printed when they were sent out. A drawback of this filtering is that when
a client joins the chat system again in the future, messages stored from a prior visit
won’t be shown in the display text area. This can be remedied by making the
fromClient() test a little more complicated than the existing code:

private boolean fromClient(String line)
{ if (line.startsWith("("+userName))
 return true;
 return false;
}

The Chat Servlet
The initialization phase of a ChatServlet object creates a new ChatGroup object for
holding client details. Its doGet() method tests the cmd parameter of GET requests to
decide what message is being received:

// globals
private ChatGroup cg; // for storing client information

public void init() throws ServletException
{ cg = new ChatGroup(); }

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
// look at cmd parameter to decide which message the client sent
{
 String command = request.getParameter("cmd");
 System.out.println("Command: " + command);

 if (command.equals("hi"))
 processHi(request, response);
 else if (command.equals("bye"))
 processBye(request, response);
 else if (command.equals("who"))
 processWho(response);
 else if (command.equals("msg"))

This is the Title of the Book, eMatter Edition

Clients Using a Servlet as a Server | 839

 processMsg(request, response);
 else if (command.equals("read"))
 processRead(request, response);
 else
 System.out.println("Did not understand command: " + command);
} // end of doGet()

An understanding of this code requires a knowledge of the servlet lifecycle. A web
server will typically create a single servlet instance, resulting in init() being called
once. However, each GET request will usually be processed by spawning a separate
thread which executes doGet() for itself. This is similar to the execution pattern
employed by the threaded server in the first chat example.

The consequence is that data which may be manipulated by multiple doGet()

threads must be synchronized. The simplest solution is to place this data in an object
that is only accessible by synchronized methods. Consequently, the single ChatGroup

object (created in init()) holds client details and the list of chat messages.

Dealing with a new client

processHi() handles a message with the format ChatServlet?cmd=hi&name=??. The
name parameter must be extracted and tested, and a cookie must be created for the
client’s new user ID. The cookie is sent back as a header, and the response page is a
single line containing “ok,” or “no” if something is wrong:

private void processHi(HttpServletRequest request, HttpServletResponse response)
 throws IOException
{
 int uid = -1; // default for failure
 String userName = request.getParameter("name");

 if (userName != null)
 uid = cg.addUser(userName); // attempt to add to group

 if (uid != -1) { // the request has been accepted
 Cookie c = new Cookie("uid", ""+uid);
 response.addCookie(c);
 }

 PrintWriter output = response.getWriter();
 if (uid != -1)
 output.println("ok");
 else
 output.println("no"); // request was rejected
 output.close();
} // end of processHi()

The cookie is created using the Cookie class and is added to the headers of the
response with the addCookie() method. The actual cookie header has this format:

Set-Cookie: uid= <some number>

This is the Title of the Book, eMatter Edition

840 | Chapter 30: Network Chat

The uid number is generated when ChatGroup creates a Chatter object for the new cli-
ent. It may have any value between 0 and 1024. If the value is –1, then the member-
ship request will be rejected because the client’s name is being used by another
person.

Processing client messages

processMsg() is typically of the other processing methods in ChatServlet. It handles
a message with the format ChatServlet?cmd=msg&name=??&msg=?? and a uid cookie in
the header.

It attempts to add the chat message to the messages list maintained by ChatGroup:

private void processMsg(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException
{ boolean isStored = false; // default for failure
 String userName = request.getParameter("name");
 String msg = request.getParameter("msg");

 System.out.println("msg: " + msg);

 if ((userName != null) && (msg != null)) {
 int uid = getUidFromCookie(request);
 isStored = cg.storeMessage(userName,uid,msg); //add msg to list
 }

 PrintWriter output = response.getWriter();
 if (isStored)
 output.println("ok");
 else
 output.println("no"); // something wrong
 output.close();
} // end of processBye()

Processing is aborted if the name or chat message is missing. The call to
getUidFromCookie() will return a number (which may be –1, signifying an error). The
ChatGroup object is then given the task of storing the chat message, which it only
does if the name/uid pair match an existing client. The resulting isStored value is
employed to decide on the response page sent back to the client.

getUidFromCookie() must deal with the possibility of multiple cookies in the request,
so has to search for the one with the uid name. A missing uid cookie, or one with a
nonnumerical value, causes a –1 to be returned:

private int getUidFromCookie(HttpServletRequest request)
{
 Cookie[] cookies = request.getCookies();
 Cookie c;
 for(int i=0; i < cookies.length; i++) {
 c = cookies[i];
 if (c.getName().equals("uid")) {

This is the Title of the Book, eMatter Edition

Clients Using a Servlet as a Server | 841

 try {
 return Integer.parseInt(c.getValue());
 }
 catch (Exception ex){
 System.out.println(ex);
 return -1;
 }
 }
 }
 return -1;
} // end of getUidFromCookie()

The getCookies() method returns an array of Cookie objects, which can be exam-
ined with getName() and getValue().

Storing Chat Group Information
ChatGroup maintains two ArrayLists: chatUsers and messages. chatUsers is an
ArrayList of Chatter objects; each Chatter object stores a client’s name, uid, and the
number of messages read by its CharURLWatcher thread. messages is an ArrayList of
strings (one for each chat message).

All the public methods are synchronized since many doGet() threads may be com-
peting to access the ChatGroup object simultaneously.

The messages ArrayList solves the problem of storing chat messages. The drawback
is the list will grow long as the volume of communication increases. However, the
messages list is cleared when no users are in the chat group.

Another possible optimization, which isn’t utilized in this code, is to delete messages
which have been read by all the current users. This would keep the list small since
each client’s URLChatWatcher reads the list every few seconds. The drawback is the
extra complexity of adjusting the list and the Chatter objects’ references to it.

A possible advantage of maintaining a lengthy messages list is that new members get
to see earlier conversations when they join the system. The list is sent to a new client
when its watcher thread sends its first read message.

Another approach might be to archive older messages in a text file. This could be
accessed when required without being a constant part of the messages list. It could
be employed as a backup mechanism in case of server failure.

Adding a new client to the group

addUser() adds a new client to the ChatGroup if his or her name is unique. A uid for
the user is returned:

// globals
private ArrayList chatUsers;
private ArrayList messages;
private int numUsers;

This is the Title of the Book, eMatter Edition

842 | Chapter 30: Network Chat

synchronized public int addUser(String name)
// adds a user, returns uid if okay, -1 otherwise
{
 if (numUsers == 0) // no one logged in
 messages.clear();

 if (isUniqueName(name)) {
 Chatter c = new Chatter(name);
 chatUsers.add(c);
 messages.add("(" + name + ") has arrived");
 numUsers++;
 return c.getUID();
 }
 return -1;
}

Reading client messages

One of the more complicated methods in ChatGroup is read(), which is called when a
watcher thread requires new messages:

synchronized public String read(String name, int uid)
{
 StringBuffer msgs = new StringBuffer();
 Chatter c = findUser(name, uid);

 if (c != null) {
 int msgsIndex = c.getMsgsIndex(); // where read to last time
 String msg;
 for(int i=msgsIndex; i < messages.size(); i++) {
 msg = (String) messages.get(i);
 if (isVisibleMsg(msg, name))
 msgs.append(msg + "\n");
 }
 c.setMsgsIndex(messages.size()); //update client's read index
 }
 return msgs.toString();
}

The method begins by calling findUser() to retrieve the Chatter object for the given
name and uid, which may return null if there isn’t a match.

Since the messages list retains all the chat messages, it’s necessary for each Chatter

object to record the number of messages read. This is retrieved with a call to
getMsgsIndex() and updated with setMsgsIndex(). This number corresponds to an
index into the messages list, and can be used to initialize the for loop that collects
the chat messages.

If the messages list was periodically purged of messages that had been read by all the
current users, then it would be necessary to adjust the index number stored in each
Chatter object.

This is the Title of the Book, eMatter Edition

Clients Using a Servlet as a Server | 843

Only visible messages are returned—i.e., those without a / toName extension, or an
extension, which names the client.

The Chatter Class
Each Chatter object stores the client’s name, the uid, and the current number of mes-
sages read from the chat messages list.

The uid is generated in a trivial manner by generating a random number between 0

and ID_MAX (1024). The choice of ID_MAX has no significance:

uid = (int) Math.round(Math.random()* ID_MAX);

This is the Title of the Book, eMatter Edition

844

Chapter 31CHAPTER 31

A Networked Two-Person Game

Chapter 30 described three versions of a chat system, built using a threaded client/server
model, UDP multicasting, and HTTP tunneling with servlets. Chatting utilizes a multi-
player game model which allows players to join and leave at any time and doesn’t
impose an ordering on when the users interact.

This chapter focuses on the more complex networked two-person game model (two-
person games include chess, battleships, and tic-tac-toe). The complexity is due to
the stricter gaming conditions: two players must be present, and they must take
turns. Two-person games can be generalized to n-person contests, which only start
when n people are present, who each take turns to play. Most board games have this
kind of structure.

The additional rules complicate the three phases of a game: initialization, game play,
and termination. The game only starts when there are two players, which means that
one player may have to wait, and late arrivals after two players have been found must
be sent away or invited to create a new game. During the game, a player who moves
out of turn may be penalized or ignored until the other player has moved. A game
can terminate in several ways: one of the players may win (or lose), a player may give
up, or the game can stop when one of the client network links breaks.

This complexity motivates the strategy used in this chapter: first, a standalone ver-
sion of the game is designed, built, and debugged, and only then is the networked
version considered. This allows issues such as game logic, 3D modeling, and GUI
design to be addressed without the headaches of networking.

Once the network phase is entered, utilizing design tools is useful before sitting down
to hack. I use three diagramming tools here: informal network protocol diagrams,
UML activity, and sequence diagrams. The protocol diagrams highlight the network
interactions between the clients, focusing on the three game phases (initialization,

This is the Title of the Book, eMatter Edition

A Networked Two-Person Game | 845

game play, and termination). The activity and sequence diagrams allow me to trace
turn-taking easily from one player, through the server, to the other player.

The implementation employs a threaded client/server model: each client has a thread
to send messages to the server (e.g., details of the player’s turn) and another to
receive data from the server (e.g., information about the other player). The server is
threaded as well: one thread for each client. These networking elements are similar
to those used in the threaded client/server chat system in Chapter 30, allowing me to
reuse a lot of the code.

The clients are fat in the sense that they do most of the game processing; the server is
little more than a message forwarder. An important advantage of the fat client
approach is that most of the GUI and game play code developed in the standalone
version of the game can be carried over to the client in the networked version with-
out modification.

This chapter utilizes the perennial favorite of two-person gaming, tic-tac-toe, but
with a Java 3D makeover to display the board and player counters as 3D objects. I’ll
assume you know Java 3D.

The standalone FourByFour tic-tac-toe game is shown in Figure 31-1 (the network
version looks similar and is shown in Figure 31-11). Player 1’s markers are red
spheres; player 2 has blue cubes. The aim is to create a line of four markers, all of the
same type, along the x-, y-, or z-axes, or the diagonals across the XY, XZ, or YZ
planes or from corner to corner.

Figure 31-1. FourByFour in action

This is the Title of the Book, eMatter Edition

846 | Chapter 31: A Networked Two-Person Game

The nonnetworked FourByFour game described in the first part of this chapter is a
simplified version of a game available in the Java 3D distribution. The main ele-
ments are:

Parallel projection
The poles and markers at the back of the scene are the same size as the ones at
the front. Up to now, all my examples have used Java 3D’s default perspective
projection.

Marker caching
Red and blue markers are created for all the possible game positions (64 total) at
game startup time and are made invisible. When a marker is needed in a certain
position, the relevant one only has to be made visible, which is a fast operation
for Java 3D. The alternative is to create the required marker dynamically at runt-
ime and attach it to the scene graph, which is much slower. The disadvantage is
that the markers take time to be built, and many will never be used but the over-
head is small.

The markers are hidden by using Java 3D Switch nodes.

Marker labels
Any Java 3D scene graph object can be assigned a user data reference, which can
point to an arbitrary object. This allows scene graph nodes to store user-specific
data. I employ this feature to label the game markers, which identifies them to
the rest of the program.

User interaction
Java 3D picking is used to allow a player to select a position by clicking with the
mouse, and to rotate the game board via mouse dragging. In the networked ver-
sion, the Java 3D Canvas3D class is extended to support overlaying (see
Figure 31-11). This allows the program to write messages onto the screen with-
out the overhead of creating 3D data structures.

The standalone version of the game is in the directory FourByFour/;
the networked version is in NetFourByFour/.

The Standalone Tic-Tac-Toe Game
Figure 31-2 gives the class diagrams for the standalone tic-tac-toe game, FourByFour.
The class names and public methods are shown.

The FourByFour class is a Java 3D JFrame, which contains a GUI made up of a
WrapFourByFour object for the 3D canvas and a text field for messages. The public
showMessage() method allows objects to write into that field.

This is the Title of the Book, eMatter Edition

The Standalone Tic-Tac-Toe Game | 847

WrapFourByFour constructs the scene: the lights, background, the parallel projec-
tion, and 16 poles, but leaves the initialization of the markers to a Positions

object. WrapFourByFour creates a PickDragBehavior object to handle mouse picking
and dragging.

The Board object contains the game logic, with data structures representing the cur-
rent state of the board and methods for making a move and reporting a winner.

The FourByFour application can be found in the FourByFour/ directory.

The Origins of the Game
A tic-tac-toe game, FourByFour, has been part of the Java 3D distribution for many
years. It has a more extensive GUI than the version described in this chapter, sup-
porting repeated games, varying skill levels, and listing the high scores. A crucial dif-
ference is that the demo pits the machine against a single player, rather than player
versus player. This requires a much more complicated Board class, weighing in at
2,300 lines (compared to 300 in my version of Board). It’s possible to change the
machine’s skill level (from dumb to expert), which makes Board carry out increas-
ingly comprehensive analyses of the player’s moves and the current game state. The
original Board renders the game to a 2D window in addition to a 3D canvas.

The original FourByFour demo utilizes its own versions of the Box and Cylinder utili-
ties and builds its GUI with AWT. My version uses the Java 3D shape utility classes
and Swing. The demo employs its own ID class to number the marker shapes; my
code uses the userData field of the Java 3D Shape3D class.

Figure 31-2. Class diagrams for FourByFour

This is the Title of the Book, eMatter Edition

848 | Chapter 31: A Networked Two-Person Game

Building the Game Scene
My WrapFourByFour class uses the same coding style as earlier 3D examples in that it
creates the 3D canvas and adds the scene in createSceneGraph():

private void createSceneGraph(Canvas3D canvas3D, FourByFour fbf)
{
 sceneBG = new BranchGroup();
 bounds = new BoundingSphere(new Point3d(0,0,0), BOUNDSIZE);

 // Create the transform group which moves the game
 TransformGroup gameTG = new TransformGroup();
 gameTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 gameTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 sceneBG.addChild(gameTG);

 lightScene(); // add the lights
 addBackground(); // add the background

 gameTG.addChild(makePoles()); // add poles

 // posns holds the spheres/boxes which mark a player's turn.
 // Initially posns displays a series of small white spheres.
 Positions posns = new Positions();

 // board tracks the players' moves on the game board
 Board board = new Board(posns, fbf);

 gameTG.addChild(posns.getChild()); // add markers

mouseControls(canvas3D, board, gameTG);

 sceneBG.compile(); // fix the scene
}

A TransformGroup, gameTG, is added below the scene’s BranchGroup; it’s used by the
PickDragBehavior object to rotate the game when the mouse is dragged. Conse-
quently, all the visible game objects (e.g., poles, markers) are linked to gameTG; static
entities (e.g., the lights, background) are connected to sceneBG.

makePoles() creates the 16 poles where the game markers appear. The initial posi-
tions of the poles are shown in Figure 31-3.

The first pole (the leftmost pole of the first row) is centered at (–30,0,30) and has length
60 units. The other three poles in the row are spaced at 20-unit intervals to the right,
and the next row begins, 20 units along the z-axis. There’s no particular significance to
these dimensions, aside from making the various parts of the game easier to see:

private BranchGroup makePoles()
{
 Color3f grey = new Color3f(0.25f, 0.25f, 0.25f);
 Color3f black = new Color3f(0.0f, 0.0f, 0.0f);

This is the Title of the Book, eMatter Edition

The Standalone Tic-Tac-Toe Game | 849

 Color3f diffuseWhite = new Color3f(0.7f, 0.7f, 0.7f);
 Color3f specularWhite = new Color3f(0.9f, 0.9f, 0.9f);

 // Create the pole appearance
 Material poleMaterial =
 new Material(grey, black, diffuseWhite,specularWhite,110.f);
 poleMaterial.setLightingEnable(true);
 Appearance poleApp = new Appearance();
 poleApp.setMaterial(poleMaterial);

 BranchGroup bg = new BranchGroup();
 float x = -30.0f;
 float z = -30.0f;

 for(int i=0; i<4; i++) {
 for(int j=0; j<4; j++) {
 Transform3D t3d = new Transform3D();
 t3d.set(new Vector3f(x, 0.0f, z));
 TransformGroup tg = new TransformGroup(t3d);
 Cylinder cyl = new Cylinder(1.0f, 60.0f, poleApp);

cyl.setPickable(false); // user cannot select the poles
 tg.addChild(cyl);
 bg.addChild(tg);
 x += 20.0f;
 }
 x = -30.0f;
 z += 20.0f;
 }
 return bg;
} // end of makePoles()

A pole is represented by a Cylinder, below a TransformGroup which positions it. The
poles (and transforms) are grouped under a BranchGroup. The cylinders are made
unpickable, which simplifies the picking task in PickDragBehavior.

Figure 31-3. The game poles

20 units

Center of Pole
(-30,0,-30)

4th Row

1st Row

20 units

60 units

z

x

y

This is the Title of the Book, eMatter Edition

850 | Chapter 31: A Networked Two-Person Game

mouseControls() creates a PickDragBehavior object, attaching it to the scene:

private void mouseControls(Canvas3D c,Board board, TransformGroup gameTG)
{ PickDragBehavior mouseBeh =
 new PickDragBehavior(c, board, sceneBG, gameTG);
 mouseBeh.setSchedulingBounds(bounds);
 sceneBG.addChild(mouseBeh);
}

initUserPosition() modifies the view to use parallel projection and moves the view-
point along the +z axis so the entire game board is visible and centered in the canvas:

private void initUserPosition()
{
 View view = su.getViewer().getView();
 view.setProjectionPolicy(View.PARALLEL_PROJECTION);

 TransformGroup steerTG = su.getViewingPlatform().getViewPlatformTransform();
 Transform3D t3d = new Transform3D();
 t3d.set(65.0f, new Vector3f(0.0f, 0.0f, 400.0f));
 steerTG.setTransform(t3d);
}

Building the Game Markers
The Positions object creates three sets of markers: 64 small white balls, 64 larger red
balls, and 64 blue cubes. The white balls are visible, the other shapes are invisible
when the game starts. When a player makes a move, the selected white ball is
replaced by a red one (if it was player 1’s turn) or a blue cube (for player 2).

This functionality is achieved by creating three Java 3D Switch nodes, one for each
set of markers, linked to the scene with a Group node, as shown in Figure 31-4.

Figure 31-4. Scene graph branch for the game markers

Switch

Group

64 small white balls

SwitchSwitch

TG TG TG TG TG TG TG TG TG

Shape Shape Shape Shape Shape Shape Shape Shape Shape

64 blue cubes64 red balls

0 … 631 0 … 631 0 … 631

0 1 63

This is the Title of the Book, eMatter Edition

The Standalone Tic-Tac-Toe Game | 851

Each Shape3D is positioned with a TransformGroup and allocated a bit in a Java 3D
BitSet object corresponding to its position in the game (positions are numbered 0 to
63). The BitSet is used as a mask in the Switch node to specify what shapes are visi-
ble or invisible.

The three Switch branches are created with calls to makeWhiteSpheres(),
makeRedSpheres(), and makeBlueCubes(), which are functionally similar. The code for
makeWhiteSpheres() is:

private void makeWhiteSpheres()
{
 // Create the switch nodes
 posSwitch = new Switch(Switch.CHILD_MASK);
 // Set the capability bits
 posSwitch.setCapability(Switch.ALLOW_SWITCH_READ);
 posSwitch.setCapability(Switch.ALLOW_SWITCH_WRITE);
 posMask = new BitSet(); // create the bit mask

 Sphere posSphere;
 for (int i=0; i<NUM_SPOTS; i++) {
 Transform3D t3d = new Transform3D();
 t3d.set(points[i]); // set position
 TransformGroup tg = new TransformGroup(t3d);
 posSphere = new Sphere(2.0f, whiteApp);
 Shape3D shape = posSphere.getShape();
 shape.setUserData(new Integer(i));
 // add board position ID to each shape
 tg.addChild(posSphere);
 posSwitch.addChild(tg);
 posMask.set(i); // make visible
 }
 // Set the positions mask
 posSwitch.setChildMask(posMask);

 group.addChild(posSwitch);
 } // end of makeWhiteSpheres()

All the game marker Shape3D objects are pickable by default, which means that the
PickDragBehavior object can select them.

An important feature of makeWhiteSpheres() is that each ball is assigned user data (i.e.,
an Integer object holding its position index). makeRedSpheres() and makeBlueCubes()

don’t set user data for their markers.

This difference is denoted by little numbered boxes in Figure 31-4.

The integer field for a selected white ball is read by PickDragBehavior to determine its
position. There’s no need for integer fields in the red balls or blue cubes since they
occupy positions on the board.

This is the Title of the Book, eMatter Edition

852 | Chapter 31: A Networked Two-Person Game

Another difference between makeWhiteSpheres() and the other two methods is that
the white balls are all set to be visible initially, and the red balls and blue cubes are
invisible. This is changed during the course of the game by calls to set():

public void set(int pos, int player)
// called by Board to update the 3D scene
{
 // turn off the white marker for the given position
 posMask.clear(pos);
 posSwitch.setChildMask(posMask);

 // turn on one of the player markers
 if (player == PLAYER1) {
 player1Mask.set(pos);
 player1Switch.setChildMask(player1Mask); // red for p1
 }
 else if (player == PLAYER2) {
 player2Mask.set(pos);
 player2Switch.setChildMask(player2Mask); // blue for p2
 }
 else // should not happen
 System.out.println("Illegal player value: " + player);
}

The pos argument is the position index (a number between 0 and 63), extracted from
the user data field of the selected white marker. The player value represents the first
or second player.

The main design choice in the Positions class is to create all the possible markers at
scene creation time. This makes the scene’s initialization a little slower, but the ren-
dering speed for displaying a player’s marker is improved because Shape3D nodes
don’t need to be attached or detached from the scene graph at runtime.

The position indexes for the markers (0–63) are tied to locations in space by the
initLocations() method, which creates a points[] array of markers’ coordinates.
The positions correspond to the indexes of points[]:

private void initLocations()
{ points = new Vector3f[NUM_SPOTS];
 int count = 0;
 for (int z=-30; z<40; z+=20)
 for (int y=-30; y<40; y+=20)
 for (int x=-30; x<40; x+=20) {
 points[count] = new Vector3f((float)x, (float)y, (float)z);
 count++;
 }
}

points[] is used to initialize the TransformGroups for the markers, positioning them
in space.

This is the Title of the Book, eMatter Edition

The Standalone Tic-Tac-Toe Game | 853

The coordinates were chosen so the markers appear embedded in the poles.
Figure 31-5 shows the first row of poles (the back row in Figure 31-3) and its 16
markers, which have position indexes 0–15.

Picking and Dragging
The PickDragBehavior object allows the user to click on a white marker to signal that the
next move should be in that position, and to utilize mouse dragging to rotate the scene.
The object monitors mouse drags, presses, and releases. A mouse release is employed as a
way of detecting that a new mouse drag may start during the next user interaction.

processStimulus() responds to the three mouse operations:

public void processStimulus(Enumeration criteria)
{
 WakeupCriterion wakeup;
 AWTEvent[] event;
 int id;
 int xPos, yPos;
 while (criteria.hasMoreElements()) {
 wakeup = (WakeupCriterion) criteria.nextElement();
 if (wakeup instanceof WakeupOnAWTEvent) {
 event = ((WakeupOnAWTEvent)wakeup).getAWTEvent();
 for (int i=0; i<event.length; i++) {
 xPos = ((MouseEvent)event[i]).getX();
 yPos = ((MouseEvent)event[i]).getY();
 id = event[i].getID();
 if (id == MouseEvent.MOUSE_DRAGGED)

processDrag(xPos, yPos);
 else if (id == MouseEvent.MOUSE_PRESSED)

processPress(xPos, yPos);

Figure 31-5. Marker positions in the first row of poles

12

8

4

0

13

9

5

1

14

10

6

2

15

11

7

3

x

y
20 units

20 units

first row

(–30,0,–30)

This is the Title of the Book, eMatter Edition

854 | Chapter 31: A Networked Two-Person Game

 else if (id == MouseEvent.MOUSE_RELEASED)
 isStartDrag = true; // a new drag may start next time
 }
 }
 }
 wakeupOn (mouseCriterion);
} // end of processStimulus()

processDrag() handles mouse dragging and is passed the current (x, y) position of
the cursor on screen. processPress() deals with a mouse press, and the global Bool-
ean isStartDrag is set to true when the mouse is released.

Dragging the board

When the user drags the mouse, a sequence of MOUSE_DRAGGED events are generated,
each one including the current (x, y) position of the cursor. processDrag() obtains
the movement covered by a single MOUSE_DRAGGED event by calculating the offset rela-
tive to the (x, y) coordinate from the previous drag event (stored in xPrev and yPrev).
The x and y components of the move are converted into x- and y-axis rotations and
are applied to the TransformGroup for the board.

However, this approach only works after the first event, so the second event (and
subsequent ones) have a previous coordinate to consider. The first event in a drag
sequence is distinguished by the isStartDrag Boolean:

private void processDrag(int xPos, int yPos)
{
 if (isStartDrag)
 isStartDrag = false;
 else { // not the start of a drag, so can calculate offset
 int dx = xPos - xPrev; // get dists dragged
 int dy = yPos - yPrev;
 transformX.rotX(dy * YFACTOR); // convert to rotations
 transformY.rotY(dx * XFACTOR);
 modelTrans.mul(transformX, modelTrans);
 modelTrans.mul(transformY, modelTrans);
 // add to existing x- and y- rotations
 boardTG.setTransform(modelTrans);
 }
 xPrev = xPos; // save locs so can work out drag next time
 yPrev = yPos;
}

modelTrans is a global Transform3D object that stores the ongoing, total rotational effect
on the board. transformX and transformY are globals. boardTG is the TransformGroup for
the board, passed in from WrapFourByFour when the PickDragBehavior object is created.

Picking a marker

processPress() sends a pick ray along the z-axis into the world, starting from the
current mouse press position. The closest intersecting node is retrieved and if it’s a

This is the Title of the Book, eMatter Edition

The Standalone Tic-Tac-Toe Game | 855

Shape3D containing a position index, then that position will be used as the player’s
desired move.

One problem is translating the (x, y) position supplied by the MOUSE_PRESSED event
into world coordinates. This is done in two stages: The screen coordinate is mapped
to the canvas’ image plate and then to world coordinates.

The picking code is simplified by the judicious use of setPickable(false) when the
scene is set up. The poles are made unpickable when created in makePoles() in
WrapFourByFour, which means that only the markers can be selected:

// global
private final static Vector3d IN_VEC = new Vector3d(0.f,0.f,-1.f);
 // direction for picking -- into the scene

private Point3d mousePos;
private Transform3D imWorldT3d;
private PickRay pickRay = new PickRay();
private SceneGraphPath nodePath;

private void processPress(int xPos, int yPos)
{
 canvas3D.getPixelLocationInImagePlate(xPos, yPos, mousePos);
 // get the mouse position on the image plate
 canvas3D.getImagePlateToVworld(imWorldT3d);
 // get image plate --> world transform
 imWorldT3d.transform(mousePos); // convert to world coords

 pickRay.set(mousePos, IN_VEC);
 // ray starts at mouse pos, and goes straight in

 nodePath = bg.pickClosest(pickRay);
 // get first node along pickray (and its path)
 if (nodePath != null)

selectedPosn(nodePath);
}

The image plate to world coordinates transform is obtained from the canvas and
applied to mousePos, which changes it in place. A ray is sent into the scene starting
from that position, and the closest SceneGraphPath object is retrieved. This should be
a branch ending in a game marker or null (i.e., the user clicked on a pole or the
background).

selectedPosn() gets the terminal node of the path and checks that it’s a Shape3D con-
taining user data (only the white markers hold data, which is their position index):

private void selectedPosn(SceneGraphPath np)
{ Node node = np.getObject(); // get terminal node of path
 if (node instanceof Shape3D) { // check for shape3D
 Integer posID = (Integer) node.getUserData(); //get posn index

This is the Title of the Book, eMatter Edition

856 | Chapter 31: A Networked Two-Person Game

 if (posID != null)
 board.tryPosn(posID.intValue());
 }
}

The position index (as an int) is passed to the Board object where the game logic is
located.

If a red or blue marker was selected, the lack of user data will stop any further process-
ing since it’s not possible for a player to make a move in a spot which has been used.

Picking comparisons

This is the third example of Java 3D picking in this book, and it’s worth comparing
the three approaches:

• In Chapter 23, picking was used to select a point in the scene, and a gun rotated
and shot at it. The picking was coded using a subclass of PickMouseBehavior, and
details about the intersection coordinate were required.

• In Chapter 26, a ray was shot straight down from the users’ position in a land-
scape to get the floor height of the spot where they were standing. The picking
was implemented with PickTool, and an intersection coordinate was necessary.

• The picking employed here in processPress() doesn’t use any of the picking
utilities (i.e., PickMouseBehavior, PickTool) and only requires the shape that is
first touched by the ray. Consequently, the task is simple enough to code
directly, though the conversion from screen to world coordinates is somewhat
tricky.

The Game Representation
The Board object initializes two arrays when it’s first created: winLines[][] and
posToLines[][].

winLines[][] lists all the possible winning lines in the game, in terms of the four
positions that make up a line. For example, referring to Figure 31-5, {0,1,2,3},
{3,6,9,12}, and {0,4,8,12} are winning lines; the game has a total of 76 winning
lines. For each line, winLines[][] records the number of positions occupied by a
player. If the total reaches four for a particular line, then the player has completed
the line and won.

posToLines[] specifies all the lines that utilize a given position. Thus, when a player
selects a given position, all of those lines can be updated simultaneously.

This is the Title of the Book, eMatter Edition

The Standalone Tic-Tac-Toe Game | 857

Processing a selected position

The main entry point into Board is tryPosn(), called by PickDragBehavior to pass the
player’s selected position into the Board object for processing:

public void tryPosn(int pos)
{
 if (gameOver) // don't process position when game is over
 return;

 positions.set(pos, player); // change the 3D marker shown at pos
playMove(pos); // play the move on the board

 // switch players, if the game isn't over
 if (!gameOver) {
 player = ((player == PLAYER1) ? PLAYER2 : PLAYER1);
 if (player == PLAYER1)
 fbf.showMessage("Player 1's turn (red spheres)");
 else
 fbf.showMessage("Player 2's turn (blue cubes)");
 }
} // end of tryPosn()

Board uses a global Boolean, gameOver, to record when the game has ended. The test
of gameOver at the start of tryPosn() means that selecting a marker will have no effect
once the game is finished.

The player’s marker is made visible by a call to set() in the Positions object, and
playMove() updates winLines[][]. After the move, the current player is switched; the
player variable holds the current player’s ID. However, the move may have been a
winning one, so gameOver is checked before the switch. The calls to showMessage()

cause the text field in the GUI to be updated.

Storing the selected position

playMove() uses the supplied position index to modify the various lines in which it
appears. If the number of used positions in any of those lines reaches four, then the
player will have won, and reportWinner() will be called:

private void playMove(int pos)
{
 nmoves++; // update the number of moves

 // get number of lines that this position is involved in
 int numWinLines = posToLines[pos][0];

 /* Go through each line associated with this position
 and update its status. If I have a winner, stop game. */

This is the Title of the Book, eMatter Edition

858 | Chapter 31: A Networked Two-Person Game

 int line;
 for (int j=0; j<numWinLines; j++) {
 line = posToLines[pos][j+1];
 if (winLines[line][1] != player &&
 winLines[line][1] != UNOCCUPIED)
 winLines[line][0] = -1;
 /* The other player has already made a move in this line
 so this line is now useless to both players. */
 else {
 winLines[line][1] = player; //this line belongs to player
 winLines[line][0]++; // one more posn used in line
 if (winLines[line][0] == 4) { // all positions used,
 gameOver = true; // so this player has won

reportWinner();
 }
 }
 }
} // end of playMove()

The winLines[x][1] field for line x states whether a player has made a move in that
line. If a player selects a position in a line being used by another player, then the line
becomes useless, which is signaled by setting winLines[x][0] == –1.

Reporting a winner

reportWinner() does some numerical “hand-waving” to obtain a score, based on the
running time of the game and the number of moves made. The score is reported in
the text field of the GUI:

private void reportWinner()
{
 long end_time = System.currentTimeMillis();
 long time = (end_time - startTime)/1000;

 int score = (NUM_SPOTS + 2 - nmoves)*111 - (int) Math.min(time*1000, 5000);

 if (player == PLAYER1)
 fbf.showMessage("Game over, player 1 wins with score "+score);
 else // PLAYER2
 fbf.showMessage("Game over, player 2 wins with score "+score);
} // end of reportWinner()

The Networked Tic-Tac-Toe Game
NetFourByFour is based on the FourByFour game, retaining most of its game logic, 3D
modeling, and GUI interface, and it adds a threaded client/server communications
layer.

This development sequence is deliberate, as it allows most of the game-specific and
user interface issues to be addressed before networking complexity is introduced.

Figure 31-6 shows the main functional components of NetFourByFour.

This is the Title of the Book, eMatter Edition

The Networked Tic-Tac-Toe Game | 859

The top-level server, FBFServer, creates two PlayServerHandler threads to manage
communication between the players. The server and its threads are thin in that they
carry out little processing and act mainly as a switchboard for messages passing
between the players.

An advantage of this approach is that most of the client’s functionality can be bor-
rowed from the standalone FourByFour, and the server side is kept simple. Processing
is carried out locally in the client, whereas server-side processing would introduce
networking delays between the user’s selection and the resulting changes in the game
window. A drawback is the need to duplicate processing across the clients.

Each NetFourByFour client utilizes the Java 3D GUI thread (where PickDragBehavior

executes), the application thread for game processing, and an FBFWatcher thread to
handle messages coming from the server. This threaded model was last seen in the
chat application of Chapter 30, but there are some differences in building two-person
networked games.

One change is the restriction on the number of participants: A chat system allows
any number of users, who may join and leave at any time. A two-person game can
begin only when both players are present and stops if one of them leaves. There can-
not be more than two players, and I prohibit the mid-game change of players (i.e.,
substitutes aren’t allowed).

Another complication is the need to impose an order on the game play: first player 1,
then player 2, then back to player 1, and so on. A chat system doesn’t enforce any
sequencing on its users.

Figure 31-6. NetFourByFour clients and server

NetFourByFour
(Player 1)

FBFServer

1234

PlayerServer
Handler

in

FBFWatcher

handlersout

tryMove()

PickDrag
Behavior

(GUI thread)

Player 2

game board

mouse activity

This is the Title of the Book, eMatter Edition

860 | Chapter 31: A Networked Two-Person Game

The ordering criteria seems to suggest that a player (e.g., player 2) should wait until
the other player (e.g., player 1) has finished his move. The problem is that when
player 2 is notified of the finished move, it will have to duplicate most of player 1’s
processing to keep its own game state and display current. In other words, player 2’s
waiting time before its turn will be almost doubled.

Though latency is less of an issue in turn-based games, avoid a doubling in wait time.
One solution is for player 2 to be notified as soon as player 1 has selected a move and
before it’s been executed and rendered. This coding style is illustrated by the activity
diagram in Figure 31-7, where the game engines for player 1 and 2 concurrently eval-
uate player 1’s selected move.

Issues need to be considered with this technique. One is whether the selection will
result in too much overhead in the server and second player’s client software. This is
especially true if the move is rejected by player 1’s game engine, which makes the
overhead of the network communication and processing by player 2 superfluous. For
this reason, do some preliminary, fast testing of the selection before sending it over
the network.

Another concern is whether the two game engines will stay synchronized with each
other. For example, the processing of player 1’s move by player 2’s game engine may
be much quicker than in player 1’s client. Consequently, player 2 may send his turn
to player 1 before player 1 has finished the processing of his own move. Player 1’s cli-
ent must be prepared to handle “early” move messages. Of course, early moves may
arrive at player 2 from player 1.

This is one reason why it’s useful to have a separate “watcher” thread as part of the
client. Another reason is to handle server messages, such as the announcement that
the other player has disconnected, which may arrive at any time.

Figure 31-7. Concurrent processing of player 1’s move

Player
selects a
move

game engine processing

server routes
selection

selected move

Player 2’s ClientServer

update of game display

Player 1’s Client

game engine processing

update of game display

This is the Title of the Book, eMatter Edition

The Networked Tic-Tac-Toe Game | 861

Two-Person Communication Protocols
A good starting point for changing a two-person game into a networked application
is to consider the communication protocols (e.g., the sequences of messages)
required during the various stages of the game. It’s useful to consider three stages:
initialization, termination, and game play:

Initialization
In a two-person game, initialization is problematic due to the need to have two
participants before the game can start and to restrict more than two players from
joining.

Termination
This stage is entered when a player decides to stop participating in the game,
which may be due to many reasons. When a player leaves the game, the other
player must be notified.

Game play
This stage is usually the simplest to specify since it often involves the transmis-
sion of a move from one player to another.

In the following diagrams, I usually only consider the cases when player 1 starts the
communication (e.g., when player 1 sends a new move to player 2). However, the
communication patterns apply equally to the cases when player 2 initiates matters.

Initialization

The initialization stage in NetFourByFour uses the protocol shown in Figure 31-8.

Figure 31-8. Initialization stage protocol in NetFourByFour

2a

2b

1

3

connect

Player 1 handler Player 2

ok <player ID>

full (causes termination)

added <player ID>

or

initialization

This is the Title of the Book, eMatter Edition

862 | Chapter 31: A Networked Two-Person Game

The connect message is implicit in the connection created when player 1’s client
opens a socket link to the server. The handler can send back an ok message contain-
ing an assigned ID or can reject the link with a full reply. If the connection was
accepted, then an added message would be sent to the other player (if there is one).

The game will commence when the player ID value is 2 in the ok and added mes-
sages, meaning that two players are ready to compete.

Termination

The termination stage uses the protocol given in Figure 31-9.

The five conditions that cause a player to leave the game are listed at the top of
Figure 31-9. The player sends a disconnect message and breaks its link with the
server. In NetFourByFour, this doesn’t cause the player’s client to exit (though that is a
design possibility). The server sends a removed message to the other player (if one
exists), which causes it to break its link because there are now too few players.

The server will send a removed message if its socket link to player 1 closes without a
preceding disconnect warning. This behavior is required to deal with network or
machine failure.

If the handler dies, then the players will detect it by noticing that their socket links
have closed prematurely.

Game play

The game play stage is shown in Figure 31-10.

The three conditions necessary for game play to continue are shown at the top of
Figure 31-10. The selected move is sent as a try message via the server and arrives as
an otherTurn message. The otherTurn message may arrive at the player while the pre-
vious move is still being processed for reasons described above. If player 2 has sud-
denly departed, perhaps due to a network failure, then the server may send a
tooFewPlayers message back to player 1.

Figure 31-9. Termination stage protocol in NetFourByFour

1

- if game won
- if close box clicked
- if too few players
- if game is full
- if the handler/other player dies

Player 1 handler Player 2

Termination

2 removed <player ID>disconnect

(causes termination)

This is the Title of the Book, eMatter Edition

The Networked Tic-Tac-Toe Game | 863

Playing the Game
Figure 31-11 shows two NetFourByFour players in fierce competition. It looks like
player 1 is about to win.

The players have rotated their game boards in different ways, but the markers are in
the same positions in both windows.

The GUI in NetFourByFour is changed from the FourByFour game: the message text
field has been replaced by a message string which appears as an overlay at the top-
left corner of the Canvas3D window. This functionality is achieved by subclassing
the Canvas3D class to implement the mixed-mode rendering method postSwap(),
resulting in the OverlayCanvas class.

Figure 31-10. Game play stage protocol in NetFourByFour

Figure 31-11. Two NetFourByFour players

1

- if not disabled
- if enough players
- if player 1‘s turn

Player 1 handler Player 2

Game Play

try <posn>

2a

2b

otherTurn <playerID><posn>

tooFewPlayers
(causes termination)

or

(for player1)

This is the Title of the Book, eMatter Edition

864 | Chapter 31: A Networked Two-Person Game

The class diagrams for the NetFourByFour client are given in Figure 31-12, and the
server side classes appear in Figure 31-13. Only public methods are listed, and meth-
ods which are synchronized are prefixed with an S.

FBFServer is the top-level class on the server-side.

As with previous networked examples, the connections between the client and server
are unclear since the links are in terms of messages passing rather than method calls.

All the code (i.e., the NetFourByFour client and the FBFServer server)
can be found in the NetFourByFour/ directory.

Figure 31-12. Class diagrams for the NetFourByFour client

Figure 31-13. Class diagrams for the NetFourByFour server

This is the Title of the Book, eMatter Edition

The Networked Tic-Tac-Toe Game | 865

The Top-Level Server
As indicated in Figure 31-6, the FBFServer class manages a small amount of shared
data used by its two handlers: an array of PlayServerHandler references and the cur-
rent number of players.

private PlayerServerHandler[] handlers; // handlers for players
private int numPlayers;

The references allow a message to be sent to a handler by calling its sendMessage()

method:

synchronized public void tellOther(int playerID, String msg)
// send mesg to the other player
{ int otherID = ((playerID == PLAYER1) ? PLAYER2 : PLAYER1);
 if (handlers[otherID-1] != null) // index is ID-1
 handlers[otherID-1].sendMessage(msg);
}

tellOther() is called from the handler for one player to send a message to the other
player.

The numPlayers global is modified as a side effect of adding and removing a player,
and it is used to decide if enough players exist to start a game:

synchronized public boolean enoughPlayers()
{ return (numPlayers == MAX_PLAYERS); }

The Player Handlers
The PlayServerHandler thread for a client deals with the various handler messages
defined in the initialization, termination, and game play stages shown in Figures
31-8, 31-9, and 31-10.

When the thread is first created, it’s passed the socket link to the client, and I/O
streams are layered on top of it:

// globals
private FBFServer server;
private Socket clientSock;
private BufferedReader in;
private PrintWriter out;

private int playerID; // player id assigned by FBFServer

public PlayerServerHandler(Socket s, FBFServer serv)
{
 clientSock = s;
 server = serv;
 System.out.println("Player connection request");
 try {
 in = new BufferedReader(new InputStreamReader(
 clientSock.getInputStream()));

This is the Title of the Book, eMatter Edition

866 | Chapter 31: A Networked Two-Person Game

 out = new PrintWriter(clientSock.getOutputStream(), true);
 }
 catch(Exception e)
 { System.out.println(e); }
}

run() starts by carrying out the messages specified in the initialization stage of the
network communication. It calls addPlayer() in the server to add the new player.
This may fail if there are two players and a full message is sent back to the client. If
the joining is successful, then an ok message will be sent to the new player and an
added message to the other player (if one exists):

public void run()
{
 playerID = server.addPlayer(this);
 if (playerID != -1) { // -1 means player was rejected
 sendMessage("ok " + playerID); // tell player his/her ID
 server.tellOther(playerID, "added " + playerID);

 processPlayerInput();

 server.removePlayer(playerID); // goodbye
 server.tellOther(playerID, "removed " +
 playerID); // tell others
 }
 else // game is full
 sendMessage("full");

 try { // close socket from player
 clientSock.close();
 System.out.println("Player "+playerID+" connection closed\n");
 }
 catch(Exception e)
 { System.out.println(e); }
}

When processPlayer() returns, it means that the player has broken the network
link, so the server must be updated and the other player notified with a removed mes-
sage. Thus, run() finishes by carrying out the termination stage.

processPlayer() monitors the input stream for its closure of a disconnect message.
Otherwise, messages are sent to doRequest(), which deals with the game play stage
of the communication:

private void doRequest(String line)
{
 if (line.startsWith("try")) {
 try {
 int posn = Integer.parseInt(line.substring(4).trim());

 if (server.enoughPlayers())
 server.tellOther(playerID, "otherTurn " + playerID +
 " " + posn); // pass turn to others

This is the Title of the Book, eMatter Edition

The Networked Tic-Tac-Toe Game | 867

 else
 sendMessage("tooFewPlayers");
 }
 catch(NumberFormatException e)
 { System.out.println(e); }
 }
}

A try message is sent to the other player as an otherTurn message.

sendMessage() writes a string onto the PrintWriter stream going to the player. How-
ever, the method must be synchronized since it’s possible that the handler and top-
level server may call it at the same time:

synchronized public void sendMessage(String msg)
{ try {
 out.println(msg);
 }
 catch(Exception e)
 { System.out.println("Handler for player "+playerID+"\n"+e); }
}

Comparing NetFourByFour and FourByFour
Many classes in NetFourByFour are similar to those in FourByFour; this is a conse-
quence of keeping the game logic on the client side.

The Positions class, which manages the on-screen markers is unchanged from
FourByFour. PickDragBehavior still handles user picking and dragging, but reports a
selected position to NetFourByFour rather than to Board. The game data structures in
Board are as before, but the tryMove() method for processing a move and the
reportWinner() are different. WrapNetFourByFour is similar to WrapFourByFour but uti-
lizes the OverlayCanvas class rather than Canvas3D.

The NetFourByFour class is changed since the networking code for the client side is
located there. FBFWatcher is used to monitor messages coming from the server, so it is
new.

Game Initialization in the Client
The network initialization done in NetFourByFour consists of opening a connection to
the server and creating a FBFWatcher thread to wait for a response:

// globals in NetFourByFour
private Socket sock;
private PrintWriter out;

private void makeContact() // in NetFourByFour
{
 try {

This is the Title of the Book, eMatter Edition

868 | Chapter 31: A Networked Two-Person Game

 sock = new Socket(HOST, PORT);
 BufferedReader in = new BufferedReader(
 new InputStreamReader(sock.getInputStream()));
 out = new PrintWriter(sock.getOutputStream(), true);

new FBFWatcher(this, in).start(); // start watching server
 }
 catch(Exception e)
 { System.out.println("Cannot contact the NetFourByFour Server");
 System.exit(0);
 }
} // end of makeContact()

A consideration of Figure 31-8 shows that an ok or full message may be delivered
from the server. These responses, and the other possible client-directed messages, are
caught by FBFWatcher in its run() method:

public class FBFWatcher extends Thread
{
 private NetFourByFour fbf; // ref back to client
 private BufferedReader in;

 public FBFWatcher(NetFourByFour fbf, BufferedReader i)
 { this.fbf = fbf;
 in = i;
 }

 public void run()
 { String line;
 try {
 while ((line = in.readLine()) != null) {
 if (line.startsWith("ok"))
 extractID(line.substring(3));
 else if (line.startsWith("full"))
 fbf.disable("full game");
 else if (line.startsWith("tooFewPlayers"))
 fbf.disable("other player has left");
 else if (line.startsWith("otherTurn"))
 extractOther(line.substring(10));

else if (line.startsWith("added")) // don't use ID
fbf.addPlayer(); // client adds other player

 else if (line.startsWith("removed")) // don't use ID
 fbf.removePlayer(); // client removes other player
 else // anything else
 System.out.println("ERR: " + line + "\n");
 }
 }
 catch(Exception e) // socket closure will end while
 { fbf.disable("server link lost"); } // end game as well
 } // end of run()

 // other methods...
} // end of FBFWatcher class

This is the Title of the Book, eMatter Edition

The Networked Tic-Tac-Toe Game | 869

The messages considered inside run() match the communications that a player may
receive, as given in Figures 31-8, 31-9, and 31-10.

An ok message causes extractID() to extract the player ID and call NetFourByFour’s
setPlayerID() method. This binds the playerID value used throughout the client’s
execution.

A full message triggers a call to NetFourByFour’s disable() method. This is called
from various places to initiate the client’s departure from the game.

The handler for the player sends an added message to the FBFWatcher of the other
player, leading to a call of it’s NetFourByFour addPlayer() method. This increments
the client’s numPlayers counter, which permits game play to commence when equal
to 2.

Game Termination in the Client
Figure 31-9 lists five ways in which game play may stop:

• The player won.

• The close box was clicked.

• There are too few players to continue (i.e., the other player has departed).

• The game has enough participants.

• The handler or other player dies.

Each case is considered in the following sections.

The player has won

The Board object detects whether a game has been won in the same way as the
FourByFour version and then calls reportWinner():

private void reportWinner(int playerID) // in Board
{
 long end_time = System.currentTimeMillis();
 long time = (end_time - startTime)/1000;

 int score = (NUM_SPOTS + 2 - nmoves)*111 - int) Math.min(time*1000, 5000);

 fbf.gameWon(playerID, score);
}

reportWinner() has two changes: it’s passed the player ID of the winner, and it calls
gameWon() in NetFourByFour rather than write to a text field. gameWon() checks the
player ID against the client’s own ID and passes a suitable string to disable():

public void gameWon(int pid, int score) // in NetFourByFour
{
 if (pid == playerID) // this client has won

disable("You've won with score " + score);

This is the Title of the Book, eMatter Edition

870 | Chapter 31: A Networked Two-Person Game

 else
disable("Player " + pid + " has won with score " + score);

}

disable() is the core method for terminating game play for the client. It sends a
disconnect message to the server (see Figure 31-9), sets a global Boolean isDisabled

to true, and updates the status string:

synchronized public void disable(String msg) // in NetFourByFour
{ if (!isDisabled) { // client can only be disabled once
 try {
 isDisabled = true;
 out.println("disconnect"); // tell server
 sock.close();
 setStatus("Game Over: " + msg);
 // System.out.println("Disabled: " + msg);
 }
 catch(Exception e)
 { System.out.println(e); }
 }
}

disable() may be called from the client’s close box, FBFWatcher, or from Board (via
gameWon()), so it must be synchronized. The isDisabled flag means the client can
only be disabled once. Disabling breaks the network connection and makes it so fur-
ther selections have no effect on the board. However, the application is left running,
and the player can rotate the game board.

The close box was clicked

The constructor for NetFourByFour sets up a call to disable() and exit() in a win-
dow listener:

addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e)
 { disable("exiting");
 System.exit(0);
 }
});

Too few players, and the game is full

If FBFWatcher receives a tooFewPlayers or a full message from its handler, it will call
disable():

public void run() // in FBFWatcher
{ String line;
 try {
 while ((line = in.readLine()) != null) {
 if (line.startsWith("ok"))
 extractID(line.substring(3));
 else if (line.startsWith("full"))
 fbf.disable("full game");

This is the Title of the Book, eMatter Edition

The Networked Tic-Tac-Toe Game | 871

 else if (line.startsWith("tooFewPlayers"))
 fbf.disable("other player has left");
 : // other message else-if-tests
 }
 }
 catch(Exception e)
 {// exception handling... }
} // end of run()

The handler or other player has died

If the other player’s client suddenly terminates, then its server-side handler will
detect the closure of its socket and will send a removed message to the other player:

public void run() // in FBFWatcher
{ String line;
 try {
 while ((line = in.readLine()) != null) {
 if (line.startsWith("ok"))
 extractID(line.substring(3));

 // other message else-if-tests, and then...
 else if (line.startsWith("removed")) // don't use ID
 fbf.removePlayer(); // client removes other player
 // other message else-if-tests
 }
 }
 catch(Exception e) // socket closure will end while
 { fbf.disable("server link lost"); } // end game as well

} // end of run()

FBFWatcher will see the removed message and call removePlayer() in NetFourByFour.
This will decrement its number of players counter which prevents any further
selected moves from being carried out.

If the server dies then FBFWatcher will raise an exception when it reads from the
socket. This triggers a call to disable() which ends the game.

Game Play in the Client
Figure 31-7 presents an overview of typical game play using an activity diagram.
Player 1 selects a move that is processed locally while being sent via the server to the
other player to be processed.

A closer examination of this turn-taking operation is complex because it involves the
clients and the server. I’ll break it into three parts, corresponding to the swimlanes in
the activity diagram. Each part will be expanded into its own UML sequence dia-
gram, which allows more detail to be exposed.

Perhaps the most important point in this section is the usefulness of UML activity
diagrams and sequence diagrams for designing and documenting network code. A

This is the Title of the Book, eMatter Edition

872 | Chapter 31: A Networked Two-Person Game

networked application utilizes data and methods distributed across many distinct
pieces of software, linked by complex, low-level message passing mechanisms.
Abstraction tools are essential.

Player 1’s client

The sequence diagram for the left side of Figure 31-7 (player 1’s client) is shown in
Figure 31-14.

The mouse press is dealt with by PickDragBehavior in a similar way to FourByFour,
except that tryMove() is called in NetFourByFour and passed the selected position
index.

tryMove() carries out simple tests before sending a message off to the server and call-
ing doMove() to execute the game logic:

public void tryMove(int posn) // in NetFourByFour
{
 if (!isDisabled) {
 if (numPlayers < MAX_PLAYERS)
 setStatus("Waiting for player " + otherPlayer(playerID));
 else if (playerID != currPlayer)
 setStatus("Sorry, it is Player " + currPlayer + "'s turn");
 else if (numPlayers == MAX_PLAYERS) {
 out.println("try " + posn); // tell the server

Figure 31-14. Sequence diagram for player 1’s client

PickDrag
Behavior

NetFour
ByFour

Player
Server

Handler

WrapNet
FBF Board Positions

mouse
press

processStimulus()

processPress()

selectedPosn()

tryMove(posn)

- if not disabled
- if enough players
- if player 1‘s turn

“try <posn>”

tryPosn(posn, player ID)

for player 1

doMove()

tryPosn(posn,playerID)

set(posn, playerID)

playMove()

reportWinner()

- if game wongameWon(playerID, score)
disabled()

for player 1

Server-side

This is the Title of the Book, eMatter Edition

The Networked Tic-Tac-Toe Game | 873

 doMove(posn, playerID); // do it, don't wait for response
 }
 else
 System.out.println("Error on processing position");
 }
} // end of tryMove()

tryPosn() in Board is simpler than the version in FourByFour:

public void tryPosn(int pos, int playerID) // in Board
{ positions.set(pos, playerID); // change 3D marker shown at pos
 playMove(pos, playerID); // play the move on the board
}

A gameOver Boolean is no longer utilized, the isDisabled Boolean has taken its place
back in NetFourByFour. tryPosn() no longer changes the player ID since a client is
dedicated to a single player.

The playerID input argument of tryPosn() is a new requirement since this code may
be called to process moves by either of the two players.

set() in Positions is unchanged from FourByFour, and playMove() utilizes the same
game logic to update the game and test for a winning move. reportWinner() is a lit-
tle altered, as explained when considering the termination cases.

Server-side processing

The sequence diagram on the server side (Figure 31-15) shows how a try message
from player 1 is passed to player 2 as an otherTurn message.

Figure 31-15. Sequence diagram for the server

- if enough players

NetFour
ByFour

Player
Server

Handler

FBF
Server

FBF
Watcher

“try <posn>” processPlayerInput()

doRequest()

tellOther(playerID,
“otherTurn…”)

for player 1

Server-side

for player 1

Client-side

Player
Server

Handler

for player 2

“tooFewPlayers”

or
player 1

sendmessage(“otherTurn…”)

“otherTurn

<playerID>

<posn>”

for player 2

Client-side

player 1

This is the Title of the Book, eMatter Edition

874 | Chapter 31: A Networked Two-Person Game

I considered the coding behind these diagrams when I looked at the server-side
classes.

The diagram shows that the otherTurn message is received by the FBFWatcher of
player 2:

public void run() // in FBFWatcher
{ String line;
 try {
 while ((line = in.readLine()) != null) {
 if (line.startsWith("ok"))
 extractID(line.substring(3));
 : // other message else-if-tests, and then...
 else if (line.startsWith("otherTurn"))
 extractOther(line.substring(10));
 : // other message else-if-tests
 }
 }
 catch(Exception e)
 { // exception handling... }
} // end of run()

Player 2’s client

The sequence diagram for the righthand side of Figure 31-7 (player 2’s client) is
shown in Figure 31-16.

The call to extractOther() in FBFWatcher extracts the player’s ID and the position
index from the otherTurn message. It then calls doMove() in NetFourByFour:

synchronized public void doMove(int posn,int pid) //in NetFourByFour
{
 wrapFBF.tryPosn(posn, pid); // and so to Board
 if (!isDisabled) {
 currPlayer = otherPlayer(currPlayer); // player's turn over
 if (currPlayer == playerID) // this player's turn now
 setStatus("It's your turn now");
 else // the other player's turn
 setStatus("Player " + currPlayer + "'s turn");
 }
}

doMove() and the methods it calls (e.g., tryPosn() in WrapNetFBF and Board) are used
by the client to execute its moves and to execute the moves of the other player. The
methods all take the player ID as an argument, so the owner of the move is clear.

As mentioned before, the client could still be processing its move when a request to
process the opponent’s move comes in. This situation is handled by the use of the
synchronized keyword with doMove(): a new call to doMove() must wait until the cur-
rent call has finished.

This is the Title of the Book, eMatter Edition

The Networked Tic-Tac-Toe Game | 875

Writing on the Canvas
OverlayCanvas is a subclass of Canvas3D which draws a status string onto the canvas
in its top-left corner (see Figure 31-11). The display is implemented as an overlay,
meaning that the string is not part of the 3D scene; instead, it’s resting on “top” of
the canvas. This technique utilizes Java 3D’s mixed mode rendering, which gives the
programmer access to Java 3D’s rendering loop at different stages in its execution.

The client makes regular calls to setStatus() in NetFourByFour to update a global sta-
tus string:

synchronized public void setStatus(String msg) //in NetFourByFour
{ status = msg; }

This string is periodically accessed from the OverlayCanvas object by calling
getStatus():

synchronized public String getStatus() // in NetFourByFour
{ return status; }

The get and set methods are synchronized—the calls from OverlayCanvas may come
at any time and should not access the string while it’s being updated.

Figure 31-16. Sequence diagram for player 2’s client

FBF
Watcher

Server-side

Player
Server

Handler

for player 2

“otherTurn

<playerID>

<posn>”

player 1

NetFour
ByFour

WrapNet
FBF Board Positions

run()

extractOther()

doMove(posn,

<playerID>)

for player 1
tryPosn(posn,

<playerID>) tryPosn(posn,

<playerID>)

- if posn is
unoccupied

set(posn,<playerID>)

playMove()

reportWinner()

- if game wongameWon(playerID, score)

disabled()

This is the Title of the Book, eMatter Edition

876 | Chapter 31: A Networked Two-Person Game

The OverlayCanvas object is created in the constructor of WrapNetFBF, in the usual
way that a Canvas3D object is created:

GraphicsConfiguration config =
 SimpleUniverse.getPreferredConfiguration();

OverlayCanvas canvas3D = new OverlayCanvas(config, fbf);
add("Center", canvas3D);
canvas3D.setFocusable(true); // give focus to the canvas
canvas3D.requestFocus();

The only visible difference is the passing of a reference to the NetFourByFour object
into the OverlayCanvas constructor (the fbf variable). This is used by OverlayCanvas

to call the getStatus() method in NetFourByFour.

Mixed mode rendering

Canvas3D provides four methods for accessing Java 3D’s rendering loop: preRender(),
postRender(), postSwap(), and renderField(). By default, these methods have empty
implementations and are called automatically at various stages in each cycle of the
rendering loop. I can utilize them by subclassing Canvas3D and by providing imple-
mentations for the required methods.

Here are the four methods in more detail:

preRender()

Called after the canvas has been cleared and before any rendering is carried out
at the start of the current rendering cycle.

postRender()

Called after all the rendering is completing but before the buffer swap. This
means the current rendering has not yet been placed on screen.

postSwap()

Called after the current rendering is on the screen (i.e., after the buffer has been
swapped out to the frame) at the end of the rendering cycle.

renderField()

Useful in stereo rendering. It’s called after the left eye’s visible objects are ren-
dered and again after the right eye’s visible objects are rendered.

Drawing on the overlay canvas

postSwap() is used to draw the updated status string on screen:

// globals
private final static int XPOS = 5;
private final static int YPOS = 15;
private final static Font MSGFONT = new Font("SansSerif", Font.BOLD, 12);

This is the Title of the Book, eMatter Edition

The Networked Tic-Tac-Toe Game | 877

private NetFourByFour fbf;
private String status;

public void postSwap()
{
 Graphics2D g = (Graphics2D) getGraphics();
 g.setColor(Color.red);
 g.setFont(MSGFONT);

 if ((status = fbf.getStatus()) != null) // it has a value
 g.drawString(status, XPOS, YPOS);

 // this call is made to compensate for the javaw repaint bug,
 Toolkit.getDefaultToolkit().sync();
} // end of postSwap()

The call to getStatus() in NetFourByFour may return null at the start of the client’s
execution if the canvas is rendered before status gets a value.

The repaint() and paint() methods are overridden:

public void repaint()
// Overriding repaint() makes the worst flickering disappear
{ Graphics2D g = (Graphics2D) getGraphics();
 paint(g);
}

public void paint(Graphics g)
// paint() is overridden to compensate for the javaw repaint bug
{ super.paint(g);
 Toolkit.getDefaultToolkit().sync();
}

repaint() is overridden to stop the canvas from being cleared before being
repainted, which otherwise causes a nasty flicker.

The calls to sync() in postSwap() and paint() are bug fixes to avoid painting prob-
lems when using javaw to execute Java 3D mixed-mode applications.

This is the Title of the Book, eMatter Edition

878

Chapter 32CHAPTER 32

A Networked Virtual Environment

This chapter utilizes the threaded client/server model, which first appeared in the
multiplayer chat system in Chapter 30 and now appears in the service of a net-
worked virtual environment (NVE).

When clients connect to the server, they appear as a 3D sprite in a shared world
filled with sprites representing other users. The scenery is the familiar checkerboard
seen in many of the earlier Java 3D examples, along with a castle and some red poles.
Users can move their sprites around the world but cannot pass through the poles.

Figure 32-1 shows the NetTour3D application being run by two clients. Each window
is the clients’ view of the shared world, represented by a third-person camera that
follows the clients’ sprite as it moves. All the visitors use the same robot image, but
each user’s name floats above their robot.

Key features demonstrated include:

Local and distributed sprites
Each user is represented by two kinds of sprites: a local sprite on the users’
machine, and distributed sprites present on every other machine. When users
moves their local sprites, the distributed sprites are updated as well via messages

Figure 32-1. Two visitors to the NetTour3D world

This is the Title of the Book, eMatter Edition

Background on NVEs | 879

sent from the client, through the server, and finally to the other clients. The local
and distributed sprites are subclasses of a Sprite3D class, so they share a great
deal of functionality.

Fast local updates
Local sprites are updated directly by the client, rather than by transmitting a
message to the server and waiting for it to be echoed back. This removes latency
delays for local sprite updates. The sprite’s changes are transmitted to the server
but only for delivery to the other clients

Fat clients, thin server
A copy of the world is directly created by every client, rather than transmitted to
the client from the server. This reduces the data flow sent over the network at
the expense of duplicating information about the world on every client.

Each client is essentially a version of the Tour3D application described
in Chapter 18, with additional networking code lifted from the
threaded client/server chat application in Chapter 30. Read those
chapters before reading this one.

Since the clients do most of the work, the server is demoted to little more than a
mail boy, routing messages between its high-powered clients.

Activity diagram design
As in the last chapter, considerable use if made of activity diagrams to specify cli-
ent activity (joining the world, moving about, leaving) and to depict the commu-
nication between the clients via the server

A simplification in the application is that sprites cannot communicate with each
other. However, adding a multiplayer chat component to NetTour3D would be easy.
NetTour3D is a simple NVE, so I’ll begin by describing NVEs. Information on NVEs
coded in Java and Java 3D are given at the end of the chapter.

Background on NVEs
Technically speaking, an NVE is a computer-based artificial world of 3D spaces, vis-
ited by geographically dispersed users who interact and collaborate with each other
and with objects/entities local to the world. The world’s 3D spaces and their objects
may be maintained/hosted by numerous computers spread around the network. In
other words, it’s an online place to hang out, to be seen, and to fight to the death
with swords and laser cannons.

The NVE is a descendant of the Multiple-User Dungeons (MUDs), text-based role-
playing adventure games that achieved enormous popularity from the mid-1970s
onward. In the 1990s, MUDs object oriented (MOOs) started to use object-oriented

This is the Title of the Book, eMatter Edition

880 | Chapter 32: A Networked Virtual Environment

programming techniques to implement their worlds, 2D and 3D chat environments
appeared, and the first multiplayer games were released.

The current in-vogue gaming acronyms are MMORPG (Massively Multiplayer
Online Role-Playing Game), MMOG, and MMO (both standing for Massive Multi-
player Online Game), typified by EverQuest, Asheron’s Call, Ultima Online, and a
growing list of others. Some sites maintain lists, news, FAQs, and reviews:

• MPOGD.com. The Multiplayer Online Games Directory (http://www.mpogd.com/).

• OMGN.com. The Online Multiplayer Gaming Network (http://www.omgn.com/).

• MMORPG.com (http://www.mmorpg.com/).

Aside from the game-playing potential for NVEs, they’re the subject of much aca-
demic research. In the 1990s, DARPA’s SIMNET project developed the Distributed
Interactive Simulation (DIS) protocol for modeling real-world scenarios (usually
military-related but also complex, distributed applications such as Air Traffic Con-
trol systems). DIS has greatly influenced the communication protocols utilized in
NVEs and the utilization of real-time within the worlds.

A follow-up to DIS is the High Level Architecture (HLA), focusing on support for sim-
ulations composed from multiple distributed components (see https://www.dmso.mil/
public/transition/hla/). The HLA offers federation rules to govern the interactions
between components, and numerous management tools, called Run-Time Infrastruc-
ture (RTI) services. These include time management (e.g., federated clocks), data dis-
tribution management (e.g., to filter user messages), and object ownership tools.

Another source of ideas comes from Collaborative Virtual Environments (CVEs),
which emphasize human interaction in collaborative working frameworks when the
users are at different physical locations.

The Elements of an NVE
The most immediately noticeable elements of an NVE are spaces, users, objects, and
views. Less evident are the notions of consistency, real-time, dead reckoning, secu-
rity, and scalability.

NVEs are network applications, so they must deal with the network
challenges described in Chapter 29: latency, bandwidth, reliability,
protocol, and topology.

Spaces

The 3D spaces in an NVE define the world’s topology. A space may be a large com-
mon area (a landscape, playground, street), a smaller private space for select groups
(e.g., a conference room, gym, hall), or a place for individual interactions (an office, a
kitchen). Spaces may be unchanging, or privileged users may be able to reconfigure

This is the Title of the Book, eMatter Edition

Background on NVEs | 881

them, delete them, or create new ones. Each space has a set of attributes, privileges,
and/or security features (e.g., passwords) that govern who can use it and in what
ways.

The largest granularity of spaces are often known as zones and play an important role
in the underlying implementation of the NVE. In Ultima Online and EverQuest,
zones are supported by different servers, so a user who moves between zones will
move between servers. This approach lends itself to load balancing, though a popu-
lar zone will still cause overloading. In Asheron’s Call, portal storming is a mecha-
nism for “teleporting” users away from a high-traffic zone to a randomly selected
destination. Zones make message filtering easier since users only need to receive
information related to their current zone.

Zones may be duplicated to deal with the popularity of a particular space (e.g., the
chat area, the dragon’s lair), with duplicates known as shards. Duplication may
make the overall system more fault-tolerant since users can be moved from a failed
shard to another copy. A drawback is that friends may believe themselves to be in the
same game space, but they won’t meet since they’re located in different shards of that
space.

Users

Users in an NVE are visually represented by avatars, created by users when they first
join the world. At the implementation level, a user may be denoted by two kinds of
avatar—a local avatar present on the player’s own machine, and a ghost avatar
employed on all the other machines connected to the world. The avatars look the
same on the screen; the differences lie at the communication layer. A local avatar
may be controlled directly by the user without the overhead of the communication
passing through a server first. A ghost avatar will require its state and behavior
updates to be delivered over the network, which introduces the issue of latency.

NVEs frequently distinguish between different groups of users (e.g., novices, gurus,
farmers) with corresponding differences in their abilities to affect spaces, objects, and
other users. Differing abilities lead to users forming groups to collaborate on common
tasks. A task may be a CVE-style activity such as report writing, or a gaming-style
objective such as treasure seeking. Collaboration usually requires a richer communi-
cations protocol to support forms of interaction such as negotiation, brokering, bar-
gaining, contracts, task division, and result combination.

Objects

Objects in a space can be classified in various ways. Some objects may never change,
such as buildings, signposts, and street fittings, and others may be mobile but still
passive (e.g., coins, maps). Movement in the world may require a corresponding
implementation level movement of the object’s representation between machines.
Objects may react when a user “triggers” them—for example, a door opening when a

This is the Title of the Book, eMatter Edition

882 | Chapter 32: A Networked Virtual Environment

user touches it. A dynamic object will have its own behavior, often AI-based, allow-
ing richer interactions with users, which may be initiated by the object.

Objects are one of the ways that users communicate. This is done by giving objects
to each other, by making copies for others, or by dividing a single object into smaller
pieces.

Views

Views govern how a client sees a space, objects, or other users. Most multiplayer
games are first-person-oriented, so the player sees little of his own avatar. However,
each user will be able to employ several views into the space, which can be dynami-
cally adjusted. Views may be abstractions, as with maps showing player activities or
a list of objects currently being carried by the player.

Interest management permits a player to subscribe and unsubscribe to the reception
of messages concerning other users, objects, or spaces. For example, when a user
changes position, all the subscribed players will be notified. IP multicasting is often
utilized to implement this mechanism, though the large number of users and objects
in a world may mean that the number of available multicast groups is exhausted.
Zone-based notification schemes are more viable due to the relatively small number
of zones in a world. Only users currently in the zone will receive updates when some-
thing changes in that zone.

Consistency

Consistency states that all users should see the same sequence of events in the same
order. For instance, if user X walks through a door and user Y shoots a gun, then X,
Y, and all the other users in the vicinity should see that same sequence. The problem
is that the events may have occurred on geographically separated machines and that
event details must be sent between the player’s machines by message passing. The
presentation of these events to every user in the same order implies that they can be
temporally ordered. This means timestamping the events on different machines with
clocks that are synchronized.

Fortunately, not all users require the same level of consistency. In the above exam-
ple, only users close to X and Y require complete consistency. Other users will
receive the events, but their ordering may not be so critical.

Real-time

Real-time requirements mean that when an event occurs at time t for one user, other
users should see that event at time t as well. This assumes a globally consistent logi-
cal clock, usually implemented using synchronized local clocks on each machine.

Real-time requires assumptions about typical network latency and reliability. For
example, bucket synchronization relies on the setting of a suitable playback delay,

This is the Title of the Book, eMatter Edition

Background on NVEs | 883

derived from the network latency. If the latency increases above 100 ms, as it will
over larger networks, the delay will need to be increased. This will further retard
event processing, including events initiated by users on their own machine. The
increased delay will degrade the application’s apparent response time and will
become unacceptable to the user.

Another aspect of the problem is the likelihood of packet loss when utilizing UDP
transmission. Moving to TCP is often ruled out since its guaranteed delivery can
affect latency time severely.

Dead reckoning

A popular solution to the problems with real-time support is to combine UDP,
timestamping, and related algorithms with dead reckoning (also known as predic-
tive modeling). The basic idea is that each client runs simulations of the other clients
in the NVE. When it comes time to update the global state on the machine, any
missing data from other clients will be replaced by extrapolations taken from the
simulations of those clients. Therefore, delays caused by latency and lost data are
hidden.

The client may run a simulation of itself and regularly compare its actual state with
the one generated by the simulation. When the differences between them become
too great, it can send a state update message to its peers and ask them to correct their
details for the client. Consequently, state messages will probably need to be sent out
less often, reducing network congestion.

Dead reckoning was first introduced in DARPA’s SIMNET project and was mostly
concerned with updating the position of entities. For instance, the current position
of an object (e.g., a tank) could be extrapolated by using its last known position and
velocity or by using position, velocity, and acceleration information.

Other dead reckoning algorithms take the orientation of the entity (i.e., its roll,
pitch, heading) into account, and handle moving subparts. A recent DARPA initia-
tive, the Advanced Distributed Simulation (ADS) architecture, introduced predictive
contracts, which encourage extrapolations using non-physics-based equations and a
wider range of object attributes. The drawback with mathematical complex algo-
rithms is the increased cost of their calculation.

A fundamental problem with dead reckoning is its assumption that an entity’s state
change (e.g., its movement) is predictable. This is often false for user avatars in an
NVE. Another issue is deciding when a simulated state and actual state are suffi-
ciently different to warrant the sending of update messages. If the difference thresh-
old is too large, then the client’s ghost avatar may undergo a noticeable change in
position (or other attribute) when the update message is processed. If the threshold
is too small, then unnecessary messages will be sent out contributing to network
congestion.

This is the Title of the Book, eMatter Edition

884 | Chapter 32: A Networked Virtual Environment

The means by which a simulated state is changed to the correct value is called con-
vergence. The simplest technique is to change the state in a single step, causing the
avatar to jump, jitter, or snap to a new state. Other approaches rest on the idea of
gradually interpolating between the simulated state and new one.

Security

NVE security takes many forms. Within the world, security determines how users
behave with each other and how they interact with spaces and objects. Active objects
must be monitored since they have their own behavior and may be able to move
between client and server machines.

Security is usually distributed. Typically, there’s a connection manager that new
users must deal with before they enter the world. Internal world security is handled
by the servers responsible for each zone, and/or by the client software. The draw-
back with delegating security to the client is the possibility that it may be circum-
vented by hackers.

Scalability

NVE scalability is a complex problem since an increase in world size often makes
implementations based upon a single server inadequate. The typical solution used by
pay-for-play models, such as EverQuest and Ultima Online, is to use multiple servers,
each managing a zone, and to use a connection manager to supervise user admission.

The zoning metaphor allows issues like consistency management, message volumes,
and sharing to be kept under control. Zones may be duplicated across several servers
to improve load balancing, dissuade some forms of hacker attack, and act as back-
ups if a server fails. Multiple servers can be geographically dispersed to help reduce
latency since international packets transfer times can easily extend beyond 200 ms.
Systems may utilize peer-to-peer communication for aspects of the game that don’t
need monitoring (e.g., chatting).

An Overview of NetTour3D
Figure 32-2 shows the main objects involved in a NetTour3D world.

The application uses a threaded client/server model, much like the threaded chat
application in Chapter 30.

The NetTour3D application is the client. It creates a WrapNetTour3D object to build the
world and to handle communication with the TourServer server. The world consists
of a checkerboard, background, lighting, and scenery loaded from a tour file with the
help of a PropManager object (first used in Chapter 16). No 3D objects or images
need to be transferred over the network; all the necessary 3D models are present
on the client.

This is the Title of the Book, eMatter Edition

An Overview of NetTour3D | 885

WrapNetTour3D starts a TouristControls object to monitor the client’s key presses,
which move the client’s local sprite (the ones colored blue in Figure 32-1) or adjust
the third-person camera. TouristControls is unchanged from the Tour3D example in
Chapter 18. WrapNetTour3D sends messages to the server, and the monitoring of mes-
sages coming from the server is delegated to a TourWatcher object. Most of these mes-
sages will be related to the creation and movement of distributed sprites (the sprites
representing other clients, colored orange in Figure 32-1). TourWatcher manages these
sprites and updates them in response to the server’s messages.

TourServer creates a TourServerHandler thread for each client who connects to it and
stores information about the connections in a shared TourGroup object in an ArrayList
of TouristInfo objects. The main task of the server is to accept a message from one
client and broadcast it to the others.

Class Diagrams for NetTour3D
Figure 32-3 shows class diagrams for the NetTour3D client application and the
TourServer server. Only the class names are shown. Most of the classes in Figure 32-3
have been summarized.

CheckerFloor and ColouredTiles create the checkerboard floor. PropManager loads the
scenery, and Obstacles sets up the obstacles specified in a tour file.

Figure 32-2. Objects in a NetTour3D world

other clients

virtual world

WrapNetTour3D
(client 1)

TourServer

5555

in

Tour Watcher

TouristInfo
objects

outkey
presses

Tourist Controls

TourGroup

 TourServer Handlersnm ref

client 1 sprite

nm ref

client 2

client 2 sprite
visitors

This is the Title of the Book, eMatter Edition

886 | Chapter 32: A Networked Virtual Environment

All the code for this example (the NetTour3D client and TourServer
server) is in the NetTour3D/ directory.

NetTour3D as a Simple NVE
The key elements that make up a fully featured NVE are spaces, users, objects, views,
and the notions of consistency, real-time, dead reckoning, security, and scalability.
How does NetTour3D measure up against these?

NetTour3D utilizes only one space (the checkerboard), and users all have the same
appearance (but different names). The local and ghost avatars idea is present, called
local and distributed sprites in this chapter. TourSprite manages the local sprite, and
DistTourSprite manages a distributed sprite. The only view is a third-person cam-
era. Objects in the form of scenery and obstacles can be easily added to the world,
but they are static (not mobile, reactive, or intelligent). There is no way for NetTour3D

Figure 32-3. Class diagrams for NetTour3D and TourServer

This is the Title of the Book, eMatter Edition

Scene Creation on the Client | 887

users to interact. None of the NVE ideas of consistency, real-time, dead reckoning,
security, and scalability are addressed here.

A TCP/IP client/server communication model is employed in NetTour3D, whereas a
more realistic approach would include UDP multicasting and peer-to-peer elements
and deploy some kind of connection manager.

Scene Creation on the Client
createSceneGraph() starts the main tasks of WrapNetTour3D: the 3D scene is created,
contact is made with the server, and a local sprite is initialized:

void createSceneGraph(String userName, String tourFnm,
 double xPosn, double zPosn)
{ sceneBG = new BranchGroup();
 bounds = new BoundingSphere(new Point3d(0,0,0), BOUNDSIZE);

 // allow clients to be added/removed from the world at run time
 sceneBG.setCapability(Group.ALLOW_CHILDREN_READ);
 sceneBG.setCapability(Group.ALLOW_CHILDREN_WRITE);
 sceneBG.setCapability(Group.ALLOW_CHILDREN_EXTEND);

 lightScene(); // add the lights
 addBackground(); // add the sky
 sceneBG.addChild(new CheckerFloor().getBG()); // add the floor

 makeScenery(tourFnm); // add scenery and obstacles

makeContact(); // contact server (after Obstacles object created)

addTourist(userName, xPosn, zPosn);
 // add the user-controlled 3D sprite
 sceneBG.compile(); // fix the scene
}

Capability bits are set to allow distributed sprites to be added to and removed from
the scene at runtime.

makeContact() sets up an input and output stream to the server and passes the input
stream to TourWatcher to monitor. TourWatcher creates distributed sprites when
requested by the server, and so must know about the obstacles present in the world:

private void makeContact()
{ try {
 sock = new Socket(HOST, PORT);
 in = new BufferedReader(new InputStreamReader(sock.getInputStream()));
 out = new PrintWriter(sock.getOutputStream(), true);

 new TourWatcher(this, in, obs).start(); // watch server msgs
 }
 catch(Exception e)

This is the Title of the Book, eMatter Edition

888 | Chapter 32: A Networked Virtual Environment

 { System.out.println("No contact with server");
 System.exit(0);
 }
}

addTourist() creates a TourSprite object and connects a TouristControls object to it
so key presses can make it move and rotate:

private void addTourist(String userName,double xPosn,double zPosn)
{
 bob = new TourSprite(userName, "Coolrobo.3ds", obs, xPosn, zPosn, out);
 sceneBG.addChild(bob.getBG()); // local sprite

 ViewingPlatform vp = su.getViewingPlatform();
 TransformGroup viewerTG = vp.getViewPlatformTransform();

 TouristControls tcs = new TouristControls(bob, viewerTG);
 tcs.setSchedulingBounds(bounds); // sprite's controls

 sceneBG.addChild(tcs);
}

The TourSprite object is passed a reference to the output stream going to the server.
The object can then notify the server of its creation, and when it moves or rotates.
The server will tell the other clients, which can affect the distributed sprite represent-
ing the user.

Defining Sprites
Sprite3D is the superclass for the local sprite class, TourSprite, and the distributed
sprite class, DistTourSprite. Figure 32-4 shows the class hierarchy and all its public
methods.

TourSprite and DistTourSprite offer a simplified interface for Sprite3D, setting the
sprite’s rate of movement and rotation increment. TourSprite contains networking
code to send its details to the server.

The version of Sprite3D in NetTour3D is similar to the one in Tour3D. The main differ-
ences are in the subgraph created for a sprite, which looks like Figure 32-5.

The subgraph has a BranchGroup node at its top (objectBG), with capabilities set to
make the branch detachable. This permits the sprite to be removed from the scene
when the sprite’s client leaves the world.

The other change is the addition of an OrientedShape3D shape holding the client’s
name and being set to rotate around the y-axis to follow the client’s viewpoint. The
shape is added to the TransformGroup above the Switch node, which means that the
sprite’s name will remain on the screen if it is made inactive (invisible). The idea is
that the sprite is unavailable but still present in the world.

This is the Title of the Book, eMatter Edition

Defining Sprites | 889

Figure 32-4. The sprite classes

Figure 32-5. The subgraph for the Sprite3D sprite

BG objectBG

TG

Switch

objectTG

visSwitch

moveTG

rotTG

scaleTG

objBoundsTG

BG and
shape(s)

TG

created by the
PropManager

OrientedShape3D

Geometry

Text3D

Appearance

nameTG

This is the Title of the Book, eMatter Edition

890 | Chapter 32: A Networked Virtual Environment

The subgraph for the 3D model, together with its adjustments in size, position, and
orientation, are handled by a PropManager object. Each sprite on the client uses a
PropManager object to load a copy of the model.

The subgraph shown in Figure 32-5 is built in Sprite3D’s constructor and makeName().

The movement and rotation code in Sprite3D works the same way as in Tour3D:
changes are made to the top-level TransformGroup, objectTG. Moves are first checked
with the Obstacles object before being carried out.

Local Sprites
TourSprite offers a simplified interface for moving and rotating a local sprite. It com-
municates movements, rotations, and its initial creation to the server. The complete
class appears in Example 32-1.

Example 32-1. The TourSprite class

public class TourSprite extends Sprite3D
{
 private final static double MOVERATE = 0.3;
 private final static double ROTATE_AMT = Math.PI / 16.0;

 PrintWriter out; // for sending commands to the server

 public TourSprite(String userName, String fnm, Obstacles obs,
 double xPosn, double zPosn, PrintWriter o)
 { super(userName, fnm, obs);
 setPosition(xPosn, zPosn);
 out = o;
 out.println("create " + userName + " " + xPosn + " " + zPosn);
 }

 // moves
 public boolean moveForward()
 { out.println("forward");
 return moveBy(0.0, MOVERATE);
 }

 public boolean moveBackward()
 { out.println("back");
 return moveBy(0.0, -MOVERATE);
 }

 public boolean moveLeft()
 { out.println("left");
 return moveBy(-MOVERATE,0.0);
 }

 public boolean moveRight()
 { out.println("right");

This is the Title of the Book, eMatter Edition

Local Sprites | 891

Creating a Local Sprite
WrapNetTour3D creates a local sprite by invoking a TourSprite object and adding it to
the scene graph. As part of TourSprite’s construction, a create n x z message is sent
to the server; n is its client’s name, and (x, z) is its position on the XZ plane.

The pattern of communication following on from the sending of the "create" mes-
sage is shown by the activity diagram in Figure 32-6.

 return moveBy(MOVERATE,0.0);
 }

 // rotations in Y-axis only
 public void rotClock()
 { out.println("rotClock");
 doRotateY(-ROTATE_AMT); // clockwise
 }

 public void rotCounterClock()
 { out.println("rotCClock");
 doRotateY(ROTATE_AMT); // counter-clockwise
 }

} // end of TourSprite

Figure 32-6. Creating a local sprite

Example 32-1. The TourSprite class (continued)

create
world

create local
Tour Sprite

add sprite for
n at (x,z)

"create n x z" message

Client <name> Other ClientsServer

"create n x z" message1
2’

n = name
x = x position
z = z position

broadcast
"create" and
request for
details

"detailsFor n1 x1 z1 r" message

n1 = name of sending client

collect details
on local sprite

"wantDetails A P" message

2

A = <name>
 IP address
P = port no.

send sprite
details for
client n1 to
client at (A,P)

"detailsFor A P x1 z1 r" message

3

x1 = x position
z1 = z position
r = rotation

add DistTour
Sprite for client n1

4

This is the Title of the Book, eMatter Edition

892 | Chapter 32: A Networked Virtual Environment

The create message must be broadcast by the server to all the other current clients,
as represented by the message labeled 2´ in Figure 32-6. The new client must popu-
late its copy of the world with distributed sprites representing the other users. This
task is started by the server sending a wantDetails message to all the other clients
(message 2), which triggers a series of detailsFor replies (message 3) passed back to
the new client as messages of type 4.

The reception of the "create" and "wantDetails" messages in the other clients are
handled by their TourWatcher threads and TourWatcher in the new client deals with
the "detailsFor" replies. Each "detailsFor" message causes a distributed sprite (an
object of the DistTourSprite class) to be added to the client’s world.

Moving and Rotating a Local Sprite
Each movement and rotation of the local sprite has the side effect of sending a mes-
sage to the server, as illustrated by the activity diagram in Figure 32-7.

The various messages are listed in the box in Figure 32-7; their transmission can be
seen in the code for TourSprite given earlier.

The server must broadcast the messages to all the other clients so the distributed
sprites representing the user can be moved or rotated. The message is prefixed with
the user’s name before being delivered to the TourWatcher threads of the other cli-
ents. This permits the TourWatchers to determine which distributed sprite to affect.

The Departure of a Local Sprite
When the users want to leave the world, they will click the close box of the
NetTour3D JFrame. This triggers a call to closeLink() in the WrapNetTour3D object:

public void closeLink()
{ try {

Figure 32-7. Moving/rotating a local sprite

Receive a
key press

move or
rotate local
Tour sprite

broadcast
message
with name

move or rotate DistTour
sprite for name

move/rot message

Client <name> Other ClientsServer

<name> move/rot message

1 2

forward
back
left
right
rotCClock
rotClock

This is the Title of the Book, eMatter Edition

Watching the Server | 893

 out.println("bye"); // say bye to server
 sock.close();
 }
 catch(Exception e)
 { System.out.println("Link terminated"); }

 System.exit(0);
}

The "bye" message causes the server to notify all the other clients of the user’s depar-
ture, as shown by the activity diagram in Figure 32-8.

The TourWatcher threads for each of the clients receives a bye message and uses the
name prefix to decide which of the distributed sprites should be detached from the
scene graph.

Watching the Server
A TourWatcher thread monitors the server’s output, waiting for messages. The mes-
sage types are listed below with a brief description of what the TourWatcher does in
response:

create n x z

Create a distributed sprite in the local world with name n at position (x, 0, z). By
default, the sprite will face forward along the positive z-axis.

wantDetails A P

The client at IP address A and port P is requesting information about the local
sprite on this machine. Gather the data and send the data back in a “detailsFor”
message.

detailsFor n1 x1 z1 r

Create a distributed sprite with the name n1 at location (x1,0,z1), rotated r radi-
ans away from the positive z-axis.

Figure 32-8. The departure of a local sprite

close box
clicked

exit

broadcast bye
message
with name

remove DistTour
sprite for name

"bye" message

Client <name> Other ClientsServer

"<name> bye" message

1 2

This is the Title of the Book, eMatter Edition

894 | Chapter 32: A Networked Virtual Environment

n <move or rotation command>

<command> can be one of forward, back, left, right, rotCClock, or rotClock. The
distributed sprite with name n is moved or rotated. rotCClock is a counter-clock-
wise rotation, and rotClock is clockwise.

n bye

A client has left the world, so the distributed sprite with name n is detached
(deleted).

The activities using these messages are shown in Figures 32-6, 32-7, and 32-8.

Almost all the messages are related to distributed sprites in the local world: creation,
movement, rotation, and deletion. Therefore, these tasks are handled by TourWatcher,
which maintains its sprites in a HashMap, mapping sprite names to DistTourSprite

objects:

private HashMap visitors; // stores (name, sprite object) pairs

The run() method in TourWatcher accepts a message from the server and tests the
first word in the message to decide what to do:

public void run()
{ String line;
 try {
 while ((line = in.readLine()) != null) {
 if (line.startsWith("create"))

createVisitor(line.trim());
 else if (line.startsWith("wantDetails"))

sendDetails(line.trim());
 else if (line.startsWith("detailsFor"))

receiveDetails(line.trim());
 else

doCommand(line.trim());
 }
 }
 catch(Exception e) // socket closure causes termination of while
 { System.out.println("Link to Server Lost");
 System.exit(0);
 }
}

Creating a Distributed Sprite
A distributed sprite is made in response to a create n x z message by creating a
DistTourSprite object with name n at location (x, 0, z) oriented along the positive
z-axis. The name and sprite object are stored in the visitors HashMap for future
reference.

private void createVisitor(String line)
{
 StringTokenizer st = new StringTokenizer(line);

This is the Title of the Book, eMatter Edition

Watching the Server | 895

 st.nextToken(); // skip "create" word
 String userName = st.nextToken();
 double xPosn = Double.parseDouble(st.nextToken());
 double zPosn = Double.parseDouble(st.nextToken());

 if (visitors.containsKey(userName))
 System.out.println("Duplicate name -- ignoring it");
 else {
 DistTourSprite dtSprite =
 w3d.addVisitor(userName, xPosn, zPosn, 0);
 visitors.put(userName, dtSprite);
 }
}

A potential problem is if the proposed name has been used for another sprite.
TourWatcher only prints an error message to standard output; it would be better if a
message was sent back to the originating client.

The Distributed Sprites Class
DistTourSprite is a simplified version of TourSprite: its sprite movement and rota-
tion interface is the same as TourSprite’s, but DistTourSprite doesn’t send messages
to the server. The complete class appears in Example 32-2.

Example 32-2. The DistTourSprite class

public class DistTourSprite extends Sprite3D
{
 private final static double MOVERATE = 0.3;
 private final static double ROTATE_AMT = Math.PI / 16.0;

 public DistTourSprite(String userName, String fnm, Obstacles obs,
 double xPosn, double zPosn)
 { super(userName, fnm, obs);
 setPosition(xPosn, zPosn);
 }

 // moves
 public boolean moveForward()
 { return moveBy(0.0, MOVERATE); }

 public boolean moveBackward()
 { return moveBy(0.0, -MOVERATE); }

 public boolean moveLeft()
 { return moveBy(-MOVERATE,0.0); }

 public boolean moveRight()
 { return moveBy(MOVERATE,0.0); }

 // rotations in Y-axis only
 public void rotClock()
 { doRotateY(-ROTATE_AMT); } // clockwise

This is the Title of the Book, eMatter Edition

896 | Chapter 32: A Networked Virtual Environment

Moving and Rotating a Distributed Sprite
doCommand() in TourWatcher distinguishes between the various move and rotation
messages and detects bye:

private void doCommand(String line)
{
 StringTokenizer st = new StringTokenizer(line);
 String userName = st.nextToken();
 String command = st.nextToken();

 DistTourSprite dtSprite =
 (DistTourSprite) visitors.get(userName);
 if (dtSprite == null)
 System.out.println(userName + " is not here");
 else {
 if (command.equals("forward"))
 dtSprite.moveForward();
 else if (command.equals("back"))
 dtSprite.moveBackward();
 else if (command.equals("left"))
 dtSprite.moveLeft();
 else if (command.equals("right"))
 dtSprite.moveRight();
 else if (command.equals("rotCClock"))
 dtSprite.rotCounterClock();
 else if (command.equals("rotClock"))
 dtSprite.rotClock();
 else if (command.equals("bye")) {
 System.out.println("Removing info on " + userName);
 dtSprite.detach();
 visitors.remove(userName);
 }
 else
 System.out.println("Do not recognise the command");
 }
} // end of doCommand()

All of the commands start with the sprite’s name, which is used to look up the
DistTourSprite object in the visitors HashMap. If the object cannot be found then
TourWatcher notifies only the local machine; it should probably send an error mes-
sage back to the original client.

The various moves and rotations are mapped to calls to methods in the
DistTourSprite object. The bye message causes the sprite to be detached from the
local world’s scene graph and removed from the HashMap.

 public void rotCounterClock()
 { doRotateY(ROTATE_AMT); } // counter-clockwise

} // end of DistTourSprite class

Example 32-2. The DistTourSprite class (continued)

This is the Title of the Book, eMatter Edition

Watching the Server | 897

Responding to Sprite Detail Requests
Figure 32-6 shows that a wantDetails A P message causes TourWatcher to collect infor-
mation about the sprite local to this machine. The details are sent back as a
detailsFor A P x1 z1 r message to the client at IP address A and port P. The infor-
mation states that the sprite is currently positioned at (x1, 0, z1) and rotated r radi-
ans away from the positive z-axis.

TourWatcher doesn’t manage the local sprite, so passes the wantDetails request to the
WrapNetTour3D object for processing:

private void sendDetails(String line)
{ StringTokenizer st = new StringTokenizer(line);
 st.nextToken(); // skip 'wantDetails' word
 String cliAddr = st.nextToken();
 String strPort = st.nextToken(); // don't parse

w3d.sendDetails(cliAddr, strPort);
}

sendDetails() in WrapNetTour3D accesses the local sprite (referred to as bob) and con-
structs the necessary reply:

public void sendDetails(String cliAddr, String strPort)
{ Point3d currLoc = bob.getCurrLoc();
 double currRotation = bob.getCurrRotation();
 String msg = new String("detailsFor " + cliAddr + " " +
 strPort + " " +
 df.format(currLoc.x) + " " +
 df.format(currLoc.z) + " " +
 df.format(currRotation));
 out.println(msg);
}

The (x, z) location is formatted to four decimal places to reduce the length of the
string sent over the network.

Receiving Other Client’s Sprite Details
Figure 32-6 shows that when a user joins the world, it will be sent detailsFor mes-
sages by the existing clients. Each of these messages is received by TourWatcher, and
leads to the creation of a distributed sprite.

TourWatcher’s receiveDetails() method pulls apart a detailsFor n1 x1 z1 r message
and creates a DistTourSprite with name n1 at (x1, 0, z1) and rotation r:

private void receiveDetails(String line)
{
 StringTokenizer st = new StringTokenizer(line);

 st.nextToken(); // skip 'detailsFor' word
 String userName = st.nextToken();
 double xPosn = Double.parseDouble(st.nextToken());

This is the Title of the Book, eMatter Edition

898 | Chapter 32: A Networked Virtual Environment

 double zPosn = Double.parseDouble(st.nextToken());
 double rotRadians = Double.parseDouble(st.nextToken());

 if (visitors.containsKey(userName))
 System.out.println("Duplicate name -- ignoring it");
 else {
 DistTourSprite dtSprite =

w3d.addVisitor(userName, xPosn, zPosn, rotRadians);
 visitors.put(userName, dtSprite);
 }
}

The new sprite must be added to the local world’s scene graph, so it is created in
WrapNetTour3D by addVisitor():

public DistTourSprite addVisitor(String userName,
 double xPosn, double zPosn, double rotRadians)
{
 DistTourSprite dtSprite =
 new DistTourSprite(userName,"Coolrobo.3ds", obs, xPosn, zPosn);
 if (rotRadians != 0)
 dtSprite.setCurrRotation(rotRadians);

 BranchGroup sBG = dtSprite.getBG();
sBG.compile(); // generally a good idea

 try {
Thread.sleep(200); // delay a little, so world is finished

 }
 catch(InterruptedException e) {}
 sceneBG.addChild(sBG);

 if (!sBG.isLive()) // just in case, but problem seems solved
 System.out.println("Visitor Sprite is NOT live");
 else
 System.out.println("Visitor Sprite is now live");

 return dtSprite;
 }

Two important elements of this code are that the sub-branch for the distributed
sprite is compiled, and the method delays for 200 ms before adding it to the scene.
Without these extras, the new BranchGroup, sBG, sometimes fails to become live,
which means that it subsequently cannot be manipulated (e.g., its TransformGroup

cannot be adjusted to move or rotate the sprite).

The problem appears to be due to the threaded nature of the client: WrapNetTour3D

may be building the world’s scene graph at the same time that TourWatcher is receiv-
ing detailsFor messages, so it is adding new branches to the same graph. It is (just
about) possible that addVisitor() is called before the scene graph has been com-
piled (and made live) in createSceneGraph(). This means Java 3D will be asked to
add a branch (sBG) to a node (sceneBG) which is not yet live, causing the attachment
to fail.

This is the Title of the Book, eMatter Edition

Server Activities | 899

My solution is to delay the attachment by 200 ms, which solves the
problem, at least in the many tests I’ve carried out.

Another thread-related problem of this type is when multiple threads attempt to add
branches to the same live node simultaneously. This may cause one or more of the
attachments to fail to become live. The solution is to add the synchronization code to
the method doing the attachment, preventing multiple threads from executing it con-
currently. Fortunately, this problem doesn’t arise in NetTour3D since new branches
are only added to a client by a single TourWatcher thread.

Server Activities
The processing done by the server is illustrated in Figures 32-6, 32-7, and 32-8, and
is of two types:

• A message arrives and is broadcast to all the other clients.

• A detailsFor message arrives for a specified client and is routed to that client.
This is a client-to-client message.

Broadcasting
The most complex broadcasting is triggered by the arrival of a create message at the
server.

Figure 32-6 shows how create fits into the overall activity of creating a new sprite.
Figure 32-9 expands the “broadcast create and request for details” box in the server
swimlane in Figure 32-6.

Figure 32-9. Server activities for a create message

receive
message

TourServer Handler TourGroup TouristInfo

broadcast “create”
message with

name

send message
to client

broadcast
“wantDetails”

message

send message
to client

“wantDetails A P” message

“create n x z” message

“create n x z” message

This is the Title of the Book, eMatter Edition

900 | Chapter 32: A Networked Virtual Environment

TourServerHandler is principally concerned with differentiating between the mes-
sages it receives. TourGroup handles the two modes of client communication: broad-
casting or client-to-client. TourGroup maintains an ArrayList of TouristInfo objects,
which contain the output streams going to the clients.

When a create n x z message arrives at the TourServerHandler, it’s passed to
doRequest(), which decides how to process it (by calling sendCreate()):

private void doRequest(String line, PrintWriter out)
{
 if (line.startsWith("create"))

sendCreate(line);
 else if (line.startsWith("detailsFor"))
 sendDetails(line);
 else // use TourGroup object to broadcast the message
 tg.broadcast(cliAddr, port, userName + " " + line);
}

sendCreate() extracts the sprite’s name from the message and stores it for later use.
It then uses the TourGroup object to broadcast wantDetails and create messages to
the other clients:

private void sendCreate(String line)
{
 StringTokenizer st = new StringTokenizer(line);
 st.nextToken(); // skip 'create' word
 userName = st.nextToken(); // userName is a global
 String xPosn = st.nextToken(); // don't parse
 String zPosn = st.nextToken(); // don't parse

 // request details from other clients
tg.broadcast(cliAddr, port, "wantDetails " + cliAddr + " " + port);

 // tell other clients about the new one
tg.broadcast(cliAddr,port,"create "+userName +" "+xPosn+" "+zPosn);

}

The broadcast() method in TourGroup iterates through its TouristInfo objects and
sends the message to all of them, except the client that transmitted the message
originally:

synchronized public void broadcast(String cliAddr, int port, String msg)
{ TouristInfo c;
 for(int i=0; i < tourPeople.size(); i++) {
 c = (TouristInfo) tourPeople.get(i);
 if (!c.matches(cliAddr, port))

c.sendMessage(msg);
 }
}

All the methods in TourGroup are synchronized since the same TourGroup object is
shared between all the TourServerHandler threads. The synchronization prevents a
TouristInfo object being affected by more than one thread at a time.

This is the Title of the Book, eMatter Edition

Server Activities | 901

sendMessage() in TouristInfo places the message on the output stream going to its
client:

public void sendMessage(String msg)
{ out.println(msg); }

Client-to-Client Message Passing
Client-to-client message passing is only used to deliver a detailsFor message to a cli-
ent. Figure 32-6 shows how detailsFor fits into the overall activity of creating a new
sprite. Figure 32-10 expands the “send sprite details for client n1 to client at (A, P)”
box in the server swimlane in Figure 32-6.

The TourServerHandler processes the message in doRequest(), as shown in the previ-
ous section, and calls sendDetails():

private void sendDetails(String line)
{
 StringTokenizer st = new StringTokenizer(line);

 st.nextToken(); // skip 'detailsFor' word
 String toAddr = st.nextToken();
 int toPort = Integer.parseInt(st.nextToken());
 String xPosn = st.nextToken(); // don't parse
 String zPosn = st.nextToken(); // don't parse
 String rotRadians = st.nextToken(); // don't parse

tg.sendTo(toAddr, toPort, "detailsFor " + userName + " " +
 xPosn + " " + zPosn + " " + rotRadians);
}

sendDetails() passes the message to TourGroup’s sendTo() method. However, the cli-
ent’s IP address and port number are extracted first to “aim” the message at the cor-
rect recipient. The name of the sprite (userName) is added to the message, obtained
from a global in TourServerHandler.

Figure 32-10. Server activities for a detailsFor message

"detailsFor A P x1 z1 r"
message

receive
message

TourServer HandlerTourGroupTouristInfo

send to client at
(A,P)

send message
to client

"detailsFor n1 x1 z1 r"
message

nl = name of
sending client

This is the Title of the Book, eMatter Edition

902 | Chapter 32: A Networked Virtual Environment

TourGroup’s sendTo() cycles through its ArrayList of TouristInfo objects until it finds
the right client and sends the message:

synchronized public void sendTo(String cliAddr,int port,String msg)
{
 TouristInfo c;
 for(int i=0; i < tourPeople.size(); i++) {
 c = (TouristInfo) tourPeople.get(i);
 if (c.matches(cliAddr, port)) {
 c.sendMessage(msg);
 break;
 }
 }
}

Other Java NVEs
NetTour3D is only a taste of what a Java NVE can do; more extensive systems are
available, coded in Java 3D or Java.

Three excellent commercial NVE applications utilize Java 3D. They don’t provide
source code, they do but show what’s possible.

Magicosm (http://www.magicosm.net/)
A fantasy role-playing game. For screenshots, see http://www.magicosm.net/
screenshots.php.

Pernica (http://www.starfireresearch.com/pernica/pernica.html)
A fantasy role-playing game. For screenshots, see http://www.starfireresearch.
com/pernica/graphics.html.

City of Nights BBS (http://citynight.com/vc)
A long-running chat service with a 3D interface.

For Java 3D source code for NVE construction, see:

eXtensible MUD (xmud) (http://xmud.sourceforge.net/index.html)
Handles avatar animation, terrain following, collision detection, and the creation
of new objects for the world. The client/server network communication is sockets-
based but uses object serialization. The server employs MySQL for data storage.
There’s a security manager for client authentication The screenshots look similar
to the commercial products already mentioned. (See http://xmud.sourceforge.net/
screenshots.html.)

The Salamander Project (http://www.kitfox.com/salamander/)
Salamander was started by Mark McKay in February 2004 to create a 3D
MMORPG game engine. Development is on hold at the moment, but 2D and 3D
utilities are available, along with a network “lobby” that could be used as a
server for networked games.

This is the Title of the Book, eMatter Edition

Other Java NVEs | 903

ChickenBall (http://www.networkedworlds.com/chickenball.html)
A 3D networked football game by Carlos D. Correa, developed to test tech-
niques such as dead-reckoning, distributed consistency, and latecomer handling.

Java 3D Community MMORPG Project (http://starfireresearch.com/services/java3d/
mmorpg/mmorpg.html)

A project hosted at Starfire Research, the creators of Pernica. Unfortunately, it’s
development seems to be on hold, but there’s some code available, written by
David Yazel and Kevin Dulig.

Tag3D (http://www.croftsoft.com/portfolio/tag3d/)
A prototype multiplayer online virtual reality using Java 3D and RMI, dating
from 1999. Written by David Wallace Croft.

Sites with Java source code, but not Java 3D, are:

WolfMUD (http://www.wolfmud.org/)
Supports multiplayer, networked adventure games, including a GUI-based
world builder consisting of zones with objects. Unlike a large number of MUD
development sites, this one is actively supported and even has good online
documentation.

DimensioneX (http://www.dimensionex.net/en/default.htm)
For developing browser-based, graphical multiplayer games. DimensioneX runs
on any Java-enabled web server (e.g., Tomcat).

The Mars Simulation Project (http://mars-sim.sourceforge.net/)
The aim is human settlement on Mars, represented by a multi-agent simulation.
The emphasis is on setting various parameters to encourage the society to grow
and develop.

XiStrat (http://xistrat.sourceforge.net)
XiStrat (Extended Strategy) supports the implementation of turn-based, net-
worked multiplayer, noncooperative, zero-sum, strategy board games (e.g.,
chess, Go, Reversi), visualized on 3D polyhedra.

Millport (http://millport.sourceforge.net/)
A MUD with a graphical interface.

MiMaze (http://www-sop.inria.fr/rodeo/MiMaze/)
MiMaze3D is a 3D maze game utilizing Java and VRML. It is totally distributed,
using RTP/UDP/IP multicast communication between the players. MiMaze uti-
lizes the bucket synchronization algorithm and dead-reckoning for its real-time
and consistency requirements.

This is the Title of the Book, eMatter Edition

904 | Chapter 32: A Networked Virtual Environment

The Sun Game Server
Sun’s Game Technology Group is working on a Sun Game Server, scheduled for
early access release sometime in 2005. Some technical details can be found in a white
paper at https://games.dev.java.net/docs/simserverwp052604.pdf.

The server has three layers: communications, simulation logic, and an object store.
The object store is an abstraction hiding an efficient, fault-tolerant, transactional
database for storing objects. Objects represent almost everything in the game, which
permits the simulation logic (the game code) to be written in terms of method calls,
message passing, and event handling. This has the side effect of allowing program-
mers to code in a single-threaded model. The server has no zones, regions, or shards;
user grouping is dynamic and controlled by servers in the communications layer. The
aim is to distribute the workload based on player activity rather than by artificial
zone divisions.

This is the Title of the Book, eMatter Edition

905

Appendix A APPENDIX A

Installation Using install4j

This appendix describes install4j (http://www.ej-technologies.com/products/install4j/
overview.html), a cross-platform tool for creating native installers for Java applica-
tions. install4j supports Windows, Unix, Linux, and the Mac OS, though I’ll only be
creating installers for Windows. This is mainly to keep things simple and because I
only have regular access to Windows machines. Any kind souls who have written
example install4j installers for other platforms should contact me, and I’ll include a
link to their work in a future version of this book.

I’ll develop installers for two examples from the book: BugRunner and Checkers3D.
BugRunner comes from Chapter 11 and uses the standard parts of J2SE and the
J3DTimer class from Java 3D. Checkers3D, from Chapter 15, was my first Java 3D
example.

install4j can create an installer that includes a JRE as part of the EXE file or down-
loaded automatically from install4j’s web site when the installer first runs. However,
I’ll assume that Java is installed. Creating an installer is tricky for an application that
requires parts of Java 3D, an extension that isn’t included with J2SE or JRE. That’s a
large part of the reason for choosing the version of BugRunner that uses J3DTimer.

The installers will be built with an evaluation copy of install4j Enterprise Edition
v.2.0.7. It’s fully functional but adds several “this is not a registered copy” mes-
sages to the installation sequence.

install4j Versus JWS
Before starting, it’s worthwhile to compare install4j and Java Web Start (JWS), the
subject of Appendix B. install4j creates a standalone installer for an application,
which can be delivered to the user on a CD or downloaded via a web page link. A
great advantage is the familiarity of the installation concept: double-click on the EXE
file, press a few Yes buttons, and the application appears as a menu item and a desk-
top icon. The fact that the executable is coded in Java becomes irrelevant.

This is the Title of the Book, eMatter Edition

906 | Appendix A: Installation Using install4j

JWS is a network solution, which offers better protection from potentially renegade
downloads, and supports application updates. JWS is typically utilized via the JWS
client that comes as part of the J2SE installation. The reliance on a network model
seems restrictive, especially when applications are large. The possibility of being que-
ried about security levels and updates is off-putting to novice computer users.

The Java 3D Components
To get BugRunner and Checkers3D to compile and run, you’ll need to include relevant
bits from Java 3D. On Windows, the OpenGL version of Java 3D consists of four JAR
files and three DLLs. The JAR files are j3dcore.jar, j3daudio.jar, vecmath.jar, and
j3dutils.jar in <JRE_DIR>\lib\ext\. The DLLs are J3D.dll, j3daudio.dll, and J3DUtils.dll
in <JRE_DIR>\bin\. <JRE_DIR> is the directory holding the JRE, typically some-
thing like C:\Program Files\Java\j2re1.4.2_02\. If the Java 3D development kit is
installed, the files will be found below the J2SE home directory, which is usually
something like C:\j2sdk1.4.2_02 or C:\Program Files\Java\jdk1.5.0.

The OS level libraries will vary if the DirectX version of Java 3D is used or if the plat-
form is Linux or the MacOS. The easiest way of finding out Java 3D’s composition
on your machine is to look through the Java 3D readme file, which is added to the
J2SE home directory at installation time.

Java 3D Components for BugRunner
The BugRunner application uses only the J3DTimer, so which of the JAR and DLL files
are required? The J3DTimer class is part of the com.sun.j3d.utils.timer package,
which is stored in j3dutils.jar (confirm this by looking inside the JAR with a tool such
as WinZip), as shown in Figure A-1.

The J3DTimer class (and its inner class) account for about 1 KB out of
the 1.2-MB JAR.

A look at the decompiled J3DTimer class, using software such as the DJ Java decom-
piler (http://members.fortunecity.com/neshkov/dj.html), shows that a small amount of
Java code calls J3DUtils.dll to do all the work (see Figure A-2).

For example, the Java method getValue() calls the J3DUtils.dll function
getNativeTimer().

An alternative to decompiling the .class file is to download the original source, which
is available from the Java 3D web site.

J3DUtils.dll can be examined with HT Editor, a file editor/viewer/analyzer for Win-
dows executables, available from http://hte.sourceforge.net/ (shown in Figure A-3).

This is the Title of the Book, eMatter Edition

The Java 3D Components | 907

Figure A-1. A WinZip view of j3dutils.jar

Figure A-2. The DJ Java decompiler view of J3DTimer

This is the Title of the Book, eMatter Edition

908 | Appendix A: Installation Using install4j

getNativeTimer() uses the Windows kernel32.dll functions QueryPerformanceCounter()
and QueryPerformanceFrequency().

In summary, the calls to J3DTimer require j3dutils.jar and J3DUtils.dll.

j3dutils.jar on a Diet
It may be worthwhile to separate the timer code from j3dutils.jar and put it into its
own JAR, thereby saving about 1.2 MB of space. The technique involves un-JARing
j3dutils.jar using WinZip or similar compression software. The result is two folders:
com/ and meta-inf/. com/ holds the various classes in j3dutils, which can be deleted,
aside from the two timer classes in com/sun/j3d/utils/timer/. meta-inf/ holds a mani-
fest file, Manifest.mf, which should be pulled out of the directory and used in the re-
JARing process:

jar cvmf Manifest.mf j3dutils.jar com

The size of the slimmed down j3dutils.jar is 2 KB, which is quite a
difference.

The real drawback with this technique may be a legal one since a Sun-created JAR
is being dismembered. Java 3D is open source with some provisos, which may
make it okay to release modifications; license information can be found at https://

Figure A-3. The HT editor view of J3DUtils.dll

This is the Title of the Book, eMatter Edition

The BugRunner Application | 909

java3d.dev.java.net/. In the rest of this appendix, I’ll use the full version of j3dutils.
jar to play it safe.

The BugRunner Application
The BugRunner code is unchanged from Chapter 11, aside from the addition of one
new method in the BugRunner class, which is explained in the next section.

Preparing the JARs
I’m assuming that the target machine for the installation doesn’t have Java 3D
installed, so the test machine where I develop the installation shouldn’t have it
either. Instead, j3dutils.jar and J3DUtils.dll are placed in the BugRunner/ directory (as
shown in Figure A-4).

Since Java 3D isn’t installed in a standard location checked by javac and java, the
calls to the compiler and JVM must include additional classpath information. The
compileBR.bat batch file in BugRunner/ contains this line:

javac -classpath "%CLASSPATH%;j3dutils.jar" *.java

The BugRunner.bat batch file contains a similar line:

java -cp "%CLASSPATH%;j3dutils.jar" BugRunner

There’s no need to mention J3DUtils.dll, which will be found by the JAR as long as
it’s in the same directory.

Figure A-4. The BugRunner/ directory

This is the Title of the Book, eMatter Edition

910 | Appendix A: Installation Using install4j

Once the program has been tested, the classes and all other application resources
must be packaged up as JARs prior to being passed to install4j. The BugRunner appli-
cation consists of various classes and the two subdirectories, Images/ and Sounds/.
These should be thrown together into a single BugRunner.jar file, along with any
DLLs. The makeJar.bat batch file contains the following line:

jar cvmf mainClass.txt BugRunner.jar *.class *.dll Images Sounds

The manifest details in mainClass.txt are as follows:

Main-Class: BugRunner
Class-Path: j3dutils.jar

The manifest specifies the class location of the application’s main() method and adds
j3dutils.jar to the classpath used when BugRunner.jar is executed. For this example,
the application assumes this JAR in the same directory as BugRunner.jar.

Since you’re controlling the installation process, this isn’t that big of a
requirement and not a limitation.

The DLL is stored in the JAR because the installation is easier if install4j only has to
deal with JARs. However, after the installation EXE file has been downloaded to the
user’s machine, the DLL must be removed from BugRunner.jar and written to the
new BugRunner/ directory. This copying from the JAR to the local directory is car-
ried out by the BugRunner class, which is the new method I mentioned earlier. main()
in BugRunner calls an installDLL() method:

public static void main(String args[])
{
 // DLLs used by Java 3D J3DTimer extension
 installDLL("J3DUtils.dll");

 long period = (long) 1000.0/DEFAULT_FPS;
 new BugRunner(period*1000000L); // ms --> nanosecs
}

private static void installDLL(String dllFnm)
/* Installation of the DLL to the local directory
 from the JAR file containing BugRunner. */
{
 File f = new File(dllFnm);
 if (f.exists())
 System.out.println(dllFnm + " already installed");
 else {
 System.out.println("Installing " + dllFnm);
 // access the DLL inside this JAR
 InputStream in = ClassLoader.getSystemResourceAsStream(dllFnm);

This is the Title of the Book, eMatter Edition

The BugRunner Application | 911

 if (in == null) {
 System.out.println(dllFnm + " not found");
 System.exit(1);
 }
 try { // write the DLL to a file
 FileOutputStream out = new FileOutputStream(dllFnm);

 // allocate a buffer for reading entry data.
 byte[] buffer = new byte[1024];
 int bytesRead;
 while ((bytesRead = in.read(buffer)) != -1)
 out.write(buffer, 0, bytesRead);

 in.close();
 out.flush();
 out.close();
 }
 catch (IOException e)
 { System.out.println("Problems installing " + dllFnm); }
 }
} // end of installDLL()

installDLL() will be called every time that BugRunner is executed, so installDLL() first
checks whether the DLL is present in the local directory. If not, it’s installed by being
written out to a file. The stream from the DLL file inside the JAR is created with:

InputStream in = ClassLoader.getSystemResourceAsStream(dllFnm);

This works since the DLL is in the same JAR as BugRunner, so the class loader for
BugRunner can find it. Figure A-5 illustrates the technique.

The result is that the BugRunner application installed on the user’s machine will con-
sist of two JARs, BugRunner.jar and j3dutils.jar. After the first execution of BugRunner,
these two JARs will be joined by J3DUtils.dll.

Figure A-5. Installing a DLL locally

BugRunner.jar

BugRunner class

J3DUtils.dll
copied

BugRunner directory
on user's machine

call installDLL()

J3DUtils.dll

This is the Title of the Book, eMatter Edition

912 | Appendix A: Installation Using install4j

Testing
The best testing approach is to move the two JARs to a different machine, specifi-
cally one that doesn’t have Java 3D installed (but J2SE or JRE must be present). Double-
click on BugRunner.jar, and the game should begin. The J3DUtils.dll will magically
appear in the same directory. Alternatively, the application can be tested with this
command:

java -jar BugRunner.jar

Executing this in a command window will allow standard output and error mes-
sages to be seen on the screen, which can be useful for testing and debugging.

You could stop at this point since the game is nicely wrapped up inside two JARs.
However, an installer will allow a professional veneer to be added, including installa-
tion screens, splash windows, desktop and menu icons, and an uninstaller. These are
essential elements for most users.

Creating the BugRunner Installer
This is not a book about install4j, so I’ll only consider the more important points in
creating the BugRunner installer. install4j has an extensive help facility and links to a
tutorial at its web site at http://www.ej-technologies.com/products/install4j/tutorials.
html. Another good way of understanding things is to browse through the various
screens of the BugRunner installation script, bugRun.install4j. The screenshots are
taken from install4j v.2.0.7; the latest release has modified some of the configuration
screens and added lots of new features.

A crucial step is to define the distribution tree, the placement of files and directories
in the BugRunner/ directory created on the user’s machine at install time. My
approach is to include an Executables/ subdirectory to hold the two JAR files. This
directory structure is shown in Figure A-6.

A quick examination of Figure A-6 will reveal three JARs inside Executables/:
BugRunner.jar, j3dutils.jar, and custom.jar. custom.jar contains Java code deployed
by the uninstaller, which is explained below.

BugRunner.jar is not called directly but via an EXE file, which is set up on the Con-
figure executable screen during the Launchers stage (shown in Figure A-7).

The executable’s name is BugRunner.exe and will be placed in the Executables/ direc-
tory along with the JARs. It’s important to set the working directory to be “.”, so the
JAR will search for resources in the correct place.

Under the Advanced Options button, redirecting stdout and stderr
into log files is possible and a good idea for testing and debugging.

This is the Title of the Book, eMatter Edition

The BugRunner Application | 913

Figure A-6. Distribution tree for the BugRunner installer

Figure A-7. Configuring the BugRunner executable

This is the Title of the Book, eMatter Edition

914 | Appendix A: Installation Using install4j

The EXE file must be told which JAR file holds the main() method for the applica-
tion and which JARs are involved in the application’s execution. This is done
through the Configure Java Invocation screen shown in Figure A-8.

Figure A-8 shows that custom.jar (holding the uninstaller code) isn’t part of the
application since it isn’t included in the Class path list.

The GUI Installer stage (shown in Figure A-9) allows the customization of various
stages of the installation: the welcome screen, tasks to be done before installation,
tasks after installation, and the finishing phase. The screen on the right of Figure A-9
is for the installer actions, which contains uninstallation actions.

Perhaps the best advantage of using install4j is its close links to Java, most evident in
the way the installation (and uninstallation) process can be customized. install4j
offers a Java API for implementing many tasks, and the install4j distribution comes
with an example installer that uses the API’s capabilities.

For example, the default action carried out prior to uninstallation is to call the
DLLUninstallAction class in custom.jar, so application-specific tasks can be defined
by overriding that class. I use this technique in the next section.

Uninstallation
The default install4j uninstaller will delete the JARs that it added to the Executables/
directory along with all the other files and directories it created at installation time.
However, the installer didn’t add J3DUtils.dll to Executables/; that task was carried
out by the BugRunner class when it first ran.

Figure A-8. Configuring the Java invocation

This is the Title of the Book, eMatter Edition

The BugRunner Application | 915

install4j knows nothing about J3DUtils.dll, so it won’t delete it or the subdirectory
that holds it. The outcome is that a basic BugRunner uninstaller won’t remove the
BugRunner/Executables/ directory or the J3DUtils.dll file inside it. To get around this,
you need to define a pre-uninstall operation that removes the DLL, so the main unin-
staller can delete everything else.

custom.jar contains the DLLUninstallAction class, which extends install4j’s
UninstallAction class. UninstallAction offers two abstract methods for custom
behavior:

public abstract boolean performAction(Context context, ProgressInterface pi);
public abstract int getPercentOfTotalInstallation();

The uninstallation task (in this case, deleting the DLL) should be placed inside
performAction(). User messages can be sent to the uninstallation screen via the
ProgressInterface object. performAction() should return true if the task is success-
ful or false to abort the uninstallation process. getPercentOfTotalInstallation()

gets the amount of the progress slider assigned to the task, returning a number
between 0 and 100.

My implementation of performAction() obtains a list of the DLLs in the Executables/
directory and then deletes each one. This approach is more flexible than hardwiring

Figure A-9. The installer/uninstaller actions for the GUI installer

This is the Title of the Book, eMatter Edition

916 | Appendix A: Installation Using install4j

the deletion of J3DUtils.dll into the code and means that the same DLLUninstallAction

class can be employed with the Checkers3D installer discussed later:

private static final String PATH = "../Executables";
// location of the DLLs relative to <PROG_DIR>/.install4j

public boolean performAction(Context context, ProgressInterface progReport)
// called by install4j to do uninstallation tasks
{
 File delDir = new File(PATH);

 FilenameFilter dllFilter = new FilenameFilter() {
 public boolean accept(File dir, String name)
 { return name.endsWith("dll"); }
 };

 String[] fNms = delDir.list(dllFilter); // list of dll filenames
 if (fNms.length == 0)
 System.out.println("Uninstallation: No DLLs found");
 else

deleteDLLs(fNms, progReport);
 return true;
 // end of performAction()
}

The tricky aspect of the code is the use of the PATH variable. The uninstaller is exe-
cuted in the .install4j/ directory, which is at the same level as Executables/. Both of
these are located in the BugRunner/ directory installed on the user’s machine (see
Figure A-10).

Figure A-10. The installed BugRunner directories

This is the Title of the Book, eMatter Edition

The BugRunner Application | 917

The PATH string redirects the File object to refer to Executables/. A list of filenames
ending in “.dll” is collected by using a FileFilter anonymous class, and the list is
passed to deleteDLLs():

private void deleteDLLs(String[] fNms,ProgressInterface progReport)
// delete each DLL file, and report the progress
{
 progReport.setStatusMessage("Deleting installed DLLs");

 int numFiles = fNms.length;
 String msg;
 for (int i=0; i < numFiles; i++) {
 msg = new String("" + (i+1) + "/" + numFiles + ": " + fNms[i] + "... ");

deleteFile(fNms[i], progReport, msg);
 progReport.setPercentCompleted(((i+1)*100)/numFiles);
 try {
 Thread.sleep(500); // 0.5 sec to see something
 }
 catch (InterruptedException e) {}
 }
}

deleteDLLs() loops through the filenames, calling deleteFile() for each. The
ProgressInterface object informs the user of the progress of these deletions.

deleteFile() creates a File object for the named file and then calls
File.delete().

The DLLUninstallAction class must be compiled with the install4j API classes added
to the classpath:

javac -classpath "%CLASSPATH%;d:\install4j\resource\i4jruntime.jar"
 DLLUninstallAction.java

The creation of the JAR file is standard:

jar cvf custom.jar *.class

The BugRunner Installer
The resulting installer, called BR_1.0.exe, takes a few seconds to generate and is
about 1.4 MB.

The size will drop to 950 KB if the timer-specific version of j3dutils.jar
is employed.

A version bundled with JRE 1.4.2 comes in at 12 MB.

This is the Title of the Book, eMatter Edition

918 | Appendix A: Installation Using install4j

The Checkers3D Application
The Checkers3D code is unchanged from the example in Chapter 15, aside from the
addition of the installDLL() method in the Checkers3D class.

Preparing the JARs
As with Checkers3D, I’m assuming that the target machine for the installation doesn’t
have Java 3D installed, so the test machine where I develop the installation shouldn’t
have it either. Instead, all of its JARs and DLLs (seven files) are copied to the
Checkers3D/ directory (see Figure A-11).

Since Java 3D isn’t installed in the standard location, the calls to the compiler and
JVM must include additional classpath information:

javac -classpath "%CLASSPATH%;vecmath.jar;j3daudio.jar;
 j3dcore.jar;j3dutils.jar" *.java
java -cp "%CLASSPATH%;vecmath.jar;j3daudio.jar;
 j3dcore.jar;j3dutils.jar" Checkers3D

There’s no need to mention the three DLLs (J3D.dll, j3daudio.dll, and J3DUtils.dll),
which will be found by the JARs as long as they’re in the same directory.

The Checkers3D classes should be collected into a single Checkers3D.jar file, along
with all the required DLLs:

jar cvmf mainClass.txt Checkers3D.jar *.class *.dll

Figure A-11. The Checkers3D/ application directory

This is the Title of the Book, eMatter Edition

The Checkers3D Application | 919

The manifest information in mainClass.txt is:

Main-Class: Checkers3D
Class-Path: vecmath.jar j3daudio.jar j3dcore.jar j3dutils.jar

The manifest specifies the class location of main() and adds the Java 3D JARs to the
classpath used by Checkers3D.jar.

Changes to Checkers3D.java
Checkers3D contains the same installDLL() method as found in BugRunner but calls it
three times:

public static void main(String[] args)
{
 // DLLs used by Java 3D extensions
 installDLL("J3D.dll");
 installDLL("j3daudio.dll");
 installDLL("J3DUtils.dll");
 new Checkers3D();
}

The Checkers3D application installed on the user’s machine will consist of five JARs:
Checkers3D.jar, j3dcore.jar, j3daudio.jar, vecmath.jar, and j3dutils.jar. After the first
execution, they’ll be joined by the three DLLs: J3D.dll, j3daudio.dll, and J3DUtils.dll.

Creating the Checkers3D Installer
The distribution tree for the installer has the same shape as the one for BugRunner: an
Executables/ subdirectory holds the JARs. The directory structure is shown in
Figure A-12.

The five JARs required by the application are there, as well as custom.jar for uninstal-
lation. It’s the same one as used in BugRunner, and no changes are necessary.

Most of the other installer configuration tasks are similar to those carried out for
BugRunner, such as configuring the executable and Java invocation and the definition
of the pre-uninstall action using the DLLUninstallAction class in custom.jar.

The Checkers3D Installer
The resulting installer, called C3D_1.0.exe, takes around 8 seconds to generate and
is about 3.6 MB. A version bundled with JRE 1.4.2 comes in at 14.3 MB.

This is the Title of the Book, eMatter Edition

920 | Appendix A: Installation Using install4j

Figure A-12. Distribution tree for the Checkers3D installer

This is the Title of the Book, eMatter Edition

921

Appendix B APPENDIX B

Installation Using Java Web Start

Java Web Start (JWS) is a web-enabled installer for Java applications (http://java.sun.
com/products/javawebstart/). Typically, the user points a browser at a page contain-
ing a link to a deployment file; the retrieval of that file triggers the execution of JWS
on the client, which takes over from the browser.

This assumes that JWS is present on the target machine.

JWS uses the information in the deployment file to download the various JAR files
making up the application, together with installation icons, a splash screen, and
other details. The application is stored in a local cache and executed inside a JVM
sandbox. Subsequent executions of the application utilize the cached copy unless the
original has been modified, in which case the changed JARs are downloaded again.

This appendix shows how the BugRunner and Checkers3D applications in Chapters 11
and 15 can be deployed with JWS. BugRunner is the beginnings of a 2D arcade-style
game but uses the Java 3D timer. Checkers3D is a basic Java 3D application that dis-
plays a blue sphere floating above a checkerboard surface.

Both applications require native libraries, and I’ll cover how JWS installers suitable
for Windows can be created. However, JWS is a cross-platform tool, so I’ll briefly
examine the issues in making BugRunner and Checkers3D work on the Linux and Mac
operating systems.

Deployment links are usually placed in a JWS portal page, a page using JavaScript
and VBScript to detect whether the intended client platform possesses JWS. If JWS
isn’t found, then it needs to be downloaded before the application installation can
begin. I’ll use a portal page for accessing BugRunner and Checkers3D, located at http://
fivedots.coe.psu.ac.th/~ad/jws/.

This is the Title of the Book, eMatter Edition

922 | Appendix B: Installation Using Java Web Start

JWS uses digital signing and certificates to secure applications, so I’ll finish by look-
ing at how to use third-party certificates.

JWS Benefits
JWS works the same way across multiple platforms unlike the downloading and exe-
cution of applets, which is plagued by irritating variations between browsers. The
headaches caused by browsers’ nonstandard programming frameworks (such as Jav-
aScript and HTML variants on different platforms and browsers) are one reason for
the decline in popularity of complex applets and the growth in thin clients linked to
J2EE-built servers.

Client-side caching avoids an essential problem familiar from applets, which is the
need to download an applet every time it’s used. That’s a waste of bandwidth if the
applet hasn’t changed and further discourages the development of large applets. JWS
suffers from network overheads during the first download, but the copy of the appli-
cation in the local cache is used after that until changes are detected in the original.
This cached copy means network failure doesn’t stop the application from executing
unless it requires network access for specific tasks. By comparison, an applet is out of
reach when the network is down.

JWS only retrieves Java software packaged as JARs. However, the JARs may contain
native libraries for different operating systems and platforms, a feature you’ll need to
utilize the Java 3D libraries. My examples concentrate on Java applications retrieved
by JWS, but applets can be downloaded as well.

JWS prevents hacker attacks by executing the installed code inside a sandbox, stop-
ping antisocial behavior such as hard disk wiping or spamming from your machine.
Sometimes the security restrictions can be too harsh, and JWS offers two ways of
relaxing them: the Java Network Launching Protocol (JNLP) API supports con-
trolled ways to interact with the OS, such as reading and writing files and accessing
the clipboard; the second way is to sign software digitally, permitting its security
level to be reduced. I’ll detail this latter approach, which is mandatory if a program
uses native libraries.

Since the downloaded application is running free of the browser, there’s complete
freedom over the kinds of user interaction and GUI elements that can be employed.

JWS Downsides
Using JWS has downsides. One is the need to have JWS present on the client
machine before the application is downloaded. For existing Java users, this isn’t a
problem since JWS is installed as part of J2SE or JRE. But what about game players
who don’t have any desire to join the Java faithful? The answer is somewhat messy
since it requires the web page containing the deployment link to detect whether the

This is the Title of the Book, eMatter Edition

JWS Downsides | 923

client machine has JWS installed. If it hasn’t, then a JRE must be downloaded before
the application. Unfortunately, the standardization problems with browsers compli-
cate this detection work.

Another problem with JWS is version skew. There have been several versions of
JWS: JWS 1.0 shipped with JRE 1.4, JWS 1.2 was included with JRE 1.4.1, and JWS
1.4.2 arrived with JRE 1.4.2. J2SE/JRE 5.0 comes with a considerably revamped JWS
5.0, which replaces the application manager with a control panel and a cache viewer.
The earlier versions of JWS (before 1.4.2) have problems correctly setting up proxy
network settings and placing the cache in an accessible location on multiuser
machines.

JWS cannot be (legally) modified or reconfigured prior to its installation. For exam-
ple, you cannot distribute a version of JWS that never places an application icon in
the menu list or always pops up a console window to display output. The location of
the cache cannot be preset, and there’s no way to create an uninstallation menu
item. Many of these things can be changed, but only after JWS is present on the cli-
ent machine, which means these actions must be carried out by the user rather than
the developer or deployer. These tasks may be beyond the ability of novices. To be
fair, the deployment file does allow some installation elements to be configured,
including what is displayed during the retrieval process.

The automatic updating of an application requires that JWS checks the home server
for changes every time the program is run, which causes a (small) delay. Normally,
an entire JAR will be downloaded, even if only one line of it has changed. The solu-
tion to this problem is jardiff, which specifies the changes necessary to update a
JAR to its current version. jardiffs are much smaller than JARs since they only need
to store modifications. However, jardiffs require specialized server settings before
they can be utilized.

JWS deployment files need the JNLP MIME type to be set up in their host server. For
example, the mime.types file in Apache must include this line:

application/x-java-jnlp-file JNLP

The problem is that the application developer may not have access to the server to do
this. However, this is not much of an issue as most current web servers come precon-
figured with the JNLP MIME type.

Though JWS is aimed at web-based downloads, it’s possible to a supply a link to a
local deployment file (using the file://<path> notation). However, the file must con-
tain a reference to its current location, which will often be unknown to the devel-
oper at build time. For instance, at installation time, the file may be stored on a CD
created by a third party, and it may be mounted on a drive with a name that could be
almost anything. There are add-on JWS tools for building CD installers, including
Clio (http://www.vamphq.com/clio.html) and Jess (http://www.vamphq.com/jess.html).

This is the Title of the Book, eMatter Edition

924 | Appendix B: Installation Using Java Web Start

Clio adds a built-in web server to the CD, and Jess writes the application directly to
the JWS cache. JWS 5.0 offers improved support for CD-based installation.

The JNLP Deployment File
A deployment file is written in XML and has a .jnlp extension. The file format is
defined by the JNLP and API specifications (JSR-56) available from http://java.sun.com/
products/javawebstart/download-spec.html. A subset is described in the developers
guide in the J2SE documentation (see <JAVA_HOME>/docs/guide/jws/developersguide/
contents.html).

Most JNLP files have a structure similar to Example B-1.

The codebase attribute gives the base URL where this file and the other application
components are stored. A file:// location may be used instead if the software is to
be loaded locally. The href attribute gives the URL reference for this JNLP file,
which can be relative to the codebase (as in Example B-1) or can be an absolute
address. The information tag contains textual information about the application, uti-
lized by JWS at retrieval and execution time. For example, references to icons and a
splash screen image are placed in this element.

The security tag is optional. If present, it defines the level of increased access given
to the application. Two values are possible: <all-permissions/> or the slightly less
powerful <j2ee-application-client-permissions/>. They require that the applica-
tion’s JARs be digitally signed. The resources tag lists the JARs comprising the pro-
gram. The application-desc tag states how the program is to be executed along with
optional input arguments.

Example B-1. Structure of JNLP deployment file

<?xml version="1.0" encoding="UTF-8"?>
<jnlp spec="1.0+"
 codebase="http://www.foo.com/loc/"
 href="appl.jnlp" >

 <information> ... </information>

 <security> ... </security>

 <resources> ... </resources>

 <application-desc> ... </application-desc>
</jnlp>

This is the Title of the Book, eMatter Edition

A JWS Installer for BugRunner | 925

Steps in Developing a JWS Application
The following seven steps outline the development process for a JWS installer.
They’ll be explained in greater detail as the BugRunner and Checkers3D applications
are converted into JWS applications:

1. Write and test the application on a standalone machine, packaging it (and all its
resources) as JAR files.

2. Modify the application code to make it suitable for deployment. The necessary
changes will be minimal unless native libraries are used. In that case, each library
must be wrapped up inside a JAR and loaded by the application’s main()

method via System.loadLibrary().

3. Create a new public/private keypair for signing the application and its compo-
nent JARs. At this stage, a third-party certificate may be obtained from a certifi-
cate authority (CA). I’ll delay talking about this until near the end of the
appendix.

4. Sign everything with the private key: the application JAR, the extension JARs,
and any native library JARs.

5. Create a deployment file (a JNLP file) using a file:// codebase so the installa-
tion can be tested locally. This stage requires the creation of application icons
and a splash screen image, used by JWS.

6. Change the deployment file to use the host server’s URL and place everything on
that server. The deployment file will usually be accessed through a JWS portal page.

7. Test the installer on various client platforms, OSs, and browsers.

Some of these test clients shouldn’t possess JWS.

A JWS Installer for BugRunner
BugRunner is a basic 2D arcade game (see Chapter 11. I’ll work with the version that
uses the J3DTimer class, which means the deployment file must install the relevant
Java 3D library. I can’t assume it’s present on the user’s machine.

This is the Title of the Book, eMatter Edition

926 | Appendix B: Installation Using Java Web Start

Write the Application
The installer version of the application shouldn’t rely on nonstandard extensions or
native libraries being present on the client machine. However, BugRunner uses the
Java 3D timer, which is part of the Java 3D extension. The OpenGL Windows ver-
sion of Java 3D is implemented across seven files:

j3daudio.jar
j3dcore.jar
j3dutils.jar
vecmath.jar

JAR files

J3D.dll
j3daudio.dll
J3DUtils.dll

Native libraries

The native libraries will vary across different platforms, and the JAR
versions may also vary.

Only j3dutils.jar and J3DUtils.dll are needed for the timer functionality as explained
in Appendix A. They should be placed in the BugRunner/ directory to be locally
accessible to the application. Java 3D should not be installed on your test machine.

Figure B-1 shows the BugRunner/ directory prior to compilation. It contains all the
Java files (unchanged from Chapter 11), j3dutils.jar, and J3DUtils.dll. The batch files
are optional but reduce the tedium of typing long command lines.

Since Java 3D isn’t installed in a standard location checked by javac and java, the
calls to the compiler and JVM must include additional classpath information. The
compileBR.bat batch file contains this line:

javac -classpath "%CLASSPATH%;j3dutils.jar" *.java

The BugRunner.bat batch file has this:

java -cp "%CLASSPATH%;j3dutils.jar" BugRunner

There’s no need to mention J3DUtils.dll, which will be found by the JAR as long as
it’s in the local directory.

Once the program has been fully debugged, it should be packaged as a JAR. The
BugRunner application consists of various classes, and the subdirectories Images/ and
Sounds/. These should be thrown together into a single BugRunner.jar file. The
makeJar.bat batch file contains the line:

jar cvmf mainClass.txt BugRunner.jar *.class Images Sounds

This is the Title of the Book, eMatter Edition

A JWS Installer for BugRunner | 927

The manifest details in mainClass.txt are:

Main-Class: BugRunner
Class-Path: j3dutils.jar

The manifest specifies the class location of main() and adds j3dutils.jar to the class-
path used when BugRunner.jar is executed. This setup assumes that it’s in the same
directory as BugRunner.jar.

The required DLLs (only J3DUtils.dll in this case) aren’t added to
BugRunner.jar.

The application now consists of three files: BugRunner.jar, j3dutils.jar, and J3DUtils.dll.
These should be moved to a different directory on a different machine and tested again.
Double-clicking on BugRunner.jar should start it running. Alternatively, type:

java –jar BugRunner.jar

Modify the Application for Deployment
Since the native library J3DUtils.dll is utilized by BugRunner, two tasks must be car-
ried out. The DLL must be placed inside its own JAR:

jar cvf J3DUtilsDLL.jar J3DUtils.dll

Figure B-1. The BugRunner/ directory

This is the Title of the Book, eMatter Edition

928 | Appendix B: Installation Using Java Web Start

There’s no need for additional manifest information.

The main() method of BugRunner, in BugRunner.java, must be modified to call
System.loadLibrary() for each DLL:

public static void main(String args[])
{
 // DLL used by Java 3D J3DTimer extension
 String os = System.getProperty("os.name");
 if (os.startsWith("Windows")) {
 System.out.println("Loading '" + os + "' native libraries...");
 System.out.print(" J3DUtils.dll... ");
 System.loadLibrary("J3DUtils"); // drop ".dll"
 System.out.println("OK");
 }
 else {
 System.out.println("Sorry, OS '" + os + "' not supported.");
 System.exit(1);
 }

 long period = (long) 1000.0/DEFAULT_FPS;
 new BugRunner(period*1000000L); // ms --> nanosecs
}

If several libraries are loaded, the load order will matter if dependen-
cies exist between them.

The checking of the os.name property string gives the program a chance to report an
error if the application is started by an OS that doesn’t support the library. This cod-
ing style also allows the application to load different libraries depending on the OS
name. For instance:

String os = System.getProperty("os.name");
System.out.println("Loading " + os + " native libraries...");
if (os.startsWith("Windows")) {
 System.loadLibrary("J3DUtils"); // drop ".dll"
 : // other libraries loaded
}
else if (os.startsWith("Linux")) {
 System.loadLibrary("J3DUtils"); // drop "lib" prefix & ".so"
 :
}
else if (os.startsWith("Mac")) {
 System.loadLibrary("J3DUtils"); // drop ".jnilib"
 :

This is the Title of the Book, eMatter Edition

A JWS Installer for BugRunner | 929

}
else {
 System.out.println("Sorry, OS '" + os + "' not supported.");
 System.exit(1);
}

A longer example of this kind can be found in “Marc’s Web Start Kama-
sutra,” a JWS and JNLP forum thread at http://forum.java.sun.com/
thread.jsp?forum=38&thread=166873.

A lengthy list of the possible os.name values is presented in http://
www.vamphq.com/os.html.

These changes to BugRunner.java mean it must be recompiled and re-JARed:

javac -classpath "%CLASSPATH%;j3dutils.jar" *.java
jar cvmf mainClass.txt BugRunner.jar *.class Images Sounds

Create a Public/Private Keypair for Signing the Application
The digital signing of a JAR requires two of Java’s security tools: keytool and
jarsigner. They’re described in the security tools section of the J2SE documentation
in <JAVA HOME>/docs/tooldocs/tools.html#security.

keytool generates and manages keypairs, collected together in a keystore. Each key-
pair is made up of a public key and private key, and an associated public-key certifi-
cate. A simplified diagram showing a typical keypair is shown in Figure B-2.

The two keys can be used to encrypt documents. Something encrypted with a pri-
vate key can only be decrypted with the corresponding public key; if the encryption
uses the public key, then only the private key can unlock it. The intention is that the
public key is widely distributed, but users keep their private key secret. Determining
the private key from examining the public key is impossible.

Figure B-2. The elements of a keypair

public key

private key

certificate

trust this.
Andrew Davison

alias: BugRunner

 (keypair name)

This is the Title of the Book, eMatter Edition

930 | Appendix B: Installation Using Java Web Start

A message sent to users can be encrypted with the public key, so only they can read
it by applying their private key. A message from users to another person can be
encrypted with the private key. The fact that the user’s public key can decrypt the
message means that it must have come from that user. The private key is being used
as a digital signature.

One of the problems with the public/private keys approach is how to distribute a
public key safely. For instance, if I receive an email from “Stan Lee” giving me his
public key, how do I know that it is from the famous Atlas/Timely editor? This is
where the public-key certificate comes into play.

A certificate is a digitally signed statement from a third party, perhaps my respected
friend “Alan Moore,” that is “Stan Lee’s public key.” Of course, the question of
authenticity still applies, but now to the “Alan Moore” signature, which can be com-
bated by signing it with the certificate of yet another person. This process leads to a
chain of certificates, ending with a certificate that can be proved genuine in some
unforgeable way (for example, by visiting the person and asking them).

Whenever keytool generates a new keypair it adds a self-signed certificate to the pub-
lic key. In effect, all my public keys contain certificates signed by me saying they’re
genuine. This is useless in a real situation, but it’s sufficient for these demos. You’ll
see that JWS issues a dire warning when it sees a self-signed certificate but will let it
pass if the client gives the okay. I’ll discuss how to obtain better certificates later in
this appendix.

A new keypair is written to the keystore called MyKeyStore by typing the following:

keytool –genkey –keystore MyKeyStore –alias BugRunner

The user is prompted for the keystore password, a lengthy list of personal informa-
tion, and a password for the new keypair (see Figure B-3). The keypair’s alias (name)
is BugRunner in this example, though any name could be used.

Better passwords should be thought up than those used in my examples; a good
password uses letters, numbers, and punctuation symbols, and should be at least
eight characters long.

The keystore’s contents can be examined with this command:

keytool –list –keystore MyKeyStore

Sign Everything with the Private Key
You’re ready to use the jarsigner tool to start signing the JARs in the BugRunner

application. Figure B-4 presents a simple diagram of what jarsigner does to a JAR.

This is the Title of the Book, eMatter Edition

A JWS Installer for BugRunner | 931

Figure B-3. Generate a new keypair

Figure B-4. A JAR file signed with jarsigner

JAR

digitally signed with private key

private key

public key

certificate

trust this.
Andrew Davison

This is the Title of the Book, eMatter Edition

932 | Appendix B: Installation Using Java Web Start

jarsigner digitally signs a JAR with a private key. A digital signature has many use-
ful characteristics:

• Its authenticity can be checked by seeing if it matches the public key stored with
the JAR. This relies on the public key being trusted, which depends on the certif-
icates attached to it.

• The digital signature cannot be forged since the private key is only known to the
sender of the JAR.

• Unlike a real signature, the digital signature is partly derived from the data it’s
attached to (i.e., the JAR file). This means that it cannot be removed from its
original JAR, stuck on a different one, and still be authenticated successfully.

The actual mechanics of creating a signed JAR are simple:

jarsigner –keystore MyKeyStore foo.jar BugRunner

This signs foo.jar using the BugRunner keypair stored in MyKeyStore. jarsigner will
prompt the user for the keystore and keypair passwords.

A variant of this is to create a new signed JAR file rather than modify the existing
one:

jarsigner –keystore MyKeyStore –signedjar foo_signed.jar foo.jar BugRunner

This leaves foo.jar unchanged and creates a signed version called foo_signed.jar.

The name of the new JAR can be anything you choose.

For the BugRunner application, there are three JARs: BugRunner.jar, j3dutils.jar, and
J3DUtilsDLL.jar. The latter two are signed this way:

jarsigner –keystore MyKeyStore –signedjar j3dutils_signed.jar
 j3dutils.jar BugRunner
jarsigner –keystore MyKeyStore J3DUtilsDLL.jar BugRunner

The creation of a new JAR for the signed version of j3dutils.jar is to
avoid any confusion with the original JAR created by Sun.

This process means yet another reJARing of BugRunner since the manifest informa-
tion in mainClass.txt must be changed to reference the signed filenames:

Main-Class: BugRunner
Class-Path: j3dutils_signed.jar

This is the Title of the Book, eMatter Edition

A JWS Installer for BugRunner | 933

The jar command in makeJar.bat is unchanged:

 jar cvmf mainClass.txt BugRunner.jar *.class Images Sounds

After BugRunner.jar is regenerated and then it’s signed:

 jarsigner –keystore MyKeyStore BugRunner.jar BugRunner

Create a Deployment File
The deployment file for the BugRunner application, BugRunner.jnlp, is shown in
Example B-2.

The URL codebase value is commented out at this stage; instead, use a path to the
local development directory.

Example B-2. JNLP deployment file for BugRunner

<?xml version="1.0" encoding="utf-8"?>
<jnlp spec="1.0+"
 <!-- codebase="http://fivedots.coe.psu.ac.th/~ad/jws/BugRunner/"-->
 codebase="file:///D:/Teaching/Java Games/Code/JWS/BugRunner/"
 href="BugRunner.jnlp"
 >

 <information>
 <title>BugRunner</title>
 <vendor>Andrew Davison</vendor>
 <homepage href="http://fivedots.coe.pcu.ac.th/~ad/jg"/>
 <description>BugRunner</description>
 <description kind="short">BugRunner: a 2D arcade-style game,
 using the J3DTimer class</description>
 <icon href="bug32.gif"/>
 <icon kind="splash" href="BRBanner.gif"/>
 <offline-allowed/>
 </information>

 <security>
 <all-permissions/>
 </security>

 <resources os="Windows">
 <j2se version="1.4+"/>
 <jar href="BugRunner.jar" main="true"/>
 <jar href="j3dutils_signed.jar"/>
 <nativelib href="J3DUtilsDLL.jar"/>
 </resources>

 <application-desc main-class="BugRunner"/>
</jnlp>

This is the Title of the Book, eMatter Edition

934 | Appendix B: Installation Using Java Web Start

The information tag contains two forms of textual description: a one-line message
and a longer paragraph (confusingly labeled with the attribute value short). The icon
and splash screen images are named; they should be located in the BugRunner direc-
tory. The icon is the default size of 32 × 32 pixels, but other sizes are possible and
several icons with different resolutions can be supplied. GIF or JPEG images can be
used. Unfortunately, transparent GIF are rendered with black backgrounds, at least
on Windows.

The offline-allowed tag states that the application can run when JWS detects that
the network is unavailable. all-permissions security is used, which requires that all
the JARs named in the resources section are signed. The resources will be down-
loaded only if the client-side OS matches the os attribute. There’s also an optional
arch attribute to further constrain the installation.

For example, the following is able to retrieve any one of five different versions of
j3daudio.jar depending on the OS and architecture:

<resources os="Windows">
 <jar href="jars/j3d/windows/j3daudio.jar"/>
</resources>

<resources os="Linux" arch="x86"> <!-- Linux IBM -->
 <jar href="jars/j3d/linux/i386/j3daudio.jar"/>
</resources>

<resources os="Linux" arch="i386"> <!-- Linux Sun -->
 <jar href="jars/j3d/linux/i386/j3daudio.jar"/>
</resources>

<resources os="Solaris" arch="sparc">
 <jar href="jars/j3d/solaris/j3daudio.jar"/>
</resources>

<resources os="Mac OS X" arch="ppc">
 <jar href="jars/j3d/osx/j3daudio.jar"/>
</resources>

The jars/ directory should be in the same directory as the deployment
file.

It may seem rather silly to have five different JARs when their contents should be
identical because they’re coded in Java. In practice, however, this approach avoids
incompatibles that may have crept into the different versions.

This is the Title of the Book, eMatter Edition

A JWS Installer for BugRunner | 935

More details on how the Java 3D libraries can be divided into multiple resource tags are
given in the “Marc’s Web Start Kamasutra” forum thread (http://forum.java.sun.com/
thread.jsp?forum=38&thread=166873).

The j2se version tag in BugRunner.jnlp specifies that any version of J2SE or JRE from
1.4.0 on can execute the application. JWS will abort if it detects an earlier version
when it starts the program. It’s possible to specify initial settings for the JRE when it
starts and to trigger an automatic download of a JRE if the client’s version is incom-
patible. The following tags illustrate these features:

<j2se version="1.4.2" initial-heap-size="64m"/>
<j2se version="1.4.2-beta" href="http://java.sun.com/products/autodl/j2se"/>

BugRunner.jnlp specifies that three JARs should be retrieved:

<jar href="BugRunner.jar" main="true"/>
<jar href="j3dutils_signed.jar"/>
<nativelib href="J3DUtilsDLL.jar"/>

BugRunner.jar contains the application’s main() method and J3DUtilsDLL.jar holds
the native library. The JARs must be in the same directory as the JNLP file and must
be signed.

The resources tag is considerably more versatile than this example shows. For
instance, it’s possible to request that resources be downloaded lazily. This may mean
that a resource is only retrieved when the application requires it at runtime (but JWS
may choose to download it at installation time):

<jar href="sound.jar" download="lazy"/>

Resources may be grouped together into parts and subdivided into extensions. Each
extension is in its own deployment file.

Property name/value pairs, which can be accessed in code with System.getProperty()

and System.getProperties() calls may appear inside the resources section. For example:

<property name="key" value="overwritten"/>

The application-desc tag states how the application is to be called and may include
argument tags:

<application-desc main-class="Foo">
 <argument>arg1</argument>
 <argument>arg2</argument>
</application-desc>

The development guide in the J2SE documentation explains many of these tags
(<JAVA_HOME>/docs/guide/jws/developersguide/contents.html). An extensive JNLP
tag reference page is located at http://lopica.sourceforge.net/ref.html.

This is the Title of the Book, eMatter Edition

936 | Appendix B: Installation Using Java Web Start

Deployment testing

Deployment testing should be carried out by moving the relevant files to a different
directory on a different machine. For BugRunner, there are six files:

BugRunner.jnlp
The deployment file

bug32.gif
BRBanner.gif

The installer icon and splash

BugRunner.jar
j3dutils_signed.jar
J3DUtilsDLL.jar

The resource JARs

The chosen directory must match the one used in the codebase attribute at the start
of the deployment file.

Double-clicking on BugRunner.jnlp should initiate JWS and the installation process,
which is shown in Figure B-5.

The dialog box in Figure B-6 appears at the point when the application should start
executing.

Since BugRunner has requested <all-permissions/> access and the digital signature
uses a self-signed public-key certificate, then JWS reports that “it is highly recom-
mended not to install and run this code.” This sort of message is deeply worrying to
novice users. It can only be removed if you replace the self-signed certificate by a
third-party certificate as outlined at the end of this appendix.

Clicking on Details will show information obtained from the certificate, or chain of
certificates, attached to the JAR. Clicking on Exit will stop JWS without executing

Figure B-5. BugRunner installation

This is the Title of the Book, eMatter Edition

A JWS Installer for BugRunner | 937

the application. Start will start the application and, depending on how JWS is config-
ured, add a BugRunner item to the Windows Start menu and a BugRunner icon to the
desktop.

For more details about the application and how to configure JWS the application
manager should be started. Figure B-7 shows the manager for JWS 1.4.2.

This manager has been pensioned off in Version 5.0, replaced by a
control panel and a cache manager.

Figure B-6. Execute at your peril

Figure B-7. The JWS 1.4.2. application manager

This is the Title of the Book, eMatter Edition

938 | Appendix B: Installation Using Java Web Start

Place Everything on a Server
It’s time to move the following six BugRunner files to a server:

• BugRunner.jnlp

• bug32.gif and BRBanner.gif

• BugRunner.jar, j3dutils_signed.jar, and J3DUtilsDLL.jar

BugRunner.jnlp must be modified to have its codebase use the server’s URL:

codebase="http://fivedots.coe.psu.ac.th/~ad/jws/BugRunner/"

The BugRunner/ directory is placed below jws/, which holds a JWS portal page called
index.html. The directory structure is shown in Figure B-8.

The portal page (loaded from http://fivedots.coe.psu.ac.th/~ad/jws/) appears as shown
in Figure B-9.

Clicking on the BugRunner link will cause the application to be downloaded, with
JWS showing the same dialogs as in Figures B-5 and B-6.

Before starting this phase of the testing, any previous client-side installation of
BugRunner should be removed via the JWS application manager.

A JWS Installer for Checkers3D
I’ll go through the six installer development steps again, this time for the Checkers3D

application. Checkers3D was the first Java 3D example considered in Chapter 15.

Figure B-8. The server directories used for JWS

This is the Title of the Book, eMatter Edition

A JWS Installer for Checkers3D | 939

Write the Application
Checkers3D uses the OpenGL Windows version of Java 3D, and so requires:

j3daudio.jar
j3dcore.jar
j3dutils.jar
vecmath.jar

JAR files

J3D.dll
j3daudio.dll
J3DUtils.dll

Native libraries

They must be copied into the Checkers3D/ directory, resulting in Figure B-10.

The compileChk.bat batch file contains this line:

javac -classpath "%CLASSPATH%;vecmath.jar;j3daudio.jar;
 j3dcore.jar;j3dutils.jar" *.java

The Checkers3D.bat batch file has this:

java -cp "%CLASSPATH%;vecmath.jar;j3daudio.jar;
 j3dcore.jar;j3dutils.jar" Checkers3D

Figure B-9. The JWS portal page

This is the Title of the Book, eMatter Edition

940 | Appendix B: Installation Using Java Web Start

Once the program has been tested, the application should be packaged as a JAR. The
makeJar.bat batch file has this line to handle that:

jar cvmf mainClass.txt Checkers3D.jar *.class

The manifest details in mainClass.txt are:

Main-Class: Checkers3D
Class-Path: vecmath.jar j3daudio.jar j3dcore.jar j3dutils.jar

The application now consists of eight files:

• The application JAR file: Checkers3D.jar

• Four Java 3D JAR files: j3daudio.jar, j3dcore.jar, j3dutils.jar, and vecmath.jar

• Three native libraries: J3D.dll, j3daudio.dll, and J3DUtils.dll

• And a partridge in a pear tree (no, I’m joking about that one).

These should be moved to a different directory on a different machine and tested.
Double-clicking on Checkers3D.jar should start the application.

Modify the Application for Deployment
The three DLLs must be placed inside their own JARs:

jar cvf J3DDLL.jar J3D.dll
jar cvf j3daudioDLL.jar j3daudio.dll
jar cvf J3DUtilsDLL.jar J3DUtils.dll

The main() method of Checkers3D must be modified to call System.loadLibrary() for
the three DLLs:

public static void main(String[] args)
{

Figure B-10. The initial Checker3D/ directory

This is the Title of the Book, eMatter Edition

A JWS Installer for Checkers3D | 941

 // DLLs used by Java 3D extension
 String os = System.getProperty("os.name");
 if (os.startsWith("Windows")) {
 System.out.println("Loading '" + os + "' native libraries...");
 System.out.print(" J3D.dll... ");
 System.loadLibrary("J3D"); // drop ".dll"
 System.out.println("OK");

 System.out.print(" j3daudio.dll... ");
 System.loadLibrary("j3daudio");
 System.out.println("OK");

 System.out.print(" J3DUtils.dll... ");
 System.loadLibrary("J3DUtils");
 System.out.println("OK");
 }
 else {
 System.out.println("Sorry, OS '" + os + "' not supported.");
 System.exit(1);
 }

 new Checkers3D();
} // end of main()

Create a Public/Private Keypair for Signing the Application
A new keypair is generated in the keystore:

 keytool –genkey –keystore MyKeyStore –alias Checkers3D

Sign Everything with the Private Key
For the Checkers3D application, there are (now) eight JAR files:

Checkers3D.jar
The application JAR file

j3daudio.jar
j3dcore.jar
j3dutils.jar
vecmath.jar

Four JAVA 3D JAR files

J3DDLL.jar
j3daudioDLL.jar
J3DUtilsDLL.jar

Three native-library JARs

The Sun JAR files are copied and signed with these commands:

jarsigner –keystore MyKeyStore –signedjar j3daudio_signed.jar
 j3daudio.jar Checkers3D

This is the Title of the Book, eMatter Edition

942 | Appendix B: Installation Using Java Web Start

jarsigner –keystore MyKeyStore –signedjar j3dcore_signed.jar
 j3dcore.jar Checkers3D
jarsigner –keystore MyKeyStore –signedjar j3dutils_signed.jar
 j3dutils.jar Checkers3D
jarsigner –keystore MyKeyStore –signedjar vecmath_signed.jar
 vecmath.jar Checkers3D

The DLL JAR files are signed in place:

jarsigner –keystore MyKeyStore J3DDLL.jar Checkers3D
jarsigner –keystore MyKeyStore j3daudioDLL.jar Checkers3D
jarsigner –keystore MyKeyStore J3DUtilsDLL.jar Checkers3D

The manifest information in mainClass.txt is changed to reference these signed files:

Main-Class: Checkers3D
Class-Path: vecmath_signed.jar j3daudio_signed.jar
 j3dcore_signed.jar j3dutils_signed.jar

Finally, after Checkers3D.jar is regenerated, it is signed:

jarsigner –keystore MyKeyStore Checkers3D.jar Checkers3D

Create a Deployment File
The deployment file for the Checkers3D application, Checkers3D.jnlp, is shown in
Example B-3.

Example B-3. Deployment file for Checkers3D

<?xml version="1.0" encoding="utf-8"?>
<!-- Checkers3D Deployment -->

<jnlp spec="1.0+"
 codebase="file:///D:/Teaching/Java Games/Code/JWS/Checkers3D/"
 href="Checkers3D.jnlp"
 >

 <information>
 <title>Checkers3D</title>
 <vendor>Andrew Davison</vendor>
 <homepage href="http://fivedots.coe.pcu.ac.th/~ad/jg"/>
 <description>Checkers3D</description>
 <description kind="short">Checkers3D: a simple java 3D example
 showing a blue sphere above a checkboard.</description>
 <icon href="chess32.gif"/>
 <icon kind="splash" href="startBanner.gif"/>
 <offline-allowed/>
 </information>

 <security>
 <all-permissions/>
 </security>

This is the Title of the Book, eMatter Edition

A JWS Installer for Checkers3D | 943

At this stage, codebase is pointing to a local directory. The icons and splash screen
images, chess32.gif and startBanner.gif, must be placed in the Checkers3D/ directory.
The resources section lists eight JAR files.

Double-clicking on Checkers3D.jnlp should initiate JWS and the installation pro-
cess, as shown in Figure B-11.

The dialog box in Figure B-12 appears at the point when the application should start
executing.

Checkers3D suffers from the “highly recommended not to install and run this code”
message since it uses a self-signed certificate just like BugRunner.

 <resources os="Windows">
 <j2se version="1.4+"/>
 <jar href="Checkers3D.jar" main="true"/>

 <jar href="j3daudio_signed.jar"/>
 <jar href="j3dcore_signed.jar"/>
 <jar href="j3dutils_signed.jar"/>
 <jar href="vecmath_signed.jar"/>

 <nativelib href="J3DDLL.jar"/>
 <nativelib href="j3daudioDLL.jar"/>
 <nativelib href="J3DUtilsDLL.jar"/>
 </resources>

 <application-desc main-class="Checkers3D"/>
</jnlp>

Figure B-11. Checkers3D installation

Example B-3. Deployment file for Checkers3D (continued)

This is the Title of the Book, eMatter Edition

944 | Appendix B: Installation Using Java Web Start

Place Everything on a Server
Now move the folowing 11 Checkers3D files to your server:

• Checkers3D.jnlp

• Checkers3D.jar

• j3daudio.jar, j3dcore.jar, j3dutils.jar, and vecmath.jar

• J3DDLL.jar, j3daudioDLL.jar, and J3DUtilsDLL.jar

• chess32.gif and startBanner.gif

Checkers3D.jnlp must be modified to have its codebase use the server’s URL:

codebase="http://fivedots.coe.psu.ac.th/~ad/jws/Checkers3D/"

The Checkers3D/ directory is placed below jws/ on the server, as shown in Figure B-13.

Figure B-12. Execute at your peril (again)

Figure B-13. The Checkers3D directory on the server

This is the Title of the Book, eMatter Edition

Another Way to Install Checkers3D | 945

Clicking on the Checkers3D link on the JWS portal page (see Figure B-13) will cause it
to be downloaded, with JWS showing the same dialogs as in Figures B-11 and B-12.

Before starting this phase, any previous installation of Checkers3D should be removed
via the JWS application manager.

Another Way to Install Checkers3D
The Checkers3D example works on the principle of including the Java 3D libraries as
part of the application. An alternative approach is available at https://j3d-webstart.
dev.java.net: making the Java 3D binaries accessible through their own JNLP deploy-
ment file.

This means that the deployment file for an application—such as Checkers3D—can
specify that Java 3D be downloaded at runtime if it’s not available on the client’s
machine. The size of the Checkers3D-specific part of installation will be substantially
reduced since the Java 3D elements are separated.

A sample JNLP file that uses this approach can be found at https://j3d-webstart.dev.
java.net/example.html. The relevant line employs a resource extension:

<resources>
 <j2se version="1.4+"/>
 <jar href="MyExample.jar" main="true"/>

 <extension href="https://j3d-webstart.dev.java.net/release/java3d-1.3-latest.jnlp"/
>
</resources>

The Java 3D binaries will be retrieved from https://j3d-webstart.dev.java.net/release/
using java3d-1.3 –latest.jnlp.

There are two simple JWS-enabled Java 3D applications in https://j3d-webstart.dev.
java.net/prototype/test/. There’s a thread discussing this work at the Java Desktop
forum on Java 3D, http://www.javadesktop.org/forums/thread.jspa?threadID=4563.

The idea of using JNLP resource extensions to include the Java 3D libraries as a
separate deployment is also utilized in the FlyingGuns game/simulation (http://
www.flyingguns.com). The direct link to its top-level deployment file is http://www.
hardcode.de/fg/webstart/flyingguns.jnlp. The extension part of the JNLP file is:

<resources>
 <j2se version="1.4+" initial-heap-size="128m" max-heap-size="256m"/>
 <jar href="StarFireExt.jar"/>
 <jar href="flyingguns_core_client.jar" main="true"/>
 : // other application JARS

 <extension name="Java3D"
 href="http://www.hardcode.de/java3dext/java3dext.jnlp"/>
 : // other tags
</resources>

This is the Title of the Book, eMatter Edition

946 | Appendix B: Installation Using Java Web Start

The JWS Portal Page
The portal page (shown in Figure B-9) contains a mix of JavaScript and VBScript,
which attempts to detect if JWS is present on the client machine. If it isn’t, then the
user will be given the option of downloading a JRE. The task is considerably compli-
cated by the many variations between browsers, operating systems, and platforms.
Example B-4 is a simplified version of the page.

Example B-4. Simple version of JNLP portal page

<HTML>
<HEAD><TITLE>Java Web Start Portal</TITLE>
<script language="JavaScript" type="text/javascript">

 // check in various ways if JWS is installed;
 // decide if the browser is IE on Windows

 function insertLink(url, name) {...}
 // add a link to the named URL if JWS is present

 function installInfo() {...}
 // report whether JWS has been found

 function nativeReport() {...}
 // warn about the use of Windows DLLs by BugRunner and Checkers3D</script>

<script language="VBScript">
 // check for various JWS objects in the Windows registry
</script>

</HEAD>
<BODY><H1>Java Web Start Portal</H1>

<script language="JavaScript" type="text/javascript">
installInfo();
nativeReport();

</script>

<h2>Installation Links</h2>
<P>
 <script language="JavaScript" type="text/javascript">

insertLink("time.jnlp", "Official US Time");
 </script>

 <script language="JavaScript" type="text/javascript">
insertLink("BugRunner/BugRunner.jnlp", "BugRunner");

 </script>

 <script language="JavaScript" type="text/javascript">
insertLink("Checkers3D/Checkers3D.jnlp", "Checkers3D");

 </script>
</P></BODY>
</HTML>

This is the Title of the Book, eMatter Edition

The JWS Portal Page | 947

The JavaScript part of the page sets a flag, javawsInstalled, to the value of 1 if it
thinks that JWS is installed. It determines if Windows and Internet Explorer are
being used. Three functions are defined—insertLink(), installInfo(), and
nativeReport()—which are called in the body of the page. If the client’s browser is
Internet Explorer on Windows, then some VBScript code has a go at setting
javawsInstalled.

Setting javawsInstalled in JavaScript
There are four tests attempted:

1. Check if the JNLP or applet MIME type is set in the browser:

if (navigator.mimeTypes && navigator.mimeTypes.length) {
 if (navigator.mimeTypes['application/x-java-jnlp-file'])
 javawsInstalled = 1;
 if (navigator.mimeTypes['application/x-java-applet'])
 javawsInstalled = 1;
}

2. Check if Java is enabled on non-Windows operating systems:

if (!isWin && navigator.javaEnabled())
 javawsInstalled = 1;

3. Check for the presence of LiveConnect, an indicator of JWS’s presence:

if (window.java != null)
 javawsinstalled = 1;

4. Check for the Java plug-in:

var numPlugs=navigator.plugins.length;
if (numPlugs) {
 for (var i=0; i < numPlugs; i++) {
 var plugNm = navigator.plugins[i].name.toLowerCase();
 if (plugNm.indexOf('java plug-in') != -1) {
 javawsinstalled = 1;
 break;
 }
 }
}

None of these approaches is guaranteed to work on every platform, OS, or browser.
For example, the JNLP MIME type must be set by an Opera user manually; other-
wise, it’s not detected even on a machine with JWS. Only Mozilla-based browsers
and Opera support LiveConnect. A javaEnabled() call will always return true on a
Windows machine because it detects the less-than-useful Microsoft JVM. Several
browsers don’t store plug-in information, and even if the Java plug-in is found, it
may not be the JVM utilized by the browser.

This is the Title of the Book, eMatter Edition

948 | Appendix B: Installation Using Java Web Start

The JavaScript Functions
installInfo() prints a link to one of Sun’s download pages for JREs if
javawsInstalled is 0. The section in the JWS developers guide called “Creating the
Web Page that Launches the Application” (<JAVA_HOME>/docs/guide/jws/develop-
ersguide/launch.html) gives an example of the auto-installation of a JRE for Win-
dows from a portal page. I haven’t used this approach since it seems better to leave
the download choice up to the user.

nativeReport() prints a warning if the client OS isn’t Windows since BugRunner and
Checkers3D rely on DLLs. insertLink() adds a JNLP link to the page only if
javawsInstalled is 1.

The VBScript Code
The VBScript code is a long multi-way branch that checks the Windows registry for
different versions of the JWS. Here’s a typical test:

If (IsObject(CreateObject("JavaWebStart.isInstalled.1.4.2"))) Then
 javawsInstalled = 1

The numerous JWS versions necessitate several branches. The developers guide—up
to Version 1.4.2—refers to JavaWebStart.isInstalled.1, JavaWebStart.isInstalled.2,
and JavaWebStart.isInstalled.3, which in all likelihood never existed.

There are tests for the JWS-related MIME types, application/x-java-jnlp-file and
application/x-java-applet.

More Information on Portal Pages
The portal page example in the developers guide for Version 5.0 uses a similar
approach to the code here; the main difference is the auto-installation of a Windows
JRE.

Crucial to portal page code is the ability to detect the browser and OS accurately. A
good discussion of these problems can be found at the QuirksMode JavaScript site,
http://www.quirksmode.org/index.html?/js/detect.html. A more rigorous way of deter-
mining the browser’s JRE is to load an applet that interrogates the JVM’s java.

version property. This approach is described in the Java Plug-in forum thread
“How to Detect a Java Plugin from JavaScript” (http://forum.java.sun.com/thread.
jsp?thread=168544&forum=30&message=527124). Two online example of this
approach, containing many other good Java detection techniques as well, are at
http://members.toast.net/4pf/javasniff.html and http://cvs.sdsc.edu/cgi-bin/cvsweb.cgi/
mbt/mbt/apps/Explorer/Detect.js?rev=1.2.

This is the Title of the Book, eMatter Edition

Third-Party Certificates | 949

Third-Party Certificates
Figures B-6 and B-12 show the problem with using self-signed certificates in an
application: JWS issues a scary message. The solution is to replace the certificate
by one generated by a trusted third party: a CA. Popular CAs include Verisign
(http://www.verisign.com/), Thawte (http://www.thawte.com/), and Entrust (http://
www.entrust.com). These companies charge money for their services, but a free
alternative is CACert.org (https://www.cacert.org/).

Beefing up the certificate for a keypair consists of the following steps:

1. Extract a Certificate Signing Request (CSR) from the keypair.

2. Send the CSR to the CA, requesting a certificate.

3. After checking the returned certificate, import it into the keystore, replacing the
keypair’s self-signed certificate.

4. Start signing JARs with the keypair.

Extract a CSR
Generate a CSR with the -certreq option to keytool:

keytool -certreq -keystore MyKeyStore -alias BugRunner -file BugRunner.csr

This generates a CSR for the BugRunner keypair, stored in BugRunner.csr, a text file of
this form:

 -----BEGIN NEW CERTIFICATE REQUEST-----
 MIICoDCCAl4C..... // many more lines

 -----END NEW CERTIFICATE REQUEST-----

Request a Certificate
The CSR is sent to the CA, usually by pasting its text into a web form accessed via a
secure link (a https URL). At CACert.org, this step requires some preliminary work.
The users must first join the free CACert.org and send in details about the web
domain that they control. This information is checked with the site’s web adminis-
trator by email. Only then can CSRs be submitted. The certificate generated in
response to a CSR is called a server certificate by CACert.org.

Import the Certificate into the Keystore
The server certificate is received in an ordinary email and should be examined before
being added to the keystore:

keytool -printcert -file certfile.cer

This is the Title of the Book, eMatter Edition

950 | Appendix B: Installation Using Java Web Start

Assume that the text message is stored in certfile.cer. If the .cer extension is used,
then many browsers will be able to open and interpret the file’s certificate contents.
The text should look like this:

 -----BEGIN CERTIFICATE-----
 MIICxDCCAi0.... // many more lines

 -----END CERTIFICATE-----

Though people often talk about a server certificate, the data may actually consist of a
chain of certificates, rather than just one.

Once the user is happy that the details match those supplied in the original CSR, the
server certificate can be imported into the keystore. In this case, it replaces the self-
signed certificate for the BugRunner keypair:

keytool -import -trustcacerts -keystore MyKeyStore
 -alias BugRunner -file certfile.cer

The server certificate is automatically verified; in a chain, the current certificate is
trusted because of the certificate at the next level up. This continues until the certifi-
cate for the CA is reached. This may be a trusted (or root) certificate, stored in JWS’s
cacerts keystore. cacerts comes pre-built with Verisign, Thawte, and Entrust trusted
certificates but doesn’t have any from CACert.org.

CACert.org offers a root certificate for download, which can be added to cacerts (if
you have write permissions). Alternatively, it can be placed in the local MyKeyStore
keystore as a trusted certificate:

keytool –import –alias cacertOrg –keystore MyKeyStore –file caRoot.cer

Here, I’m assuming that the root certificate is stored in caRoot.cer and is saved under
the name (alias) cacertOrg. Since no keypair exists for cacertOrg, keytool assumes
it’s a trusted certificate. This can be verified by listing the contents of the keystore:

keytool –list –keystore MyKeyStore

The root certificate should be imported before the server certificate, or the server cer-
tificate’s authentication process will end with the warning “Failed to establish chain
from reply.”

An alternative is to “glue” the root and server certificates together as a single entity
and then import the result into the keystore as a replacement for the self-signed certifi-
cate. This process is described by Chris W. Johnson at http://gargravarr.cc.utexas.edu/
chrisj/misc/java-cert-parsing.html.

Sign JARs with the Keypair
Signing can now commence with the third-party-certified BugRunner keypair:

jarsigner –keystore MyKeyStore foo.jar BugRunner

This is the Title of the Book, eMatter Edition

More Information | 951

More Information
If you’ve installed the J2SE documentation, then there’s a lot of JWS information
available locally in <JAVA_HOME>/docs/guide/jws/index.html, including the devel-
opers guide. In J2SE 5.0, several JWS examples are in the distribution (in the sam-
ple/ directory). In earlier JWS versions, the code was scattered throughout the
developers guide. The JWS home page at Sun (http://java.sun.com/products/
javawebstart/) contains links to an official FAQ, technical articles, and installer
demos.

In J2SE/JRE 1.4.2. or earlier, the JWS materials didn’t contain the developers pack,
which includes the complete JWS specification, JNLP API documentation, jardiff

tool, and additional libraries. These have been folded into the main JWS release
since 5.0. The pack is also available from http://java.sun.com/products/javawebstart/
download-jnlp.html. The JWSt and JNLP developers forum is an active place (http://
forum.java.sun.com/forum.jsp?forum=38).

The best unofficial JWS site is http://lopica.sourceforge.net/ with a lengthy FAQs
page, useful reference sections, and links. However, it hasn’t been updated in some
time, and a lot of the FAQs page is about earlier versions of JWS.

The installer examples from Sun are at http://java.sun.com/products/javawebstart/
demos.html. Another great source is Up2Go.Net (http://www.up2go.net), with
installer categories including multimedia, communications, and over 40 games.
Many of the games at the Java Games Factory can be downloaded using JWS, so
their installers can be examined (http://grexengine.com/sections/externalgames/).

JWS and Java 3D
The ongoing work on making Java 3D available via JWS is based at https://j3d-
webstart.dev.java.net.

The problems that arise when utilizing native libraries in standalone applications,
JWS installers, and applets are discussed in the paper “Transparent Java Standard
Extensions with Native Libraries on Multiple Platforms,” available online at http://
atlas.dsv.su.se/~pierre/a/papers/nativelibs.pdf. This paper is of particular interest since
it uses Java 3D as its example extension with native libraries. The code is available
from http://www.dsv.su.se/~adapt/im/t_nativelibs/ with an explanation in Swedish
(http://www.almac.co.uk/chef/chef/chef.html).

JWS and Other Libraries
Developers using JWS with other native libraries have come across similar problems
to those with JWS and Java 3D.

This is the Title of the Book, eMatter Edition

952 | Appendix B: Installation Using Java Web Start

Xith3D is a scene graph–based 3D programming API similar to Java 3D. However,
Xith3D runs on top of JOGL, a set of Java bindings for OpenGL. William Denniss
has a detailed example of how to use JWS to install Xith3D at http://www.xith.org/
tutes/GettingStarted/html/deploying_xith3d_games_with.html.

A brief introduction to JWS by Kevin Glass, for a space game using JOGL, is at http://
www.cokeandcode.com/info/webstart-howto.html.

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

953

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
Abstract Windowing Toolkit (see AWT)
active rendering, converting to, 21
AffineTransformOp class, 119
algorithms

A* pathfinding, 379–382, 386
animation (see animation algorithms)
approximate and probabilistic, 590
boid, 593
bounding box, 442
CLOD, 747
collision, 291
cone rotation, 636
dead reckoning, 883
Euler’s integration, 577
explosion facing the viewer, 639
flatness fractal, 689
flocking and Artificial Life, 592
nearest neighbor for scaling, 149
nearness testing, 495
optimized view frustum, 395
traversing a scene graph, 434

AlienAStarSprite class, 350
AlienQuadSprite class, 373
AlienTiles (see isometric tile games)
AlphaComposite class, 152
AmmoManager class, 650

animation algorithms, 13–45
active rendering, converting to, 21
alternative approaches, 39–45

swing timer, 40–43
utility timer, 44

animation loop (update, rendering,
sleep), 14

example programs for, 14
execution speed control, 22–31
FPS, 13

separating updates from
rendering, 35–37

UPS, 34–37
GamePanel (JPanel subclass) (see

GamePanel)
pausing and resuming, 37–39
sleep() call accuracy, 31–33
sleep() call inaccuracy handling, 33
threaded canvas as, 14–19

double buffered drawing, 18
game termination, 17
local memory variables, preventing

with volatile, 17
sleep necessity, 17
stopping threads, 16
synchronization concerns, 16

timer resolution (granularity), 24

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

954 | Index

animation algorithms (continued)
timers

J2SE, 26
Java 3D bug alert, 31
non J2SE, 26
resolution of, 27–30

user interaction, adding, 20
animation framework (see animation

algorithms)
AnimSprite3D class, 515
AnimTour3D

animated 3D sprite, 515–524
activity, 519
animating, 520–524
controlling, 520
floor boundary detection, 519
Poser, 518
poses, 517

class diagrams, 513
code for, 514
full-screen version (see AnimTourFS)
scene creation, 514

AnimTourFS, 525–530
display mode, changing, 528
full-screen failure fallback, 527
full-screen scene, creating, 525–528
Java FSEM tutorial, 529
windowed version (see AnimTour3D)

APIs
DirectX, 388
J2ME’s M3G, 564
JAI, 393
Java 3D (Java’s scene graph API), 387
Java MuticastSocket, 827
Java Sound, 185

caparisons to JMF, JOAL, 202
low-level access, 182
MIDI support, 197
resources, 202

JMF, 393
JNLP, 922
JTA, 812
OpenGL’s audio, 178
particle system, 590
scene graph, 404
Xith3D, 952

applications
AnimTourFS, 525
Lathe3D, 459–486
Loader3D, 444–458
LoaderInfo3D, 424
LoadersTests, 205–225

Mover3D, 531–564
packaging as JAR files, 175, 177
PlayerPiano, 268
SoundPlayer, 182–185
Tour3D, 487–511

articulated figure (sprite) (see Mover3D)
audio effects (see sound effects)
audio (see sound)
audio synthesis (see sound synthesis)
AudioClip class, 179–182
Auriga3D game engine binding, 405
Aviatrix3D screen graph API, 405
AWT (Abstract Windowing Toolkit) imaging

model, 106–110
filters, chaining, 110
ImageIcon class, 108
images, processing, 109
MediaTracker class, 107

AxisAngle4d class, 615

B
BackgroundSound class, 618
BallSprite class, 280
BandCombineOp class, 119
BandCombineOp processing, 167–169
Base64Converter class, 811
BASE64Encoder, 811
BatSprite class, 280, 293
Behavior class, 503
BirdsEye class, 658
Board class, 847
Boid class, 600
boids, flocking, 592–594

application of (see Flocking3D)
BoidShape class, 596
BoidsList class, 607
BooleanControl class, 234
BoundingSphere class, 495
BranchGroup class, 390
Brick class, 333
BricksManager class, 303
buffered sample, playing, 194–196
BufferedImage class, 113

advantages, 113
internals, 117

BufferedImageOp class, 119
BufferedImageOp interface, 119
BugPanel class, 274
BugRunner class, 910
bugs

J2SE 5.0 short sound bug, 193
Java 3D timer bug alert, 31

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 955

MIDI volume, 244
showMsg(), 821
WAV file bug, 208

C
Canvas3D class, 426
chat, 817–843

clients with servlet server, 831–843
chat group information,

storing, 841–843
chat servlet, 838–841
Chatter class, 843
clients, URL-based, 833–837
polling for chat messages, 837, 838

threaded TCP clients and server, 818–824
Chatter class, 823
client, 819–821, 823
message and threads, showing, 821
messages, waiting for, 821
server, 822
threaded chat handler, 822

UDP multicasting clients and name
server, 824–831

client login and logout,
improving, 827

invisible messages, 831
multicast chatting, 827–831
name server, 826
who implementation, 831

ChatClient class, 819
ChatGroup class, 823
Chatter class, 823
ChatWatcher class, 821
CheckerFloor class, 415
Checkers3D, 407–423

class diagrams for, 408
code for, 408
floor tiles, 415–418

axis labels, 418
colored, 417

Java 3D and Swing integration, 409
scene graphs

background, 412
creating, 410–412
lighting, 411
viewing, 421–423

spheres, floating, 413
coloring, 413
positioning, 414

viewers
movement, 420
positioning, 419

Checkers3D class, 918
classes

AffineTransformOp, 119
AlienAStarSprite, 350
AlienQuadSprite, 373
AlphaComposite, 152
AmmoManager, 650
AnimSprite3D, 515
AudioClip, 179
AxisAngle4d, 615
BackgroundSound, 618
BallSprite, 280
BandCombineOp, 119
Base64Converter, 811
BASE64Encoder, 811
BatSprite, 280
Behavior, 503
BirdsEye, 658
Board, 847
Boid, 600
BoidShape, 596
BoidsList, 607
BooleanControl, 234
BoundingSphere, 495
BranchGroup, 390
Brick, 333
BricksManager, 303
BufferedImage, 113
BufferedImageOp, 119
BugPanel, 274
BugRunner, 910
Canvas3D, 426
ChatClient, 819
ChatGroup, 823
Chatter, 823
ChatWatcher, 821
CheckerFloor, 415
Checkers3D, 918
Clip, 187
ClipsInfo, 207
ClipsLoader, 178
ColorConvertOp, 119
ColorCube, 393
ColouredTiles, 417
CompoundControl, 234
ConeSound, 618
Control, 234
ConvolveOp, 120, 160
Cookie, 839
CropImageFilter, 110
DatagramPacket, 776
DistTourSprite, 886, 892

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

956 | Index

classes (continued)
DLLUninstallAction, 914, 916
EllipseShape3D, 484
EllipticLimb, 538
EnumControl, 234
ExplosionsClip, 616
FadeMidi, 240
FBFWatcher, 867
Figure, 543
FileFilter, 917
FloatControl, 234
FlockBehavior, 595
FourByFour, 846
FractalLand3D, 689
FractalMesh, 689
GamePanel, 14
GeneralPath, 111
GeometryArray, 424, 434
GeometryInfo, 461
GeometryUpdater, 571
GetWebPage, 810
GLCanvas, 403
Graphics2D, 111
GroundCover, 736
GroundShape, 736
GrowthBehavior, 749, 761
GunTurret, 616, 622
HeightFinder, 742
ImageConsumer, 110
ImageFilter, 110
ImageIcon, 108
ImageIO, 114
ImagesCsSeries, 652
ImagesLoader, 126
ImagesPlayer, 138
ImagesSeries, 615
IndexedGeometry, 598
InetAddress, 775
J3DTimer, 26
JackPanel, 303
JOALMixer, 393
JumperSprite, 308
KeyAdapter, 492
KeyBehavior, 705
KeyEvent, 506
KeyNavigatorBehavior, 647
Landscape, 689
LaserBeam, 616
LatheShape3D, 459
Leaf, 389
Limb, 534

Line, 187
LineParticles, 571
LoaderBase, 428
LocationBeh, 539
LookupOp, 120
Lw3dLoader, 428
MazeManager, 658
MediaTracker, 107
MemoryImageSource, 110
MetaMessage, 198
MidiChannel, 255
MidiMessage, 198
MidisInfo, 207
MidisLoader, 178
Mixer, 187
MorphingMesh, 564
MouseRotate, 421
MouseTranslate, 421
MouseZoom, 421
MoveableEllipticLimb, 538, 547
MoveableLimb, 538, 547
MultiChat, 827
MultiTimeClient, 807
MultiTimeServer, 806
MyTimerTask, 45
NameServer, 826
NetFourByFour, 867
NormalGenerator, 461
ObjectFile, 428
Obstacles, 48
OrbitBehavior, 420
OrientedShape3D, 571
OverlayCanvas, 875
PanChanger, 246
PanMidi, 246
Perf, 26
PickCanvas, 631
PickDragBehavior, 857
PickHighlightBehavior, 641
PickMouseBehavior, 617, 631
PickRay, 632
PickRotateBehavior, 640
PickTool, 620
PickTranslateBehavior, 640
PickZoomBehavior, 640
PixelGrabber, 110
PlayClip, 190
PlayerSprite, 376
PlayMidi, 200
PlaySound, 180
Point2D.Double, 62

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 957

PointLight, 674
PointParticles, 571
PointSound, 618
PointsUpdater, 570
Port, 189
Positions, 852
PredatorBehavior, 595
PredatorBoid, 596
PreyBehavior, 595
PreyBoid, 596
Primitive, 413
QuadArray, 424, 434
QuadParticles, 571
RescaleOp, 120
RGBImageFilter, 110
RhodoneaShape3D, 485
Ribbon, 324
SceneGraphObject, 433
ScoreClient, 785
ScoreServer, 788
SecondViewPanel, 677
Selector, 792
Sequencer, 224
ServerSocket, 776, 783
Shape3D, 390
SharedGroup, 711
ShootingBehaviour, 616, 634
ShortMessage, 198
ShowImage, 108
SimpleUniverse, 392
Skeleton, 563
SkinnedMesh, 563
SleepAcc, 31
Socket, 776
SocketChannel, 792
SoundsPanel, 207
SourceDataLine, 186
Sphere, 413
Spotlight, 674
Sprite, 280
Sprite3D, 495
StopWatch, 29
StopWatchSource, 27
Stripifier, 687
SurfaceOfRevolution, 477
SwingUtilities, 821
SysexMessage, 198
TexCoordGeneration, 478
Text2D, 415
TexturedFloor, 658
TexturedPlane, 648, 658

Thread, 37
ThreadedChatServerHandler, 822
ThreadedScoreHandler, 790, 822
TiledImage, 123
TiledSprite, 368
TilesList, 352
TilesPriQueue, 352
TimeBehavior, 495
Timer, 44
TimerRes, 27
TimerTask, 44
TimeUnit, 26
TourGroup, 900
TouristControls, 492
TouristInfo, 900
TourServer, 885
TourServerHandler, 885, 900
TourSprite, 500
TourWatcher, 885, 892
TransformGroup, 390
TransparencyAttributes, 439
TreeLimb, 750, 768
TriangleArray, 434
TriangleStripArray, 424
TurnStile, 286
UninstallAction, 915
Viewer, 419
ViewerAvatar, 649
ViewingPlatform, 419
ViewPlatformBehavior, 655
VolatileImage, 121
VolChanger, 240
WakeupCondition, 504
WakeupOnAWTEvent, 504
WakeupOnElapsedFrames, 504
WakeupOnElapsedTime, 504
WormChase, 78
WormChase (AFS), 78
WormChase (FSEM), 91
WormChase (UFS), 84
WormChaseApplet, 71
WormPanel, 72
WrapAnimTour3D, 514
WrapCheckers3D, 427
WrapFlocking3D, 596
WrapFourByFour, 846, 848
WrapFractalLand3D, 689
WrapLoader3D, 447
WrapLoaderInfo3D, 427
WrapMaze3D, 666
WrapMover3D, 538

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

958 | Index

classes (continued)
WrapNetFBF, 874
WrapNetTour3D, 891
WrapShooter3D, 618
WrapTour3D, 505
WrapTrees3D, 752

Clip class, 187
ClipsInfo class, 207

storing clip information, 216–219
ClipsLoader class, 178

constructor, 214–216
playing clips, 216

ClipsLoader formats, 208
ColorConvertOp class, 119
ColorCube class, 393
ColouredTiles class, 417
CompoundControl class, 234
ConeSound class, 618
Control class, 234
convolution processing, 155–160
ConvolveOp class, 120, 160
Cookie class, 839
copyrights, sound, 209
CropImageFilter class, 110

D
DatagramPacket class, 776
DEM (Digital Elevation Model), 745
DistTourSprite class, 886, 892
DLLUninstallAction class, 914, 916

E
EllipseShape3D class, 484
EllipticLimb class, 538
emergence, 592
endLimbTG class, 756
EnumControl class, 234
ExplosionsClip class, 616

F
FadeMidi class, 240
fault fractal, 709
FBM (Fractal Brownian Motion) fractal, 709
FBFWatcher class, 867
Figure class, 543
FileFilter class, 917
filters, chaining, 110
FloatControl class, 234
FlockBehavior class, 595
flocking boids, 592–594

application of (see Flocking3D)

Flocking3D, 592, 594–613
ancestor of, 595
boid behavior in, 594
boids, grouping, 607
class diagram, 596
code for, 594
features illustrated in, 595
flock behavior, 608–613

boid animation, 608
eat prey, 612
other flocks and velocity rules, 611
predator behavior, 612
prey behavior, 610
velocity rules, 608–610

obstacles, 597–607
boid shape, 598
boid types, 600–607

scene creation, 596
floor tiles, 415–418

axis labels, 418
colored, 417

FourByFour class, 846
FPS (frames per second), 13, 34–37

execution speed control, 22–31
good game value, 25

FPShooter3D (first-person), 642–655
ammunition management, 650,

shooting the gun, 651
class diagrams, 643
code for, 644
images in the viewpoint, 648–650

using GIFs, 650
laser beam management, 651–654

firing beam, 652–654
target setup, 644
user’s viewpoint

initializing, 647
moving, 654
positioning and moving, 645–647

Fractal Brownian Motion (FBM) fractal, 709
FractalLand3D, 686–710

class diagrams, 688
flatness, 689

code for, 688
collision avoidance, 706
fractal land, 689–691

linear fog, 689
user controls, 690

ground, 697–701
stripification, 699
texture minification, 700
textures, multiple, 701

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 959

key presses, 705
landscapes, 691–705

floors, 692–694
generating, 701–705
heights, picking, 695
other fractal examples, 709
terrain representation, 696
walls, 694

scene objects, 707–709
terrain following, 706

FractalLand3D class, 689
FractalMesh class, 689
fractals (see FractalLand3D)
frames per second (see FPS)
freeware/shareware games, 8–10
FSEM (Full-Screen Exclusive Mode), 525

G
game programmer, nonsupport of Java, 7
GamePanel (JPanel subclass), elements

introduced, 13
games

AlienTiles (see isometric tile games)
Checkers3D (see Checkers3D)
consoles, nonsupport of Java, 5, 7
FPS, good value for, 25
freeware/shareware, 8–10
JumpingJack (see JumpingJack game)
mazes (see Maze3D)
pausing and resuming, 37–39
programming

core technology (animation
algorithm), 13

Java use objections (see Java,
objections to use)

shooting (see Shooter3D, FPShooter3D)
side-scrolling (see JumpingJack game)
Sun Game Server, 904
tic-tac-toe (see tic-tac-toe)
WormChase (see WormChase game)

GeneralPath class, 111
GeometryArray class, 424, 434
GeometryInfo class, 461
GeometryUpdater class, 571
GetWebPage class, 810
GIF (Graphics Interchange Format), 105
GL4Java, 402
GLCanvas class, 403
granularity (timer resolution), 24
Graphics2D class, 111
GroundCover class, 736
GroundShape class, 736

GrowthBehavior class, 749, 761
guns, shooting (see Shooter3D,

FPShooter3D)
GunTurret class, 616, 622

H
heads-up display (HUD), 403
HeightFinder class, 742
HUD (heads-up display), 403

I
Image class, converting to

BufferedImage, 116
ImageConsumer class, 110
ImageFilter class, 110
ImageIcon class, 108
ImageIO class, 114
images

buffering, 113–120
BufferedImage class internals, 117
BufferedImageOp interface, 119
converting Image to

BufferedImage, 116
effects, applying, 134

ImagesTests, 135–137
graphic formats

GIF, 105
JPEG, 106
PNG, 106

initializing, 137
loading, 126–134

configuration file example, 127
getting an image, 129
image-loading method, 132
ImagesLoader, 130
implementation details, 131
internal data structures, 129
strip file images, 133

loading formats (o, n, s, g), 126–134
managed, 120
names[] array, 213
‘o’ images, visual effects

affine transforms, 153–155
alpha compositing, 152
BandCombineOp

processing, 167–169
convolution processing, 155–160
drawImage()-based

processing, 149–152
LookupOp processing, 160–164
operation categories, 147

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

960 | Index

‘o’ images, visual effects (continued)
pixel effects, 170–175
precalculation, 149
rescaling operation, 164–167

painting, 140–142
processing, AWT image model, 109
sequence display, 144–146

implementation details, 146
transparency (BITMASK, TRANSULENT,

OPAQUE), 164
updating, 138–140
VolatileImage class, creating and

managing with, 121
ImagesCsSeries class, 652
ImagesLoader class, 126, 130
ImagesPlayer class, 138
ImagesSeries class, 615
ImagesTests application, 124–126

class diagrams for, 126
code for, 126
image names and effects, 125
starting, 135–137

imaging in Java, 105–123
AWT imaging model, 106–110
formats, 105
pull imaging model, 123
transparent color, 105

IndexedGeometry class, 598
InetAddress class, 775
install4j installer, 905–919

BugRunner, 909–917
installer creation, 912–914
JAR preparation, 909–911
resulting installer, 917
testing, 912
uninstalling, 914–917

Checkers3D, 918
changes to, 919
installer creation, 919
installer result, 919
JAR preparation, 918

Java 3D components, 906–909
BugRunner, 906–908
j3dutils.jar, separating out timer

code, 908
JWS comparison, 905
location of, 905

installation problems, Java, 5
installations (see install4j, JWS)
instruments and soundbanks, creating, 261

isometric tile games, 345–386
alien sprites, 373–376

A*-based, 378–382, 386
AlienAStarSprite, moving, 382
quadrant-based, 376–378
updating, 374
uploading, 376

animation framework, 352–355
ending game, 355
game world management, 353
input control, 353

class diagrams, 350–352
isometric tiles, 346–350

aliens, 350
calculating cost to goal, 383, 384
movement, 347–349
sprite/object placement, 349
storing details, 383
surface map, 350

managing the world, 356–363
drawing the world, 362
entity information, loading, 359
floor information, loading, 356–358
pickup methods, 360
player methods, 360–362

managing the world items, 363–366
entity adding, 364
entity drawing, 365
pickup methods, 365

player sprites, 370–373
being hit, 372
drawing, 372
moving and standing, 371
picking up pickups, 373

reading about, 384–386
sprites on tiles, 368–370

moving to other tiles, 369
tile occupier, 366–368

additional sprite information, 367
drawing, 368

J
J2SE 5.0 compilation, 73–75

raw types, 74
type-safe collection, 73

J2SE 5.0 short sound bug, 193
J3DTimer class, 26

bug fixed, 387
JackPanel class, 303
JAI (Java Advanced Imaging), 123

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 961

Jake2 game engine binding, 405
JAR files

coding changes for, 109
LoadersTests application as, 225
packaging applications as, 175, 177

Java, 123
author assumptions, 1
FSEM tutorial, 529
objections to use, 1–12

game programmer nonsupport, 7
game consoles nonsupport, 5, 7
installation problems, 5
memory leaks, 3
Sun nonsupport, 10, 12
too high-level, 4
too slow, 2

Java 2D, 110–113
active rendering, 112
Graphics2D class, 111
portability, 122
speed, 122
web page for, 111

Java 3D, 387–406
alternatives, 402

GL4Java, 402
JOGL, 403
LWJGL, 402
OpenGL Java bindings, 402
scene graph APIs (see scene graph

APIs)
APIs, 387
behaviors, 502–504
Checkers3D example (see Checkers3D)
criticisms, 394–402

console support lacking, 396
games are few, 397–399
Java dependence, 395
Sun nonsupport, 400–402
too high-level, 395
too slow, 394

DirectX or OpenGL, 388
ExponentialFog node, 690
external models, 424–458
game engine bindings, 405

Auriga3D, 405
Jake2, 405
Jirr, 406
Odejava, 406
Ogre4J, 405

globals in repeated calculations, 624
lathe shapes (see Lathe3D)
Loader3D application (see Loader3D

application)
LoaderInfo3D application (see

LoaderInfo3D application)
loaders for, 428–430

alternates, 429
NCSA Portfolio, 429

particle systems in, 568–571, 589
float arrays, 569
inner class coding style, 571
synchronization problems, 570

scene graphs, 388–392
alternative APIs (see scene graph APIs)
HelloUniverse, 390–392
nodes, 389

strengths, 392–394
documentation and examples, 393
Java integration, 393
performance, 392
scene graph, 392
unique features, 393

Swing integration, 409
techniques, 425–426
terrain generation projects, 747
textbooks, 394
timer bug alert, 31

Java Advanced Imaging (JAI), 123
Java imaging, 105–123

AWT imaging model, 106–110
formats, 105
transparent color, 105

Java Media Framework (JMF), 202
Java Sound API, 185, 202

resources, 202
Java sound (see sound)
jFree-D2 screen graph API, 405
JiD screen graph API, 405
Jirr game engine binding, 406
Jist3D API, 404
jME graphics engine screen graph API, 404
JMF (Java Media Framework), 202
JOAL, 202
JOALMixer class, 393
JOGL, 403
JPEG (Joint Photographic Experts

Group), 106
JumperSprite class, 308

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

962 | Index

JumpingJack game, 298–343
animation framework, 303–313

animation loop, 309–311
explosions, 311–313
input, 306, 307
key presses/actions, multiple, 308–309

bricks
managing, 320–332
storing information on, 333

class diagrams for, 300–303
code for, 303
fireballs, 334–336

statechart specification, 334–336
graphical layers, 299
ribbons

managing, 313
wraparound, 314–320

sprites, jumping, 336–343
initialization, 338
JackPanel collision testing, 340
key event processing, 339
state representation, 338
statechart specification, 336
updating, 341
vertical movement, 342

starting, 303
tiling software, 344

JWS (Java Web Start), 921–952
benefits of, 922
BugRunner, 925–939

application, writing, 926
deployment file creation, 933–937
deployment modifications, 927, 929
private key signs everything, 930, 933
public-/private-key JAR signing, 929
server, files moved to, 938

certificates, third-party, 949
CSR extraction, 949
importing into keystore, 949
requesting, 949
signing JARs with keypair, 950

Checkers3D, 938–945
alternative installation method, 945
application, writing, 939
deployment file creation, 942–944
deployment modifications, 940
private key signs everything, 941
public-/private-key JAR signing, 941
server, files moved to, 944

development steps, 925

downsides of, 922, 924
J2SE documentation information, 951
JNLP deployment file, 924
JWS and Java 3D, 951
JWS and other libraries, 951
JWS portal page, 921, 946–948

JavaScript functions, 948
javawsInstalled, setting in

JavaScript, 947
more information on, 948
VBScript code, 948

K
Kahlua screen graph API, 405
KeyAdapter class, 492
KeyBehavior class, 705
KeyEvent class, 506
KeyNavigatorBehavior class, 647

L
Landscape class, 689
LaserBeam class, 616
lathe shapes (see Lathe3D)
Lathe3D, 459–486

class diagrams, 461
code for, 462
features covered, 460
lathe curves, 468–474

blending functions, 470
Hermite curves, 469–474
specifying segments, 469

lathe shapes, 474–486
appearance, making an, 481
geometry creation, 474
mapping flaw and hack, 479, 481
revolving, 475–477
subclassing, 482–486
texture coordinates, 478–479

scene creation, 462–468
curve rotations, different, 467
shapes, 464–466

LatheShape3D class, 459
Leaf class, 389
lighting scenes, 411
Lightweight Java Game Library

(LWJGL), 402
Limb class, 534
Line class, 187
LineParticles class, 571

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 963

Loader3D application, 444–458
building model’s scene graph, 451–458

configuration modification,
runtime, 458

coords data, loading and
applying, 454

loading the model, 453
model availability, 457
rotation, 455–457

code for, 445
model managing, 450
scene creation, 449
(see also LoaderInfo3D application)

LoaderBase class, 428
LoaderInfo3D application, 426–444

code for, 426
model

displaying, 430–433
scene graph for, 433–436

model’s shape attributes
adjustment, 435–444

shape almost transparent, 438
shape outline, drawing, 437
texture, adding, 439–444
turning shape blue, 437

LoadersTests application, 205–225
ClipsInfo object

LineListener interface, 219
pausing and resuming clips, 218
stopping clips, 218

ClipsLoader class constructor, 214–216
code for, 206
design and implementation

issues, 207–209
GUI, 205, 212
JAR file, 225
listener methods, 211, 213
playing clips, 216
SoundsPanel constructor, 213
storing clip information, 216–219
termination, 210
testing, 209–213

watching with setWatcher(), 210
LocationBeh class, 539
LookupOp class, 120
LookupOp processing, 160–164
Lw3dLoader class, 428
LWJGL (Lightweight Java Game Library),

402

M
managed images, 120
Maze3D, 656–685

class diagrams, 657
code for, 659
floor, tiling, 668–670

textured plane, 670
maze

managing, 663–666
plan, 659–662

scene generation approaches, 685
scenery, creation, 666–668

backgrounds, 667
user interface, 662
viewpoints, 670–685

avatars, 675
backfacing camera, 676–679
birds-eye view, 681–685
clip distances, 672
FOV, 671
keyboard controls, 676
moving, 679–681
positioning of, 676
spotlights, 673–675

MazeManager class, 658
mazes (see Maze3D)
MediaTracker class, 107
memory leaks, Java, 3
MemoryImageSource class, 110
MetaMessage class, 198
MIDI, 197–202

MidiInfo information storage, 223
pausing and resuming sequences, 224
stopping sequences, 223

MidisLoader (see MidisLoader)
sequences, 198

audio effects on, 236–248
playing, 199–202
Sequencer methods, 248

synthesis, 255–268
approaches to, 255, 256
MIDI messages to synthesizer receiver

port, 258, 259
note-playing message to MIDI

channel, 256–258
sequences, creating, 259–268

MidiChannel class, 255
MidiMessage class, 198
MidisInfo class, 207

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

964 | Index

MidisLoader, 219–223
sequences

closing, 222
pausing and resuming, 221
playing, 221
stopping, 222

MidisLoader class, 178
Mixer class, 187
mixer controls, 231–236
MorphingMesh class, 564
MouseListener, 213
MouseRotate class, 421
MouseTranslate class, 421
MouseZoom class, 421
MoveableEllipticLimb class, 538, 547
MoveableLimb class, 538, 547
Mover3D, 531–564

articulated and morphing, 563
articulated figure approach, 531–535

building figures, 534
articulation

and mesh deformation, 562
and skinning, 562

class diagrams, 537
code for, 538
commands panel, 540–543

processing commands, 541–543
figures

making and moving, 543–553
other articulated, 561

kinematics, forward and inverse, 535–537
limbs

modeling, 553–557
moving, 557–560

scene creation, 538
user input processing, 539

MultiChat class, 827
MultiTimeClient class, 807
MultiTimeServer class, 806
MyTimerTask class, 45

N
NameServer class, 826
NetFourByFour class, 867
NetTour3D, 884–902

class diagrams, 885
code for, 886
NVE, as simple, 886
scene creation, client, 887

server activities, 899–902
broadcasting, 899–901
client-to-client messaging, 901

server monitoring, 893–899
distributed sprite class, 895
distributed sprite creation, 894
distributed sprite moving and

rotating, 896
sprite detail requests, responding

to, 897
sprite details, other client’s, 897–899

sprites, 888–893
defining, 888–890
local, 890–893

networking, 769–816
chat (see chat)
TCP client

and multiplexing server, 791–800
and multithreaded server, 788–790
and sequential server, 800–805
UDP client and server, 800–805

client/server model, 776
communication, elements of, 770–776

bandwidth, 770–772
latency, 772
protocol, 773–776
reliability, 773
topology, 770

example code, 769
firewalls, 808–815

applets as clients, 815
proxy authorization, 811
web page retrieval, 809
web-based client and server, 812–815

other Java approaches, 816
P2P Java programming, 805–807

multicasting, 806
P2P model, 778–780

NormalGenerator class, 461
NotesSynth, extending, 255
NVE (networked virtual

environment), 878–904
background on, 879
elements of, 880–884

consistency, 882
dead reckoning, 883
objects, 881
real-time, 882
scalability, 884
security, 884

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 965

spaces, 880, 881
users (avatars), 881
views, 882

gaming acronyms, 880
NetTour3D (see NetTour3D)
other Java NVEs, 902

Sun Game Server, 904

O
ObjectFile class, 428
Obstacles class, 48, 67
Odejava game engine binding, 406
Ogre4J game engine binding, 405
OpenGL Java bindings, 402

GL4Java, 402
LWJGL, 402

OpenMind screen graph API, 404
OrbitBehavior class, 420
OrientedShape3D class, 571
OverlayCanvas class, 875

P
PanChanger class, 246
PanMidi class, 246
particle class, 571
particle systems (see Particle3D)
Particle3D, 565–591

class diagrams, 571
coding techniques, 566–568
Java 3D particle systems, 568–571

float arrays, 569
inner class coding style, 571
synchronization problems, 570

lines, fountain of, 578–580
initializing particles, 579
particle appearance, 580
updating particle system, 580

non-Java 3D approaches, 590
other particle systems, 589

Java 3D approaches, 589
particle systems in (three), 566
performance results, 587, 589
points, fountain of, 574–578

geometry and appearance, 575
triggering updates, 578
updating, 576
updating particles, 577

quads, fountain of, 580–588
geometry, specifying, 582
initializing particle movement, 583
initializing particle normals, 585

initializing particle texture
coordinates, 583, 585

particle appearance, 585
updating particles, 587

scene creation, 572
Particles3D, 566
pausing and resuming, 37–39
Perf class, 26
PickCanvas class, 631
PickDragBehavior class, 857
PickHighlightBehavior class, 641
PickMouseBehavior class, 617, 631
PickRay class, 632
PickRotateBehavior class, 640
PickTool class, 620
PickTranslateBehavior class, 640
PickZoomBehavior class, 640
pixel effects, 170–175

teleporting, 171–173
zapping, 173–175

PixelGrabber class, 110
PlayClip class, 190
PlayerPiano application, 268
PlayerSprite class, 376
PlayMidi class, 200
PlaySound class, 180
PNG (Portable Network Graphics), 106
Point2D.Double class, 62
PointLight class, 674
PointParticles class, 571
PointSound class, 618
PointsUpdater class, 570
Port class, 189
Portable Network Graphics (PNG), 106
Positions class, 852
PredatorBehavior class, 595
PredatorBoid class, 596
PreyBehavior class, 595
PreyBoid class, 596
Primitive class, 413
pull imaging model, 123

Q
QuadArray class, 424, 434
QuadParticles class, 571

R
Real-time Optimally Adapting Meshes

(ROAM), 746
rendering, separating updates from, 35–37
RescaleOp class, 120

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

966 | Index

rescaling operations, 164–167
brightening, 165
negating, 166

RGBImageFilter class, 110
RhodoneaShape3D class, 485
Ribbon class, 324
ROAM (Real-time Optimally Adapting

Meshes), 746
rotating images, 153–155

S
sampled audio, 185–196

buffered, playing, 194–196
J2SE 5.0 short sound bug, 193
mixer, 187–189
playing clips, 189–193
sound effects on, 226–236

approaches, 226
byte array manipulation, 227–231
mixer controls, 231–236
precalculation, 227

sound synthesis, 249–255
note names, 249–251
NotesSynth, extending, 255
playing notes, 251
synthesizing notes, 252–255

scene graph APIs, 404
Aviatrix3D, 405
jFree-D2, 405
JiD, 405
Jist3D, 404
jME graphics engine, 404
Kahlua, 405
OpenMind, 404
Xith3D, 404

scene graphs
background, 412
creating, 410–412
lighting, 411
viewing, 421–423

scene graph viewing, 421–423
SceneGraphObject class, 433
ScoreClient class, 785
ScoreServer class, 788
SecondViewPanel class, 677
Selector class, 792
SeqSynth, extending, 268
Sequencer class, 224
ServerSocket class, 776, 783
Shape3D class, 390
SharedGroup class, 711

Shooter3D (third-person), 614–641
class diagrams for, 616
code for, 617
explosions, 627–631

rotating, 629
series of images, displaying, 629–631

FireBeam thread, 639
globals in repeated calculations, 624
gun, controlling, 622–624
laser beam, 624–627

shooting, 626
picking with mouse click, 631–634

intersections, finding, 633
picked object, 633

scene creation, 617
scene objects, picking, 619–622

what to pick, 621
shooting behavior, 634–639

cone rotation, 636–638
explosion facing the viewer, 639
picking debugging, 635

sounds, 617–619
problems with, 619

ShootingBehaviour class, 616, 634
ShortMessage class, 198
ShowImage class, 108
showMsg() bug, 821
side-scroller games (see JumpingJack game)
SimpleUniverse class, 392
Skeleton class, 563
SkinnedMesh class, 563
sleep() call

accuracy of, 31–33
inaccuracy, handling of, 33

SleepAcc class, 31
Socket class, 776
SocketChannel class, 792
sound, 178–204

APIs, 208
Applet playing, 178
audio effects, 207
AudioClip class, 179–182
background music, 207
callbacks, 208
ClipsLoader formats, 208
copyrights of, 209
effects (see sound effects)
J2SE 5.0 short sound bug, 193
Java Sound API, 185

resources, 202
versus JMF, JOAL, 202

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 967

LoadersTests application (see
LoadersTests application)

loading and playing, 205–225
MIDI (see MIDI)
MidisLoader (see MidisLoader)
preloading, 208
resources, 204
SoundPlayer application, 182–185
synthesis (see sound synthesis)
WAV bug, 208

sound effects, 226–248
examples, location of, 226
sampled audio (see sampled audio)

sound synthesis, 249–269
libraries, 268
sampled audio, 249–255

note names, 249–251
NotesSynth, extending, 255
playing notes, 251
synthesizing notes, 252–255

SoundsPanel class, 207
SoundsPanel constructor, 213
SoundsWatcher interface, 210
SourceDataLine class, 186
Sphere class, 413
spheres, floating, 413

coloring, 413
positioning, 414

Spotlight class, 674
Sprite class, 280
Sprite3D class, 495
sprites, 270–297

3D animated, 512–530
AnimTour3D (see AnimTour3D)
common approaches, 512
keyframe animation, 513, 530

animation framework, 274–279
animation loop, 276–278
finishing the game, 278
user interaction, 275

articulated figures (see Mover3D)
ball statechart, 287–293

specification, 288–289
translating, 289–293

ball textual specification, 287
bat statechart, 293–297

specification, 293
translating, 294–297

bat textual specification, 293
BugRunner, 270–272

class diagrams, 273

coding, 280–284
bounding box, 282
constructor, 280
drawing, 284
image, 281
updating, 283

statechart for, 284–287
translating to code, 285

(see also Tour3D)
StopWatch class, 29
StopWatchSource class, 27
strip file images, loading, 133
Stripifier class, 687
Sun Game Server, 904
SurfaceOfRevolution class, 477
swing timer, 40–43
SwingUtilities class, 821
synthesizer receiver port, MIDI messages

to, 258
SysexMessage class, 198

T
Terra3D, 711–744

class diagrams, 712
code for, 713
ground cover, 734–741

ground shape, 738–741
moving over, 740
what added, 736–738
where am I?, 739

landscapes
building, 722–728
walls, 731–734

landscaping (see Terragen landscaping
tool)

scenery
3D, 728–731
creation, 720, 722

surface height, 741–743
HeightFinder picking, 742

terrain
DEM, 745
following, accelerating, 743
generation, 745–748
Java 3D, other projects, 747
mesh decomposition, 744
ROAM, 746
threads, 744

Terragen landscaping tool, 713–720
extracting textures from, 718–720

terrain generation (see Terra3D)

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

968 | Index

TexCoordGeneration class, 478
Text2D class, 415
TexturedFloor class, 658
TexturedPlane class, 648, 658
Thread class, 37
threaded animation, 14–19

double buffered drawing, 18
game termination, 17
local memory variables, preventing with

volatile, 17
sleep necessity, 17
stopping threads, 16
synchronization concerns, 16

ThreadedChatServerHandler class, 822
ThreadedScoreHandler class, 790, 822
tic-tac-toe, 844–877

elements, main, 846
networked game, 858–877

canvas, writing on, 875–877
class comparison to standalone, 867
client game initialization, 867, 869
client game play, 871–874
client game termination, 869–871
code for, 864
player handlers, 865, 867
playing, 863
top-level server, 865
two-person protocols, 861

standalone game, 846–858
class comparison to networked, 867
code for, 846
marker creation, 850–853
origins of, 847
picking and dragging, 853–856
representing the game, 856–858
scene creation, 848–850

TiledImage class, 123
TiledSprite class, 368
TilesList class, 352
TilesPriQueue class, 352
tiling software, 344
TimeBehavior class, 495
Timer class, 44
timer resolution (granularity), 24
TimerRes class, 27
timers

J2SE, 26
Java 3D bug alert, 31
non-J2SE, 26
resolution of, 27–30

TimerTask class, 44
TimeUnit class, 26

Tour3D, 487–511
behaviors in Java 3D, 502–504
class diagrams, 488
code for, 489
scene creation, 489–495

background image, 490
full-screen display, 491
obstacle creation, 494
scenery and obstacles,

adding, 492–494
sprites

alien, 500–502, 510
basic 3D, 495–499
user’s touring, 500, 504–509

TourGroup class, 900
TouristControls class, 492
TouristInfo class, 900
TourServer class, 885
TourServerHandler class, 885, 900
TourSprite class, 500
TourWatcher class, 885, 892
TransformGroup class, 390
TransparencyAttributes class, 439
TreeLimb class, 750, 768
trees that grow (see Trees3D)
Trees3D, 749–768

class diagrams, 751
code for, 752
leaves, displaying, 764
limbs, 755–761

color change, 760
leaves, 760
scaling, 758
sorting information on, 756
subgraph creation, 756–758

L-systems comparison, 766–768
Java 3D and, 767
what to use, 767

rule execution, 761–764
scene creation, 752–754

growth, 754
leaves, 753
transparency depth-sorting, 754

TriangleArray class, 434
TriangleStripArray class, 424
TurnStile class, 286

U
UninstallAction class, 915
UPS (updates per second), 34–37
utility timer, 44

This is the Title of the Book, eMatter Edition

Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 969

V
Viewer class, 419
ViewerAvatar class, 649
viewers

movement, 420
positioning, 419

ViewingPlatform class, 419
ViewPlatformBehavior class, 655
virtual environment, networked (see NVE)
volatile, preventing local memory

variables, 17
VolatileImage class, 121
VolChanger class, 240
VRAM

information on, 142–144
VolatileImage objects in, 121

W
WakeupCondition class, 504
WakeupOnAWTEvent class, 504
WakeupOnElapsedFrames class, 504
WakeupOnElapsedTime class, 504
WAV bug, 208
WormChase (AFS) class, 78
WormChase class, 78
WormChase (FSEM) class, 91
WormChase game

full-screen, 76–104
80–85 FPS OS timings, 103
AFS, 77–82
approaches, 76
code for, 78
FSEM worm, 89–103
UFS worm, 82–89

window and applet, 46–73
applet, 70–73
application information, 48–50
application timing, OS, 68
class diagrams, 48
class reuse, 47
code for, 48
considerations, 47
game panel, 50–59
J2SE 5.0 compilation, 73–75
obstacles, 67
speed testing, 47
timer choice, 47
worm information, storing, 59–67

WormChase (UFS) class, 84
WormChaseApplet class, 71
WormPanel class, 72
WrapAnimTour3D class, 514
WrapCheckers3D class, 427
WrapCheckers3D JPanel, 409
WrapFlocking3D class, 596
WrapFourByFour class, 846, 848
WrapFractalLand3D class, 689
WrapLoader3D class, 447
WrapLoaderInfo3D class, 427
WrapMaze3D class, 666
WrapMover3D class, 538
WrapNetFBF class, 874
WrapNetTour3D class, 891
WrapShooter3D class, 618
WrapTour3D class, 505
WrapTrees3D class, 752

X
Xith3D screen graph API, 404

About the Author

Andrew Davison is a lecturer in the department of computer engineering at Prince of
Songkla University in Hat Yai, Thailand. He has lived in the “Land of Smiles” for
over 10 years and would recommend it to anyone with a love of Asia. Prior to that,
he was a lecturer in the department of computer science at the University of
Melbourne (“the World’s Most Livable City”). He received his Ph.D. from Imperial
College in London (“When a man is tired of London, he is tired of life”).

Andrew’s abiding interest is his family: wife Supatra and son John. They are the joy
and meaning of everything he does.

When not slumped in front of a computer or shouting at students, Andrew is fond of
reading to John, and now knows more than he should about the Lorax, Angelina
Ballerina, and Flat Stanley.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Killer Game Programming in Java is a jungle cat (Felis
chaus), a solitary felid known for its marvelous adaptability. Also known in some
places as the swamp or reed cat, the jungle cat is found across a wide geographic
area, ranging from Egypt to the Middle East to parts of Southern Asia and Western
China. The name jungle cat, however, is a misnomer because, while this animal is
often found in open grasslands, marshes, swamps, and tropical deciduous and ever-
green forests, it is never found in dense tropical rain forests. The jungle cat varies in
weight across its range. Cats living in Central Asia weigh up to 36 pounds, about 5 or
6 pounds more than those from Thailand and other neighboring areas.

Jungle cats can be distinguished from other wild cat species by their long legs and
uniform coat color, which ranges from sandy yellow to reddish brown. In ancient
Egypt, these cats were held in high esteem for their stealth and agility. Etchings
found on the walls of ancient temples depict jungle cats hunting beside humans.
Their mummified remains can also be found in tombs of the period.

The jungle cat’s long survival as a species is attributed in part to its great resourceful-
ness. These cats often inhabit the disused burrows of other animals, and in India,
they are sometimes known to take up residence in abandoned buildings on the
outskirts of human settlements, hunting in nearby crop fields for small rodents. They
are mostly crepuscular in their hunting habits (active at twilight), but are known to
be more active during daylight hours in some regions. Their prey includes rodents,
small mammals, birds, reptiles, insects, and occasionally wild pigs, chital deer, and
fish. Keen hearing, a contribution from the cat’s large ears, help it locate prey in
areas of dense vegetation. It can jump 13 feet to swipe a desert quail from the air,

dive into water to capture fish, and even climb trees to hunt when necessary. The
jungle cat, some say, can make it anywhere.

Matt Hutchinson was the production editor for Killer Game Programming in Java .
GEX, Inc. provided production services. Adam Witwer, Jamie Peppard, and Claire
Cloutier provided quality control.

Emma Colby designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from Royal Natural History.
Karen Montgomery produced the cover layout with Adobe InDesign CS using
Adobe’s ITC Garamond font.

David Futato designed the interior layout. This book was converted by Keith Fahl-
gren to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason
McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The
text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the
code font is LucasFont’s TheSans Mono Condensed. The illustrations that appear in
the book were produced by Chris Reilley using Macromedia FreeHand MX and
Adobe Photoshop CS. The tip and warning icons were drawn by Christopher Bing.
This colophon was written by Lydia Onofrei.

